A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health

Claudia Campanale, Carmine Massarelli, Ilaria Savino, Vito Locaputo, Vito Felice Uricchio, Claudia Campanale, Carmine Massarelli, Ilaria Savino, Vito Locaputo, Vito Felice Uricchio

Abstract

The distribution and abundance of microplastics into the world are so extensive that many scientists use them as key indicators of the recent and contemporary period defining a new historical epoch: The Plasticene. However, the implications of microplastics are not yet thoroughly understood. There is considerable complexity involved to understand their impact due to different physical-chemical properties that make microplastics multifaceted stressors. If, on the one hand, microplastics carry toxic chemicals in the ecosystems, thus serving as vectors of transport, they are themselves, on the other hand, a cocktail of hazardous chemicals that are added voluntarily during their production as additives to increase polymer properties and prolong their life. To date, there is a considerable lack of knowledge on the major additives of concern that are used in the plastic industry, on their fate once microplastics dispose into the environment, and on their consequent effects on human health when associated with micro and nanoplastics. The present study emphasizes the most toxic and dangerous chemical substances that are contained in all plastic products to describe the effects and implications of these hazardous chemicals on human health, providing a detailed overview of studies that have investigated their abundance on microplastics. In the present work, we conducted a capillary review of the literature on micro and nanoplastic exposure pathways and their potential risk to human health to summarize current knowledge with the intention of better focus future research in this area and fill knowledge gaps.

Keywords: additives; human health; microplastics; nanoplastics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Appearance of the deposition and stratification of plastic materials in a Spanish canyon (Source: [16]).
Figure 2
Figure 2
Layering of plastic materials in an area of Southern Italy.
Figure 3
Figure 3
Detail of the plastic stratigraphy.
Figure 4
Figure 4
Chemical structure of some classes of halogenated flame retardants.
Figure 5
Figure 5
Greater fields of use of brominated flame retardants (BFRs) (Source data: [135]).
Figure 6
Figure 6
Overview of scientific studies focused on the effects of micro and nanoplastics on human health. Colored squares represent pollutants (organic and inorganic) that could be present in environmental matrices (free or associated with micro and nanoplastics) and that could enter into the human body through different entry routes.

References

    1. Plastic Strategy A European Strategy for Plastics in a Circular Economy. [(accessed on 3 December 2019)]; Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels, January 16th 2018 COM (2018) Available online: .
    1. Roscam A.M. Plastic Soup: An Atlas of Ocean Pollution. Island Press; Washington, DC, USA: Covelo, CA, USA: London, OH, USA: 2019. ISBN-10: 1642830089.
    1. Wagner M., Lambert S. The Handbook of Environmental Chemistry. Volume 58 Springer Open; Cham, Switzerland: 2018. Freshwater microplastics. Emerging environmental contaminants?
    1. Zalasiewicz J., Waters C.N., Do Sul I.J.A., Corcoran P.L., Barnosky A.D., Cearreta A., Edgeworth M., Gałuszka A., Jeandel C., Leinfelder R., et al. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene. 2016;13:4–17. doi: 10.1016/j.ancene.2016.01.002.
    1. Campanale C., Stock F., Massarelli C., Kochleus C., Bagnuolo G., Reifferscheid G., Uricchio V. Microplastics and their possible sources: The example of Ofanto river in Southeast Italy. Environ. Pollut. 2019:113284. doi: 10.1016/j.envpol.2019.113284.
    1. Rillig M.C., Ingraffia R., De Souza Machado A. Microplastic Incorporation into Soil in Agroecosystems. Front. Plant Sci. 2017;8:1805. doi: 10.3389/fpls.2017.01805.
    1. Prata J.C. Airborne microplastics: Consequences to human health? Environ. Pollut. 2018;234:115–126. doi: 10.1016/j.envpol.2017.11.043.
    1. Waring R.H., Harrisa R.M., Mitchell S.C. Plastic contamination of the food chain: A threat to human health? Maturitas. 2018;115:64–68. doi: 10.1016/j.maturitas.2018.06.010.
    1. Pivokonsky M., Cermakova L., Novotna K., Peer P., Cajthaml T., Janda V. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ. 2018;643:1644–1651. doi: 10.1016/j.scitotenv.2018.08.102.
    1. Rezania S., Park J., Din M.F.M., Taib S.M., Talaiekhozani A., Yadav K.K., Kamyab H. Microplastics pollution in different aquatic environments and biota: A review of recent studies. Mar. Pollut. Bull. 2018;133:191–208. doi: 10.1016/j.marpolbul.2018.05.022.
    1. Cook T. How are microplastics transported to polar regions? EOS. 2019;100 doi: 10.1029/2019EO134237.
    1. Corcoran P.L., Moore C.J., Jazvac K. An anthropogenic marker horizon in the future rock record. GSA Today. 2014;24:4–8. doi: 10.1130/GSAT-G198A.1.
    1. Brandon J.A., Jones W., Ohman M.D., Brandon J.A., Jones W., Ohman M.D. Multidecadal increase in plastic particles in coastal ocean sediments. Sci. Adv. 2019;5:eaax0587. doi: 10.1126/sciadv.aax0587.
    1. Stager C. Deep Future: The Next 100,000 Years of Life on Earth. Thomas Dunne Books; New York, NY, USA: 2012. ISBN-10: 1554686636, ISBN-13: 978-1554686636.
    1. Reed C. Dawn of the Plasticene age. New Scientist. 2015;225:28–32. doi: 10.1016/S0262-4079(15)60215-9.
    1. Image from EGU Blog. Author: Chris Skinner. [(accessed on 28 November 2019)]; Under the Creative Commons Attribution 4.0 International licence (CC BY 4.0) Available online:
    1. Frias J., Nash R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2018;138:145–147. doi: 10.1016/j.marpolbul.2018.11.022.
