Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk

Antonio Ragusa, Valentina Notarstefano, Alessandro Svelato, Alessia Belloni, Giorgia Gioacchini, Christine Blondeel, Emma Zucchelli, Caterina De Luca, Sara D'Avino, Alessandra Gulotta, Oliana Carnevali, Elisabetta Giorgini, Antonio Ragusa, Valentina Notarstefano, Alessandro Svelato, Alessia Belloni, Giorgia Gioacchini, Christine Blondeel, Emma Zucchelli, Caterina De Luca, Sara D'Avino, Alessandra Gulotta, Oliana Carnevali, Elisabetta Giorgini

Abstract

The widespread use of plastics determines the inevitable human exposure to its by-products, including microplastics (MPs), which enter the human organism mainly by ingestion, inhalation, and dermal contact. Once internalised, MPs may pass across cell membranes and translocate to different body sites, triggering specific cellular mechanisms. Hence, the potential health impairment caused by the internalisation and accumulation of MPs is of prime concern, as confirmed by numerous studies reporting evident toxic effects in various animal models, marine organisms, and human cell lines. In this pilot single-centre observational prospective study, human breastmilk samples collected from N. 34 women were analysed by Raman Microspectroscopy, and, for the first time, MP contamination was found in 26 out of 34 samples. The detected microparticles were classified according to their shape, colour, dimensions, and chemical composition. The most abundant MPs were composed of polyethylene, polyvinyl chloride, and polypropylene, with sizes ranging from 2 to 12 µm. MP data were statistically analysed in relation to specific patients' data (age, use of personal care products containing plastic compounds, and consumption of fish/shellfish, beverages, and food in plastic packaging), but no significant relationship was found, suggesting that the ubiquitous MP presence makes human exposure inevitable.

Keywords: Raman microspectroscopy; human breastmilk; infants’ nutrition; microplastics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Microphotographs and Raman spectra (wavenumbers, cm−1) of some selected MPs found in the analysed breastmilk samples. PE: polyethylene; PVC: polyvinyl chloride; PP: polypropylene; PVOH: polyvinyl alcohol; PEVA: poly(ethylene-co-vinyl acetate); PEMA: poly(ethyl methacrylate); PES: polyester, and PC: polycarbonate.
Figure 2
Figure 2
Percentage abundances of identified shapes (A), colours (B), dimensions (C), and polymer matrices (D). PE: polyethylene; PVC: polyvinyl chloride; PP: polypropylene; CPE: chlorinated polyethylene; PVOH: polyvinyl alcohol; PEVA: poly(ethylene-co-vinyl acetate); PEMA: poly(ethyl methacrylate); ABS: acrylonitrile butadiene styrene; PES: polyester; PA: polyamide; PC: polycarbonate; PS: polystyrene, and NC: nitrocellulose.
Figure 3
Figure 3
Percentage abundances of samples with (MPs) and without (no MPs) microplastics, divided according to the following selected parameters: (A) age of patient; (B) consumption of fish/shellfish in the 7 days prior to the expected date of delivery and 7 days after; (C) use of personal care products with plastic compounds in the 7 days prior to the expected date of delivery and 7 days after; (D) consumption of beverages in plastic bottles in the 7 days prior to the expected date of delivery and 7 days after, and (E) consumption of food in plastic packaging in the 7 days prior to the expected date of delivery and 7 days after. Number of identified microplastics divided according to the above-defined parameters (FJ) (box charts: centre line marks the median, edges indicate the 5th and 95th percentiles, and whiskers indicate the minimum and maximum values).