    1. Hahladakis N.J., Costas A.V., Weber R., Iacovidou E., Purnell P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018;344:179–199. doi: 10.1016/j.jhazmat.2017.10.014.
    1. Seymour B.R. The Role of Fillers and Reinforcements in Plastics Technology. Polym. Plast. Technol. Eng. 1976;7:49–79. doi: 10.1080/03602557608063110.
    1. Andrady A.L., Rajapakse N. Additives and Chemicals in Plastics. Hazardous Chemicals Associated with Plastics in the Marine Environment. In: Takada H., Karapanagioti H., editors. The Handbook of Environmental Chemistry. Springer; Cham, Switzerland: 2016. p. 78.
    1. Marturano V., Cerruti P., Ambrogi V. Polymer additives. Phys. Sci. Rev. 2017;2 doi: 10.1515/psr-2016-0130.
    1. Hansen E., Nilsson N.H., Lithner D., Lassen C. Hazardous Substances in Plastic Materials. Klima- og forurensningsdirektoratet; Vejle, Denmark: 2013.
    1. Sastri R.V. Plastics in Medical Devices. 1st ed. William Andrew Publishers; Norwich, NY, USA: 2010. Chapter 5—Polymer Additives Used to Enhance Material Properties for Medical Device Applications; pp. 55–72.
    1. Dufton P.W. Functional Additives for the Plastics Industry: A Report from Rapra’s Industry Analysis Group. CRC Press; Shrewsbury, UK: 1998.
    1. Browne M.A., Niven S.J., Galloway T.S., Rowland S.J., Thompson R.C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr. Biol. 2013;23:2388–2392. doi: 10.1016/j.cub.2013.10.012.
    1. Hongwei L., Xiang Y., He D., Li Y., Zhao Y., Wang S., Pan X. Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate to Chlorella vulgaris. Sci. Tot. Environ. 2019;678:1–9. doi: 10.1016/j.scitotenv.2019.04.401.
    1. Regulation E.C. No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing directives 67/548/EEC and 1999/45/EC, and amending regulation (EC) No 1907/2006. Off. J. Eur. Union. 2008;2008b L:353.
    1. Schubert J. A program to abolish harmful chemicals. Springer on behalf of Royal Swedish Academy of Sciences. AMBIO. 1972;1–3:79–89.
    1. HESIS Occupational Health Branch California Department of Public Health . State of California Department of Public Health Department of Industrial Relations; [(accessed on 29 November 2019)]. Understanding Toxic Substances. An Introduction to Chemical Hazards in the Workplace. Available online: .
    1. Cingotti N., Jensen G.K., Health and Environment Alliance (HEAL) Food Contact Materials and Chemical Contamination. Health and Environment Alliance; Brussels, Belgium: 2019.
    1. Colborn T., Clement C. Chemically-induced Alterations in Sexual and Functional Development: The Wildlife/Human Connection. Volume 21. Princeton. Scientific. Pub. Co.; Princeton, NJ, USA: 1992. p. 403.
    1. Olea-Serrano N., Fernández M., Pulgar R., Olea-Serrano F. Endocrine disrupting chemicals: Harmful substances and how to test them. Cadernos de saúde pública. 2002;18:489–494. doi: 10.1590/S0102-311X2002000200013.
    1. Miyagawa S., Sato T., Iguchi T. Subchapter 101C—Bisphenol A. In: Takei Y., Ando H., Tsutsui K., editors. Handbook of Hormones. Academic Press; Cambridge, MA, USA: 2016. pp. 577–578.
    1. Shelby M.D. NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. Ntp Cerhr Mon. 2008;22:1–64.
    1. Cariati F., D’Uonno N., Borrillo FIervolino S., Galdiero G., Tomaiolo R. Bisphenol a: An emerging threat to male fertility. Reprod. Biol. Endocrinol. 2019;17:6. doi: 10.1186/s12958-018-0447-6.
    1. Yu Z., Peldszus S., Huck P.M. Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound-Naproxen, carbamazepine and nonylphenol on activated carbon. Water Res. 2008;42:2873–2882. doi: 10.1016/j.watres.2008.02.020.
    1. Vom Saal F.S., Myers J.P. Bisphenol A and risk of metabolic disorders. JAMA. 2008;300:1353–1355. doi: 10.1001/jama.300.11.1353.
    1. Dodds E.C., Lawson W. Synthetic strogenic agents without the phenanthrene nucleus. Nature. 1936;137:996. doi: 10.1038/137996a0.
    1. Glausiusz J. The plastics puzzle (vol 508, pg 306, 2014) Nature. 2014;509:20.
    1. Chen W., Pan S., Cheng H., Sweetman A., Zhang H., Jones K. Diffusive gradients in thin-films (DGT) for in situ sampling of selected endocrine disrupting chemicals (EDCs) in waters. Water Res. 2018;137:211–219. doi: 10.1016/j.watres.2018.03.029.
    1. Ortiz-Villanueva E., Jaumot J., Martinez R., Navarro-Martin L., Pina B., Tauler R. Assessment of endocrine disruptors effects on zebrafish (Danio rerio) embryos by untargeted LC-HRMS metabolomic analysis. Sci. Total Environ. 2018;635:156–166. doi: 10.1016/j.scitotenv.2018.03.369.
    1. Hirai H., Takada H., Ogata Y., Yamashita R., Mizukawa K., Saha M., Kwan C., Moore C., Gray H., Laursen D., et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 2011;62:1683–1692. doi: 10.1016/j.marpolbul.2011.06.004.