References

    1. Jadhav E.B., Sankhla M.S., Bhat R.A., Bhagat D.S. Microplastics from food packaging: An overview of human consumption, health threats, and alternative solutions. Environ. Nanotechnol. Monit. Manag. 2021;16:100608. doi: 10.1016/j.enmm.2021.100608.
    1. Lithner D., Larsson Å., Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 2011;409:3309–3324. doi: 10.1016/j.scitotenv.2011.04.038.
    1. Plastics Europe Plastics—The Facts 2019 An Analysis of European Plastics Production, Demand and Waste Data. Royal Society of Chemistry; Lodon, UK: 2019.
    1. Eriksen M., Lebreton L.C.M., Carson H.S., Thiel M., Moore C.J., Borerro J.C., Galgani F., Ryan P.G., Reisser J. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE. 2014;9:e111913. doi: 10.1371/journal.pone.0111913.
    1. Conti I., Simioni C., Varano G., Brenna C., Costanzi E., Neri L.M. Legislation to limit the environmental plastic and microplastic pollution and their influence on human exposure. Environ. Pollut. 2021;288:117708. doi: 10.1016/j.envpol.2021.117708.
    1. Browne M.A., Crump P., Niven S.J., Teuten E., Tonkin A., Galloway T., Thompson R. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environ. Sci. Technol. 2011;45:9175–9179. doi: 10.1021/es201811s.
    1. Salvador Cesa F., Turra A., Baruque-Ramos J. Synthetic fibers as microplastics in the marine environment: A review from textile perspective with a focus on domestic washings. Sci. Total Environ. 2017;598:1116–1129. doi: 10.1016/j.scitotenv.2017.04.172.
    1. Hanun J.N., Hassan F., Jiang J.-J. Occurrence, fate, and sorption behavior of contaminants of emerging concern to microplastics: Influence of the weathering/aging process. J. Environ. Chem. Eng. 2021;9:106290. doi: 10.1016/j.jece.2021.106290.
    1. Kannan K., Vimalkumar K. A Review of Human Exposure to Microplastics and Insights Into Microplastics as Obesogens. Front. Endocrinol. 2021;12:724989. doi: 10.3389/fendo.2021.724989.
    1. Sridharan S., Kumar M., Singh L., Bolan N.S., Saha M. Microplastics as an emerging source of particulate air pollution: A critical review. J. Hazard. Mater. 2021;418:126245. doi: 10.1016/j.jhazmat.2021.126245.
    1. Prata J.C., da Costa J.P., Lopes I., Duarte A.C., Rocha-Santos T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020;702:134455. doi: 10.1016/j.scitotenv.2019.134455.
    1. Prata J.C. Airborne microplastics: Consequences to human health? Environ. Pollut. 2018;234:115–126. doi: 10.1016/j.envpol.2017.11.043.
    1. Cox K.D., Covernton G.A., Davies H.L., Dower J.F., Juanes F., Dudas S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019;53:7068–7074. doi: 10.1021/acs.est.9b01517.
    1. Alimba C.G., Faggio C., Sivanesan S., Ogunkanmi A.L., Krishnamurthi K. Micro(nano)-plastics in the environment and risk of carcinogenesis: Insight into possible mechanisms. J. Hazard. Mater. 2021;416:126143. doi: 10.1016/j.jhazmat.2021.126143.
    1. Danopoulos E., Twiddy M., West R., Rotchell J.M. A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. J. Hazard. Mater. 2021:127861. doi: 10.1016/j.jhazmat.2021.127861.
    1. Han Y., Lian F., Xiao Z., Gu S., Cao X., Wang Z., Xing B. Potential toxicity of nanoplastics to fish and aquatic invertebrates: Current understanding, mechanistic interpretation, and meta-analysis. J. Hazard. Mater. 2022;427:127870. doi: 10.1016/j.jhazmat.2021.127870.
    1. Yin K., Wang Y., Zhao H., Wang D., Guo M., Mu M., Liu Y., Nie X., Li B., Li J., et al. A comparative review of microplastics and nanoplastics: Toxicity hazards on digestive, reproductive and nervous system. Sci. Total Environ. 2021;774:145758. doi: 10.1016/j.scitotenv.2021.145758.
    1. Käppler A., Fischer D., Oberbeckmann S., Schernewski G., Labrenz M., Eichhorn K.-J., Voit B. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal. Bioanal. Chem. 2016;408:8377–8391. doi: 10.1007/s00216-016-9956-3.
    1. Ribeiro-Claro P., Nolasco M.M., Araújo C. Characterization of Microplastics by Raman Spectroscopy. Compr. Anal. Chem. 2017;75:119–151. doi: 10.1016/bs.coac.2016.10.001.
    1. Di Renzo L., Mascilongo G., Berti M., Bogdanović T., Listeš E., Brkljača M., Notarstefano V., Gioacchini G., Giorgini E., Olivieri V., et al. Potential Impact of Microplastics and Additives on the Health Status of Loggerhead Turtles (Caretta caretta) Stranded Along the Central Adriatic Coast. Water Air Soil Pollut. 2021;232:98. doi: 10.1007/s11270-021-04994-8.
    1. Ragusa A., Svelato A., Santacroce C., Catalano P., Notarstefano V., Carnevali O., Papa F., Rongioletti M.C.A., Baiocco F., Draghi S., et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021;146:106274. doi: 10.1016/j.envint.2020.106274.
    1. Eidelman A.I., Schanler R.J., Johnston M., Landers S., Noble L., Szucs K., Viehmann L. Breastfeeding and the Use of Human Milk. Pediatrics. 2012;129:e827–e841. doi: 10.1542/peds.2011-3552.
    1. Llorca M., Farré M., Picó Y., Teijón M.L., Álvarez J.G., Barceló D. Infant exposure of perfluorinated compounds: Levels in breast milk and commercial baby food. Environ. Int. 2010;36:584–592. doi: 10.1016/j.envint.2010.04.016.
    1. LaKind J.S., Verner M.-A., Rogers R.D., Goeden H., Naiman D.Q., Marchitti S.A., Lehmann G.M., Hines E.P., Fenton S.E. Current Breast Milk PFAS Levels in the United States and Canada: After All This Time, Why Don’t We Know More? Environ. Health Perspect. 2022;130:025002. doi: 10.1289/EHP10359.
    1. Jian J.M., Chen D., Han F.J., Guo Y., Zeng L., Lu X., Wang F. A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs) Sci. Total Environ. 2018;636:1058–1069. doi: 10.1016/j.scitotenv.2018.04.380.
    1. Ministero della Salute Allattare al Seno-Un Investimento Per la Vita. [(accessed on 1 June 2022)];2019 Available online: .
    1. Karami A., Golieskardi A., Choo C.K., Romano N., Ho Y.B., Salamatinia B. A high-performance protocol for extraction of microplastics in fish. Sci. Total Environ. 2017;578:485–494. doi: 10.1016/j.scitotenv.2016.10.213.
    1. Dong M., Zhang Q., Xing X., Chen W., She Z., Luo Z. Raman spectra and surface changes of microplastics weathered under natural environments. Sci. Total Environ. 2020;739:139990. doi: 10.1016/j.scitotenv.2020.139990.
    1. SLOPP Library of Microplastics. [(accessed on 1 June 2022)]. Available online: .
    1. Imhof H.K., Laforsch C., Wiesheu A.C., Schmid J., Anger P.M., Niessner R., Ivleva N.P. Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes. Water Res. 2016;98:64–74. doi: 10.1016/j.watres.2016.03.015.
    1. Stoye D., Freitag W. Paints, Coatings and Solvents. Wiley; Hoboken, NJ, USA: 1998.
    1. Karthikeyan B.S., Ravichandran J., Aparna S.R., Samal A. ExHuMId: A curated resource and analysis of Exposome of Human Milk across India. Chemosphere. 2021;271:129583. doi: 10.1016/j.chemosphere.2021.129583.
    1. Lehmann G.M., LaKind J.S., Davis M.H., Hines E.P., Marchitti S.A., Alcala C., Lorber M. Environmental Chemicals in Breast Milk and Formula: Exposure and Risk Assessment Implications. Environ. Health Perspect. 2018;126:096001. doi: 10.1289/EHP1953.
    1. Mead M.N. Contaminants in Human Milk: Weighing the Risks against the Benefits of Breastfeeding. Environ. Health Perspect. 2008;116:A426–A434. doi: 10.1289/ehp.116-a426.
    1. Vasios G., Kosmidi A., Kalantzi O.-I., Tsantili-Kakoulidou A., Kavantzas N., Theocharis S., Giaginis C. Simple physicochemical properties related with lipophilicity, polarity, molecular size and ionization status exert significant impact on the transfer of drugs and chemicals into human breast milk. Expert Opin. Drug Metab. Toxicol. 2016;12:1273–1278. doi: 10.1080/17425255.2016.1230197.
    1. Lundqvist C., Zuurbier M., Leijs M., Johansson C., Ceccatelli S., Saunders M., Schoeters G., Ten Tusscher G., Koppe J. The effects of PCBs and dioxins on child health. Acta Paediatr. 2006;95:55–64. doi: 10.1080/08035320600886257.