    1. Rehse S., Kloas W., Zarfl C. Microplastics Reduce Short-Term Effects of Environmental Contaminants. Part I: Effects of Bisphenol A on Freshwater Zooplankton Are Lower in Presence of Polyamide Particles. Int. J. Environ. Res. Public. Health. 2018;15:280. doi: 10.3390/ijerph15020280.
    1. Wei W., Huang Q.S., Sun J., Wang J.Y., Wu S.L., Ni B.J. Polyvinyl Chloride Microplastics Affect Methane Production from the Anaerobic Digestion of Waste Activated Sludge through Leaching Toxic Bisphenol-A. Environ. Sci. Technol. 2019;53:2509–2517. doi: 10.1021/acs.est.8b07069.
    1. Peijnenburg W.J.G.M. Phthalates. In: Jørgensen S.E., Fath B.D., editors. Encyclopedia of Ecology. Academic Press; Cambridge, MA, USA: 2008. pp. 2733–2738.
    1. Xie Z., Ebinghaus R., Temme C., Lohmann R., Caba A., Ruck W. Occurrence ans Air-Sea exchange of phthalates in the Arctic. Environ. Sci. Technol. 2007;41:4555–4560. doi: 10.1021/es0630240.
    1. Halden R.U. Plastics and health risks. Annu. Rev. Public Health. 2010;31:179–194. doi: 10.1146/annurev.publhealth.012809.103714.
    1. Lyche L.J., Gutleb A.C., Bergman Å., Eriksen G.S., Murk A.T.J., Ropstad E., Saunders M., Skaare J.U. Reproductive and Developmental Toxicity of Phthalates. J. Toxicol. Environ. Health Part B. 2009;12:225–249. doi: 10.1080/10937400903094091.
    1. Jobling S., Reynolds T., White R., Parker M.G., Sumpter J.P. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ. Health Perspect. 1995;103:582–587. doi: 10.1289/ehp.95103582.
    1. Duty S.M., Silva M.J., Barr D.B., Brock J.W., Ryan L., Chen Z., Herrick R.F., Christiani D.C., Hauser R. Phthalate exposure and human semen parameters. Epidemiology. 2003;14:269–277. doi: 10.1097/01.EDE.0000059950.11836.16.
    1. Hauser R., Calafat A.M. Phthalates and human health. Occup. Environ. Med. 2005;62:806–818. doi: 10.1136/oem.2004.017590.
    1. The Danish EPA . Phtalates Strategy. The Danish EPA; Copenhagen, Denmark: 2013.
    1. The REACH Regulation (Regulation (EC) No 1907/2006) on Registration, Evaluation and Authorisation and Restriction of Chemicals. [(accessed on 2 December 2019)]; Available online: .
    1. Council Directive 67/548/EEC of 27 June 1967 on the Approximation of Laws, Regulations and Administrative Provisions Relating to the Classification, Packaging and Labelling of Dangerous Substances. [(accessed on 2 December 2019)]; Available online: .
    1. Gray J.L.E., Ostby J., Furr J., Price M., Veeramachaneni D.N., Parks L. Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol. Sci. 2000;58:350–365. doi: 10.1093/toxsci/58.2.350.
    1. Ema M., Miyawaki E. Adverse effects on development of the reproductive system in male offspring of rats given monobutyl phthalate, a metabolite of dibutyl phthalate, during late pregnancy. Reprod. Toxicol. 2001;15:189–194. doi: 10.1016/S0890-6238(01)00111-3.
    1. Fisher J.S., Macpherson S., Marchetti N., Sharpe R.M. Human ‘testicular dysgenesis syndrome’: A possible model using in utero exposure of the rat to dibutyl phthalate. Human. Reprod. 2003;18:1383–1394. doi: 10.1093/humrep/deg273.
    1. Jiang J., Ma L., Yuan L., Wang X., Zhang W. Study on developmental abnormalities in hypospadiac male rats induced by maternal exposure to di-n-butylphthalate (DBP) Toxicology. 2007;232:286–293. doi: 10.1016/j.tox.2007.01.018.
    1. Rani M., Shim W.J., Han G.M., Janj M., Al-Odaini N.A., Songi Y.K., Hong S.H. Qualitative Analysis of Additives in Plastic Marine Debris and Its New Products. Arch. Environ. Contam. Toxicol. 2015;69:352–366. doi: 10.1007/s00244-015-0224-x.
    1. Commission Regulation (EU) 2018/2005 of 17 December 2018 amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Bis(2-ethylhexyl) Phthalate (DEHP), Dibutyl Phthalate (DBP), Benzyl Butyl Phthalate (BBP) and Diisobutyl Phthalate (DIBP) (Text with EEA relevance.) [(accessed on 1 December 2019)]; Available online: .
    1. Search alerts—European Commission—Europa EU. [(accessed on 1 December 2019)]; Available online: .
    1. RAPEX Recall Report for Toys for 2018. [(accessed on 1 December 2019)]; Report Version /Issue Date: Annual 2019-02-20 Report Issued by: TUV SUD. Available online: .
    1. RASFF Portal—European Commission. [(accessed on 1 December 2019)]; Available online: .
    1. Guo Y., Zhang Z., Liu L., Li Y., Ren N., Kannan K. Occurrence and Profiles of Phthalates in Foodstuffs from China and Their Implications for Human Exposure. J. Agric. Food Chem. 2012;60:6913–6919. doi: 10.1021/jf3021128.
    1. Peijnenburg W.J.G.M., Struijs J. Occurrence of phthalate esters in the environment of the Netherlands. Ecotoxicol. Environm. Safe. 2006;63:204–215. doi: 10.1016/j.ecoenv.2005.07.023.
    1. Sanchez-Avila J., Bonet J., Velasco G., Lacorte S. Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a Municipal Wastewater Treatment Plant. Sci. Tot. Environ. 2009;407:4157–4167. doi: 10.1016/j.scitotenv.2009.03.016.
    1. Bergé A. Master’s Thesis. University Paris-Est; Créteil, France: 2012. Identification of Sources of Alkylphenols and Phthalates in Urban Area. Comparison of Domestic Discharges to Pure Industrial Wastewater; p. 290.
    1. Bergé A., Cladière M., Gasperi J., Coursimault A., Tassin B., Moilleron R. Meta-analysis of environmental contamination by phthalates. Environm. Sci. Pollut. Res. 2013;20:8057–8076. doi: 10.1007/s11356-013-1982-5.
    1. Bergé A., Gasper J., Rocher V., Gras L., Coursimault A., Moilleron R. Phthalates and alkylphenols in industrial and domestic effluents: Case of Paris conurbation (France) Sci. Tot. Environ. 2014;488–489:26–35.
    1. Gao B., Wang P., Zhou H., Zhang Z., Wu F., Jin J., Kang M., Sun K. Sorption of phthalic acid esters in two kinds of landfill leachates by the carbonaceous adsorbents. Bioresour. Technol. 2013;136:295–301. doi: 10.1016/j.biortech.2013.03.026.
    1. Ghaffar A., Ghosh S., Li F., Dong X., Zhang D., Wu M., Li H., Pan B. Effect of biochar aging on surface characteristics and adsorption behavior of dialkyl phthalates. Environ. Pollut. 2015;206:502–509. doi: 10.1016/j.envpol.2015.08.001.
    1. Rios LMJones P.R., Moore C., Narayan U.V. Quantitation of persistent organic pollutants adsorbed on plastic debris from the Northern Pacific Gyre’s “eastern garbage patch”. J. Environ. Monit. 2010;12:2226–2236.
    1. Liu F., Liu G., Zhu Z., Wang S., Zhao F. Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry. Chemosphere. 2019;214:688–694. doi: 10.1016/j.chemosphere.2018.09.174.
    1. Zhang H., Zhou Q., Xie Z., Zhou Y., Tu C., Fu C., Mi W., Ebinghaus R., Christie P., Luo Y. Occurrences of organophosphorus esters and phthalates in the microplastics from the coastal beaches in north China. Sci. Tot. Environ. 2018;616–617:1505–1512. doi: 10.1016/j.scitotenv.2017.10.163.
    1. Fergusson J.E. The Heavy Elements: Chemistry, Environmental Impact and Health Effects. Pergamon Press; Oxford, UK: 1990.
    1. Koller M., Saleh H.M. Introductory Chapter: Introducing Heavy Metals. In: Saleh H.E.-D.M., Aglan R.F., editors. Heavy Metals. IntechOpen; London, UK: 2018. [(accessed on 24 November 2019)]. Available online: .
    1. Godwill E.A., Ferdinand P.U., Nwalo NFUnachukwu M. Poisoning in the Modern World-New Tricks for an Old Dog. Intechopen; London, UK: 2019. Mechanism and Health Effects of Heavy Metal Toxicity in Humans; pp. 1–23.
    1. Appenroth K.J. Soil Heavy Metals. Springer; Berlin/Heidelberg, Germany: 2010. Definition of “Heavy Metals” and Their Role in Biological Systems; pp. 19–29.
    1. Massos A., Turner A. Cadmium, lead and bromine in beached microplastics. Environ. Pollut. 2017;227:139–145. doi: 10.1016/j.envpol.2017.04.034.
    1. Cho S., Choi W. Solid-phase photocatalytic degradation of PVC–TiO2 polymer composites. J. Photochem. Photobiol. A. 2001;143:221–228. doi: 10.1016/S1010-6030(01)00499-3.
    1. Wang L., Wang Y., Zhao W. Application research of TiO2 in plastics. Dev. Appl. Mater. 2010;25:66–68. doi: 10.3969/j.issn.1003-1545.2010.02.015.
    1. Zhang H., Zhang P., Zhao G., Liu H. Advances on preparation of nanosized, modification and application Titanium dioxide. J. Northeast Dianli Univ. 2014;34:52–56. doi: 10.3969/j.issn.1005-2992.2014.02.011.
    1. Tchounwou P.B., Yedjou C.G., Patlolla A.K., Sutton D.J. Heavy Metals Toxicity and the Environment. Exp. Suppl. 2012;101:133–164. doi: 10.1007/978-3-7643-8340-4_6.
    1. Dobson A.W., Erikson K.M., Aschner M. Manganese Neurotoxicity. N. Y. Acad. Sci. 2004;1012:115–129. doi: 10.1196/annals.1306.009.
    1. Kravchenko J., Darrah T.H., Miller R.K., Lyerly H.K., Vengosh A. A review of the health impacts of barium from natural and anthropogenic exposure. Environ. Geochem. Health. 2014;36:797–814. doi: 10.1007/s10653-014-9622-7.
    1. Leyssens L., Vinck B., Van Der Straeten C., Wuyts F., Maes L. Cobalt toxicity in humans—A review of the potential sources and systemic health effect. J. Toxicol. 2017;387:43–56. doi: 10.1016/j.tox.2017.05.015.
    1. Cima F. Tin: Environmental Pollution and Health Effects. Encycl. Environ. Health. 2011:351–359. doi: 10.1016/B978-0-12-409548-9.11198-4.
    1. Nusair S.D., Almasaleekh M.J., Rahman H.R., Alkhatatbeh M. Environmental exposure of humans to bromide in the Dead Sea area: Measurement of genotoxicy and apoptosis biomarkers. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019;837:34–41. doi: 10.1016/j.mrgentox.2018.09.006.