    1. Gibson E., Siegel E., Eniola F., Herbstman J., Factor-Litvak P. Effects of Polybrominated Diphenyl Ethers on Child Cognitive, Behavioral, and Motor Development. Int. J. Environ. Res. Public Health. 2018;15:1636. doi: 10.3390/ijerph15081636.
    1. Main K.M., Mortensen G.K., Kaleva M.M., Boisen K.A., Damgaard I.N., Chellakooty M., Schmidt I.M., Suomi A.-M., Virtanen H.E., Petersen J.H., et al. Human Breast Milk Contamination with Phthalates and Alterations of Endogenous Reproductive Hormones in Infants Three Months of Age. Environ. Health Perspect. 2006;114:270–276. doi: 10.1289/ehp.8075.
    1. Braun J.M., Sathyanarayana S., Hauser R. Phthalate exposure and children’s health. Curr. Opin. Pediatr. 2013;25:247–254. doi: 10.1097/MOP.0b013e32835e1eb6.
    1. Huang H.-B., Chen H.-Y., Su P.-H., Huang P.-C., Sun C.-W., Wang C.-J., Chen H.-Y., Hsiung C.A., Wang S.-L. Fetal and Childhood Exposure to Phthalate Diesters and Cognitive Function in Children Up to 12 Years of Age: Taiwanese Maternal and Infant Cohort Study. PLoS ONE. 2015;10:e0131910. doi: 10.1371/journal.pone.0131910.
    1. Rodrigues J.P., Duarte A.C., Santos-Echeandía J., Rocha-Santos T. Significance of interactions between microplastics and POPs in the marine environment: A critical overview. TrAC Trends Anal. Chem. 2019;111:252–260. doi: 10.1016/j.trac.2018.11.038.
    1. Liu F., Liu G., Zhu Z., Wang S., Zhao F. Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry. Chemosphere. 2019;214:688–694. doi: 10.1016/j.chemosphere.2018.09.174.
    1. Jones J.I., Vdovchenko A., Cooling D., Murphy J.F., Arnold A., Pretty J.L., Spencer K.L., Markus A.A., Vethaak A.D., Resmini M. Systematic Analysis of the Relative Abundance of Polymers Occurring as Microplastics in Freshwaters and Estuaries. Int. J. Environ. Res. Public Health. 2020;17:9304. doi: 10.3390/ijerph17249304.
    1. Bajt O. From plastics to microplastics and organisms. FEBS Open Bio. 2021;11:954–966. doi: 10.1002/2211-5463.13120.
    1. Mowat A.M. Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. 2003;3:331–341. doi: 10.1038/nri1057.
    1. Schwabl P., Köppel S., Königshofer P., Bucsics T., Trauner M., Reiberger T., Liebmann B. Detection of Various Microplastics in Human Stool. Ann. Intern. Med. 2019;171:453. doi: 10.7326/M19-0618.
    1. Ibrahim Y.S., Tuan Anuar S., Azmi A.A., Wan Mohd Khalik W.M.A., Lehata S., Hamzah S.R., Ismail D., Ma Z.F., Dzulkarnaen A., Zakaria Z., et al. Detection of microplastics in human colectomy specimens. JGH Open. 2021;5:116–121. doi: 10.1002/jgh3.12457.
    1. Amato-Lourenço L.F., Carvalho-Oliveira R., Júnior G.R., dos Santos Galvão L., Ando R.A., Mauad T. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 2021;416:126124. doi: 10.1016/j.jhazmat.2021.126124.
    1. Braun T., Ehrlich L., Henrich W., Koeppel S., Lomako I., Schwabl P., Liebmann B. Detection of Microplastic in Human Placenta and Meconium in a Clinical Setting. Pharmaceutics. 2021;13:921. doi: 10.3390/pharmaceutics13070921.
    1. Leslie H.A., van Velzen M.J.M., Brandsma S.H., Vethaak A.D., Garcia-Vallejo J.J., Lamoree M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022:107199. doi: 10.1016/j.envint.2022.107199.
    1. Cai J., Zang X., Wu Z., Liu J., Wang D. Translocation of transition metal oxide nanoparticles to breast milk and offspring: The necessity of bridging mother-offspring-integration toxicological assessments. Environ. Int. 2019;133:105153. doi: 10.1016/j.envint.2019.105153.
    1. Yang L., Kuang H., Zhang W., Wei H., Xu H. Quantum dots cause acute systemic toxicity in lactating rats and growth restriction of offspring. Nanoscale. 2018;10:11564–11577. doi: 10.1039/C8NR01248B.
    1. Senathirajah K., Attwood S., Bhagwat G., Carbery M., Wilson S., Palanisami T. Estimation of the mass of microplastics ingested—A pivotal first step towards human health risk assessment. J. Hazard. Mater. 2021;404:124004. doi: 10.1016/j.jhazmat.2020.124004.

Source: PubMed

3
Tilaa