    1. Darbre P.D. Metalloestrogens: An emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J. Appl. Toxicol. 2006;26:191–197. doi: 10.1002/jat.1135.
    1. Byrne C., Divekar S.D., Storchan G.B., Parodi D.A., Martin M.B. Metals and breast cancer. J. Mammary Gland Biol. Neoplasia. 2013;18:63–73. doi: 10.1007/s10911-013-9273-9.
    1. Kedzierski M., D’Almeida M., Magueresse A., Le Grand A., Duval H., César G., Sire O., Bruzaud S., Le Tilly V. Threat of plastic ageing in marine environment. Adsorption/desorption of micropollutants. Mar. Pollut. Bull. 2018;127:684–694. doi: 10.1016/j.marpolbul.2017.12.059.
    1. Sharma R.K., Agrawal M. Biological effects of heavy metals: An overview. J. Environ. Biol. 2005;26:301–313.
    1. Jan A.T., Azam M., Siddiqui K., Ali A., Choi I., Haq Q.M.R. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 2015;16:29592–29630. doi: 10.3390/ijms161226183.
    1. Gandamalla G., Lingabathula H., Yellu N. Nano titanium exposure induces dose- and size-dependent cytotoxicity on human epithelial lung and colon cells. Drug. Chem. Toxicol. 2018;42:24–34. doi: 10.1080/01480545.2018.1452930.
    1. Goyer R., Golub M., Choudhury H., Hughes M., Kenyon E., Stifelman M. US Environmental Protection Agency Risk Assessment Forum. Volume 1200 ERG; Lexington, KY, USA: 2004. Issue paper on the human health effects of metals.
    1. Jambeck J.R., Geyer R., Wilcox C., Siegler T.R., Perryman M., Andrady A., Narayan R., Law K.L. Plastic waste inputs from land into the ocean. Science. 2015;347:768–771. doi: 10.1126/science.1260352.
    1. Ashton K., Holmes L., Turner A. Association of metals with plastic production pellets in the marine environment. Mar. Pollut. Bull. 2010;60:2050–2055. doi: 10.1016/j.marpolbul.2010.07.014.
    1. Holmes L.A., Turner A., Thompson R.C. Adsorption of trace metals to plastic resin pellets in the marine environment. Environ. Pollut. 2012;160:42–48. doi: 10.1016/j.envpol.2011.08.052.
    1. Holmes L.A., Turner A., Thompson R.C. Interactions between trace metals and plastic production pellets under estuarine conditions. Mar. Chem. 2014;167:25–32. doi: 10.1016/j.marchem.2014.06.001.
    1. Noik V.J., Tuah P.M., Seng L., Sakari M. Fingerprinting and quantification of selected heavy metals in meso-and microplastics sampled from Santubong and Trombol beach. Kuching, Sarawak, Malaysia. 2nd International Conference on Agriculture. J. Appl. Environ. Biol. Sci. 2015:53–58. doi: 10.17758/IAAST.A0715062.
    1. Brennecke D., Duarte B., Paiva F., Caçador J., Canning-Clode I. Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science. Estuar. Coast. Shelf Sci. 2016;178:189–195. doi: 10.1016/j.ecss.2015.12.003.
    1. Hodson M.E., Duffus-Hodson C.A., Clark A., Prendergast-Miller M.T., Thorpe K.L. Plastic Bag Derived-Microplastics as a Vector for Metal Exposure in Terrestrial Invertebrates. Environ. Sci. Technol. 2017;51:4714–4721. doi: 10.1021/acs.est.7b00635.
    1. Wang J., Peng J., Tan Z., Gao Y., Zhan Z., Chen Q., Cai L. Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals. Chemosphere. 2017;171:248–258. doi: 10.1016/j.chemosphere.2016.12.074.
    1. Town R.M., Leeuwen H.P., Blust R. Biochemodynamic Features of Metal Ions Bound by Micro- and Nano-Plastics in Aquatic Media. Front. Chem. 2018;6:627. doi: 10.3389/fchem.2018.00627.
    1. Dobaradaran S., Schmidt T.C., Nabipour I., Khajeahmadi N., Tajbakhsh S., Saeedi R., Mohammadi M.J., Keshtkar M., Khorsand M., Ghasemi F.F. Characterization of plastic debris and association of metals with microplastics in coastline sediment along the Persian Gulf. J. Waste Manag. 2018;78:649–658. doi: 10.1016/j.wasman.2018.06.037.
    1. Gao F., Li J., Sun C., Zhang L., Jiang F., Cao W., Zheng L. Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment. Mar. Pollut. Bull. 2019;144:61–67. doi: 10.1016/j.marpolbul.2019.04.039.
    1. Guo X., Wang J. The chemical behaviors of microplastics in marine environment: A review. Mar. Pollut. Bull. 2019;142:1–14. doi: 10.1016/j.marpolbul.2019.03.019.
    1. Godoy V., Blázquez G., Calero M., Quesada L., Martín-Lara M.A. The potential of microplastics as carriers of metals. Environ. Pollut. 2019;255:113363. doi: 10.1016/j.envpol.2019.113363.
    1. Vedolin M.C., Teophiloa C.Y.S., Turrab A., Figueiraa R.C.L. Spatial variability in the concentrations of metals in beached microplastics. Mar. Pollut. Bull. 2018;129:487–493. doi: 10.1016/j.marpolbul.2017.10.019.
    1. Wang F., Wong C.S., Chen D., Lu X., Wang F., Zeng E.Y. Interaction of toxic chemicals with microplastics: A critical review. Water Res. 2018;139:208–219. doi: 10.1016/j.watres.2018.04.003.
    1. Davranche M., Veclin C., Wickmann A.C.P., El Hadri H., Grassl B., Rowenczyk L., Dia A., Ter Halle A., Blancho F., Reynaud S., et al. Are nanoplastics able to bind significant amount of metals? The lead example. Environ. Pollut. 2019;249:940–948. doi: 10.1016/j.envpol.2019.03.087.
    1. Richard H., Carpenter E., Komada T., Palmer P.T., Rochman C.M. Biofilm facilitates metal accumulation onto microplastics in estuarine waters. Sci. Total. Environ. 2019;683:600–608. doi: 10.1016/j.scitotenv.2019.04.331.
    1. Gigault J., ter Halle A., Baudrimont M., Pascal P., Gauffre F., Phi T., El Hadri H., Grassl B., Reynaud S. Current opinion: What is a nanoplastic? Environ Pollut. 2018;235:1030–1034. doi: 10.1016/j.envpol.2018.01.024.
    1. Lusher A.L., McHugh M., Thompson R.C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar. Pollut. Bull. 2013;67:94–99. doi: 10.1016/j.marpolbul.2012.11.028.
    1. Van Franeker J.A., Law K.L. Seabirds, gyres and global trends in plastic pollution. Environ. Pollut. 2015;203:89–96. doi: 10.1016/j.envpol.2015.02.034.
    1. Nelms S.E., Duncan E.M., Broderick A.C., Galloway T.S., Godfrey M.H., Hamann M., Lindeque P.K., Godley B.J. Plastic and marine turtles: A review and call for research. ICES J. Mar. Sci. 2016;73:165–181. doi: 10.1093/icesjms/fsv165.
    1. Barboza L.G.A., Vethaak A.D., Lavorante B.R.B.O., Lundebye A.K., Guilhermino L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 2018;133:336–348. doi: 10.1016/j.marpolbul.2018.05.047.
    1. Setälä O., Lehtiniemi M., Coppock R., Cole M. Chapter 11—Microplastics in Marine Food Webs. Microplastic Contamination in Aquatic Environments. In: Zeng E.Y., editor. An Emerging Matter of Environmental Urgency. Elsevier; Amsterdam, The Netherlands: 2018. pp. 339–363.
    1. Jinhui S., Sudong X., Yan N., Xia P., Jiahao Q., Yongjian X. Effects of microplastics and attached heavy metals on growth, immunity, and heavy metal accumulation in the yellow seahorse, Hippocampus kuda Bleeker. Mar. Pullut. Bull. 2019;149:110510. doi: 10.1016/j.marpolbul.2019.110510.
    1. Santana M.F.M., Moreira F.T., Turra A. Trophic transference of microplastics under a low exposure scenario: Insights on the likelihood of particle cascading along marine food-webs. Mar. Pollut. Bull. 2017;121:154–159. doi: 10.1016/j.marpolbul.2017.05.061.
    1. De Sá L.C., Oliveira M., Ribeiro F., Rocha L.T., Futter M.N. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Sci. Total Environ. 2018;645:1029–1039. doi: 10.1016/j.scitotenv.2018.07.207.
    1. Revel M., Châtel A., Mouneyrac C. Micro(nano)plastics: A threat to human health? Curr. Opin. Environ. Sci. Health. 2018;1:17–23. doi: 10.1016/j.coesh.2017.10.003.
    1. Imran M., Das K.R., Naik M.M. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere. 2019;215:846–857. doi: 10.1016/j.chemosphere.2018.10.114.
    1. Carbery M., O’Connor W., Palanisami T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ. Int. 2018;115:400–409. doi: 10.1016/j.envint.2018.03.007.
    1. Van Esch G.J., World Health Organization & International Programme for Chemical Safety . World Health Organization; 1997. [(accessed on 26 November 2019)]. Flame Retardants: A General Introduction. Available online: .
    1. Khandual A. Flame retardants: An overview. Colourage. 2014;61:29.
    1. Babushok V.I., Deglmann P., Krämer R., Linteris G.T. Influence of Antimony-Halogen Additives on Flame Propagation. Linteris Combus. Sci Technol. 2017;189:290–311. doi: 10.1080/00102202.2016.1208187.
    1. Steukers V., Kroon S., Drohmann D. Flame retardants: European Union risk assessments update. Plast. Addit. Compd. 2004;6:26–29. doi: 10.1016/S1464-391X(04)00135-7.
    1. Hull T.R., Law R.J., Bergman Å. Chapter 4—Environmental Drivers for Replacement of Halogenated Flame Retardants. In: Papaspyrides C.D., Kiliaris P., editors. Polymer Green Flame Retardants. Elsevier; Amsterdam, The Netherlands: 2014. pp. 119–179.
    1. Rahman F., Langford K.H., Scrimshaw M.D., Lester J.N. Polybrominated diphenyl ether (PBDE) flame retardants. Sci. Total Environ. 2001;275:1–17. doi: 10.1016/S0048-9697(01)00852-X.
    1. Hurley M.J., Gottuk D.T., Hall J.R., Jr., Harada K., Kuligowski E.D., Puchovsky M., Torero J.L., Watts J.M., Jr., Wieczorek C. SFPE Handbook of Fire Protection Engineering. Springer; New York, NY, USA: 2016.
    1. Gay-Lussac J.L. Note sur la propriété qu’ont les matières salines de rendre les tissus incombustibles. Ann. Chim. Phys. 1821;18:211.
    1. Grinbaum B., Freiberg M. Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons; Hoboken, NJ, USA: 2002.
    1. Alaee M., Arias P., Sjödin A., Bergman Å. Environment International: An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ. Int. 2003;29:683–689. doi: 10.1016/S0160-4120(03)00121-1.
    1. Liepins R., Pearce E. Chemistry and Toxicity of Flame Retardants for Plastics. Environ. Health Perspect. 1976;17:55–63. doi: 10.1289/ehp.761755.
    1. Covaci A., Voorspoels S., Abdallah M.A., Geens T., Harrad S., Law R.J. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives. J. Chromatog. A. 2009;1216:346–363. doi: 10.1016/j.chroma.2008.08.035.
    1. Buser H.R. Polybrominated dibenzofurans and dibenzo-p-dioxins: Thermal reaction products of polybrominated diphenyl ether flame retardants. Environ. Sci. Technol. 1986;20:404–408. doi: 10.1021/es00146a015.
    1. Directive, EU 11/EC of the European parliament and of the council of Febuary 6th 2003. Amending for the 24th time Council Directive 76/769/EEC relating to restrictions on the marketing and use of certain dangerous substances and preparations (pentabromodiphenyl ether, octabromodiphenyl ether) Off. J. Eur. Union. 2003;42:2.
    1. Mariussen E., Fonnum F. The effect of brominated flame retardants on neurotransmitter uptake into rat brain synaptosomes and vesicles. Neurochem. Int. 2003;43:533–542. doi: 10.1016/S0197-0186(03)00044-5.
    1. Yamada-Okabe T., Sakai H., Kashima Y., Yamada-Okabe H. Modulation at a cellular level of the thyroid hormone receptor-mediated gene expression by 1,2,5,6,9,10-hexabromocyclododecane (HBCD), 4,4′-diiodobiphenyl (DIB), and nitrofen (NIP) Toxicol. Lett. 2005;155:127–133. doi: 10.1016/j.toxlet.2004.09.005.
    1. Ziccardi L.M., Edgington A., Hentz K., Kulacki K.J., Driscoll S.K. Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: A state of the science review. Environm. Toxicol. Chem. 2016;35:1667–1676. doi: 10.1002/etc.3461.
    1. Wirnkor V.A., Ebere E.C., Ngozi V.E., Oharley N.K. Microplastic-Toxic Chemical Interaction: A Review Study on Quantified Levels, Mechanism and Implication. SN Appl. Sci. 2019;1:1400. doi: 10.1007/s42452-019-1352-0.
    1. Chua E.M., Shimeta J., Nugegoda D., Morrison P.D., Clarke B.O. Assimilation of Polybrominated Diphenyl Ethers from Microplastics by the Marine Amphipod, Allorchestes compressa. Environ. Sci. Technol. 2014;48:8127–8134. doi: 10.1021/es405717z.
    1. Rochman C.M., Lewison R.L., Eriksen M., Hallen H., Cook A.M., The S.J. Polybrominated diphenyl ethers (PBDEs) in fish tissue may be an indicator of plastic contamination in marine habitats. Sci. Tot. Environ. 2014;476–477:622–633. doi: 10.1016/j.scitotenv.2014.01.058.
    1. Granby K., Rainieri S., Rasmussen R.R., Kotterman M.J.J., Sloth J.J., Cederberg T.L., Barranco A., Marques A., Larsen B.K. The influence of microplastics and halogenated contaminants in feed on toxicokinetics and gene expression in European seabass (Dicentrarchus labrax) Environ. Res. 2018;164:430–443. doi: 10.1016/j.envres.2018.02.035.
    1. Microplastics in Drinking-Water. World Health Organization; Geneva, Switzerland: 2019. [(accessed on 28 November 2019)]. Available online: .
    1. Sharma S., Chatterjee S. Microplastic pollution, a threat to marine ecosystem and human health: A short review. Environ. Sci. Pollut. Res. 2017;27:21530–21547. doi: 10.1007/s11356-017-9910-8.
    1. Rist S., Almroth B.C., Hartmann N.B., Karlsson T.M. A critical perspective on early communications concerning human health aspects of microplastics. Sci. Tot. Environ. 2018;626:720–726. doi: 10.1016/j.scitotenv.2018.01.092.
    1. Bradney L., Wijesekaraa H., Palansooriya K.N., Obadamudalige N., Bolana N.S., Ok Y.S., Rinklebe J., Kimg K., Kirkham M.B. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ. Int. 2019;131:104937. doi: 10.1016/j.envint.2019.104937.
    1. Lehner R., Weder C., Fink A., Rutishauser B.R. Emergence of Nanoplastic in the Environment and Possible Impact on Human Health. Environ. Sci. Technol. 2019;53:1748–1765. doi: 10.1021/acs.est.8b05512.
    1. Wright S.L., Kelly F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017;51:6634–6647. doi: 10.1021/acs.est.7b00423.
    1. Silva-Cavalcanti J.S., Silva J.D.B., de França E.J., de Araújo F.G. Microplastics ingestion by a common tropical freshwater fishing resource. Environ. Pollut. 2017;221:218–226. doi: 10.1016/j.envpol.2016.11.068.
    1. Toussaint B., Raffael B., Angers-Loustau A., Gilliland D., Kestens V., Patrillo M. Review of micro- and nanoplastic contamination in the food chain. J. Food Addit. Contam. Part A. 2019;36:639–673. doi: 10.1080/19440049.2019.1583381.
    1. Cox K.D., Covernton G.A., Davies H.L., Dower J.F., Juanes F., Dudas S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019;53:7068–7074. doi: 10.1021/acs.est.9b01517.
    1. Enyoh C.E., Verla A.W., Verla E.N. Uptake of Microplastics by Plant: A Reason to Worry or to be Happy? World Sci. News. 2019;131:256–267.
    1. Smith M., Love D.C., Rochman C.M., Neff R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018;5:375–386. doi: 10.1007/s40572-018-0206-z.
    1. Campanale C., Massarelli C., Bagnuolo G., Savino I., Uricchio V.F. The problem of microplastics and regulatory strategies in Italy. In: Stock F., Reifferscheid G., Brennholt N., Kostianaia E., editors. Plastics in the Aquatic Environment—Stakeholders Role against Pollution. Springer; Berlin/Heidelberg, Germany: 2019.
    1. Harvey F., Watts J. Microplastics Found in Human Stools for the First Time. In The Guardian. [(accessed on 13 November 2018)]; Available online: .
    1. Schwabl P., Köppel S., Königshofer P., Bucsics T., Trauner M., Reiberger T., Liebmann B. Detection of Various Microplastics in Human Stool: A Prospective Case Series. Ann. Intern. Med. 2019;171:453–457. doi: 10.7326/M19-0618.
    1. Gasperi J., Wright S.L., Dris R., Collard F., Mandin C., Guerrouache M., Langlois V., Kelly F.J., Tassin B. Microplastics in air: Are we breathing it in? Curr. Opin. Environ. Sci. Health. 2018;1:1–5. doi: 10.1016/j.coesh.2017.10.002.
    1. Vianello A., Jensen R.L., Liu L., Vollertsen J. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci. Rep. 2019;9:8670. doi: 10.1038/s41598-019-45054-w.
    1. Catarino A.I., Macchia V., Sandersona W.G., Thompson R.C., Henryae T.B. Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environ. Pollut. 2018;237:675–684. doi: 10.1016/j.envpol.2018.02.069.
    1. Dehghani S., Moore F., Akhbarizadeh R. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environ. Sci. Pollut. Res. 2017;24:20360–20371. doi: 10.1007/s11356-017-9674-1.
    1. Dong C.D., Chena C.W., Chen Y.C., Chen H.H., Lee J.S., Lin C.H. Polystyrene microplastic particles: In vitro pulmonary toxicity assessment. J. Hazard. Mater. 2019 doi: 10.1016/j.jhazmat.2019.121575.
    1. Rezaei M., Riksen M.J.P.M., Sirjani E., Sameni A., Geissen V. Wind erosion as a driver for transport of light density microplastics. Sci. Total Environ. 2019;669:273–281. doi: 10.1016/j.scitotenv.2019.02.382.
    1. Paget V., Dekali S., Kortulewski T., Grall R., Gamez C., Blazy K., Aguerre-Chariol O., Chevillard S., Braun A., Rat P., et al. Specific Uptake and Genotoxicity Induced by Polystyrene Nanobeads with Distinct Surface Chemistry on Human Lung Epithelial Cells and Macrophages. PLoS ONE. 2015;10:e0123297. doi: 10.1371/journal.pone.0123297.
    1. Xu M., Halimu G., Zhang Q., Song Y., Fu X., Li Y., Li Y., Zhang H. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci. Tot. Environ. 2019;694:133794. doi: 10.1016/j.scitotenv.2019.133794.
    1. Liao Y., Yang J. Microplastic serves as a potential vector for Cr in an in-vitro human digestive model. Sci. Total. Environ. 2019 doi: 10.1016/j.scitotenv.2019.134805.
    1. Grafmueller S., Manser P., Diener L., Diener P.A., Maeder-Althaus X., Maurizi L., Jochum W., Krug H.F., Buerki-Thurnherr T., von Mandach U., et al. Bidirectional transfer study of polystyrene nanoparticles across the placental barrier in an ex vivo human placental perfusion model. Environ. Health Perspect. 2015;123:1280–1286. doi: 10.1289/ehp.1409271.
    1. Monti D.M., Guarnieri D., Napolitano G., Piccoli R., Netti P., Fusco S., Arciello A. Biocompatibility, uptake and endocytosis pathways of polystyrenenanoparticles in primary human renal epithelial cells. J. Biotechnol. 2015;193:3–10. doi: 10.1016/j.jbiotec.2014.11.004.
    1. Schirinzi G.F., Pérez-Pomeda I., Sanchís J., Rossini C., Farré M., Barceló D. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ. Res. 2017;159:579–587. doi: 10.1016/j.envres.2017.08.043.
    1. Hwang J., Choi D., Han S., Choi J., Honga J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci. Total. Environ. 2019;684:657–669. doi: 10.1016/j.scitotenv.2019.05.071.
    1. Forte M., Iachetta G., Tussellino M., Carotenuto R., Prisco M., De Falco M., Laforgia V., Valiante S. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicol. Vitro. 2016;31:126–136. doi: 10.1016/j.tiv.2015.11.006.
    1. Inkielewicz S.I., Tajber L., Behan G., Zhang H., Radomski M.W., Medina C., Santos-Martinez M.J. The Role of Mucin in the Toxicological Impact of Polystyrene Nanoparticles. Materials. 2018;11:724. doi: 10.3390/ma11050724.
    1. Stock V., Böhmert L., Lisicki E., Block R., Carmona J.C., Pack L.K., Selb R., Lichtenstein D., Voss L., Henderson C.J., et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch. Toxicol. 2019;93:1817–1833. doi: 10.1007/s00204-019-02478-7.
    1. Wu B., Wu X., Liu S., Wang Z., Chen L. Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere. 2019;221:333–341. doi: 10.1016/j.chemosphere.2019.01.056.
    1. Thubagere A., Reinhard B.M. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: Insights from a human intestinal epithelium In Vitro model. ACS Nano. 2010;4:3611–3622. doi: 10.1021/nn100389a.

Source: PubMed

3
Tilaa