The Human Microbiome and Its Impacts on Health

Grace A Ogunrinola, John O Oyewale, Oyewumi O Oshamika, Grace I Olasehinde, Grace A Ogunrinola, John O Oyewale, Oyewumi O Oshamika, Grace I Olasehinde

Abstract

The human microbiome comprises bacteria, archaea, viruses, and eukaryotes which reside within and outside our bodies. These organisms impact human physiology, both in health and in disease, contributing to the enhancement or impairment of metabolic and immune functions. Micro-organisms colonise various sites on and in the human body, where they adapt to specific features of each niche. Facultative anaerobes are more dominant in the gastrointestinal tract, whereas strict aerobes inhabit the respiratory tract, nasal cavity, and skin surface. The indigenous organisms in the human body are well adapted to the immune system, due to the biological interaction of the organisms with the immune system over time. An alteration in the intestinal microbial community plays a major role in human health and disease pathogenesis. These alterations result from lifestyle and the presence of an underlying disease. Dysbiosis increases host susceptibility to infection, and the nature of which depends on the anatomical site involved. The unique diversity of the human microbiota accounts for the specific metabolic activities and functions of these micro-organisms within each body site. It is therefore important to understand the microbial composition and activities of the human microbiome as they contribute to health and disease.

Conflict of interest statement

The authors declare no conflicts of interest.

Copyright © 2020 Grace A. Ogunrinola et al.

Figures

Figure 1
Figure 1
Dysbiotic flora and its impact on human health. Carcinogenic metabolic toxins produced from dysbiotic flora may trigger the progression of cancer and immune reaction in the gastrointestinal tract. In addition, hepatic oxidation of trimethylamine to trimethylamine N-oxide contributes to cardiovascular and emerging diseases.
Figure 2
Figure 2
An alteration in the gut microbiota leads to systemic translocation of organisms from damaged gut epithelium to other extraintestinal sites.
Figure 3
Figure 3
Symbiotic interaction between eubiotic flora and the human body results in the maintenance of homeostasis, regulation, and development of the immune system, hosts nutrition, and colonization resistance.

References

    1. Grice E. A., Segre J. A. The skin microbiome. Nature Reviews Microbiology. 2011;9(4):244–253. doi: 10.1038/nrmicro2537.
    1. Whiteside S. A., Razvi H., Dave S., Reid G., Burton J. P. The microbiome of the urinary tract—a role beyond infection. Nature Reviews Urology. 2015;12(2):81–90. doi: 10.1038/nrurol.2014.361.
    1. Yilmaz P., Parfrey L. W., Yarza P., et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Research. 2014;42:D643–D648. doi: 10.1093/nar/gkt1209.
    1. Reid T., Schloss P. D. Dynamics and associations of microbial community types across the human body. Nature. 2014;509(7500):357–360. doi: 10.1038/nature13178.
    1. Hoeppli R. E., Wu D., Cook L., Levings M. K. The environment of regulatory T cell biology: cytokines, metabolites, and the microbiome. Frontiers in Immunology. 2015;6:p. 61. doi: 10.3389/fimmu.2015.00061.
    1. Morgan X. C., Huttenhower C. Chapter 12: human microbiome analysis. PLoS Computational Biology. 2012;8:12. doi: 10.1371/journal.pcbi.1002808.e1002808
    1. Pascal M., Perez-Gordo M., Caballero T., et al. Microbiome and allergic diseases. Frontiers in Immunology. 2018;9:p. 1584. doi: 10.3389/fimmu.2018.01584.
    1. Elizabeth T., Nathalie J. Introduction to the human gut microbiota. Biochemical Journal. 2017;474(11):1823–1836. doi: 10.1042/BCJ20160510.
    1. Manrique P., Bolduc B., Walk S. T., van der Oost J., de Vos W. M., Young M. J. Healthy human gut phageome. PNAS. 2016;113(37):10400–10405. doi: 10.1073/pnas.1601060113.
    1. Round J. L., Mazmanian S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology. 2009;9(5):313–323. doi: 10.1038/nri2515.
    1. Urbaniak C., Gloor G. B., Brackstone M., Scott L., Tangney M., Reid G. The microbiota of breast tissue and its association with breast cancer. Applied and Environmental Microbiology. 2011;82(16):5039–5048. doi: 10.1128/AEM.01235-16.
    1. Ipci K., Altıntoprak N., Muluk N. B., Senturk M., Cingi C. The possible mechanisms of the human microbiome in allergic diseases. European Archives of Oto-Rhino-Laryngology. 2016;274(2):617–626. doi: 10.1007/s00405-016-4058-6.
    1. Rojo D., Méndez-García C., Raczkowska B. A., et al. Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiology Reviews. 2017;41(4):453–478. doi: 10.1093/femsre/fuw046.
    1. Sunil T., Jacques I., Emily W., et al. The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Research. 2017;77(8):1783–1812. doi: 10.1158/0008-5472.can-16-2929.
    1. Anderson J. M., Van Itallie C. M. Physiology and function of the tight junction. Cold Spring Harbor Perspectives in Biology. 2009;1(2):p. 25. doi: 10.1101/cshperspect.a002584.
    1. Tang W. H. W., Wang Z., Kennedy D. J., et al. Gut microbiota-dependent TrimethylamineN-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circulation Research. 2015;116(3):448–455. doi: 10.1161/circresaha.116.305360.
    1. Kho Z. Y., Lal S. K. The human gut microbiome-a potential controller of wellness and disease. Frontiers in Microbiology. 2018;9:p. 1835. doi: 10.3389/fmicb.2018.01835.
    1. Li J., Zhao F., Wang Y., et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):p. 14. doi: 10.1186/s40168-016-0222-x.
    1. Parfrey L. W., Walters W. A., Lauber C. L., et al. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. Frontiers in Microbiology. 2014;5:p. 298. doi: 10.3389/fmicb.2014.00298.
    1. Segal L. N., Blaser M. J. A brave new world: the lung microbiota in an era of change. Annals of the American Thoracic Society. 2014;11(1):21–27. doi: 10.1513/AnnalsATS.201306-189M10.1513/annalsats.201306-189mg.
    1. Renz H., Brandtzaeg P., Hornef M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammationflammation. Nature Reviews Immunology. 2012;12(1):9–23. doi: 10.1038/nri3112.
    1. Cingi C., Muluk N. B., Scadding G. K. Will every child have allergic rhinitis soon? International Journal of Pediatric Otorhinolaryngology. 2019;118:53–58. doi: 10.1016/j.ijporl.2018.12.019.
    1. Chiu C.-Y., Chan Y.-L., Tsai M.-H., Wang C.-J., Chiang M.-H., Chiu C.-C. Gut microbial dysbiosis is associated with allergen-specific IgE responses in young children with airway allergies. World Allergy Organization Journal. 2019;12(3) doi: 10.1016/j.waojou.2019.100021.
    1. Wise S. K., Lin S. Y., Toskala E. Internat consensus statementon allergy and rhinology:allergic rhinitis. International Forum of Allergy & Rhinology. 2018;8(2):85–107. doi: 10.1002/alr.22070.
    1. Huang Y. J., Marsland B. J., Bunyavanich S., et al. The microbiome in allergic disease: current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. Journal of Allergy and Clinical Immunology. 2017;139(4):1099–1110. doi: 10.1016/j.jaci.2017.02.007.
    1. Melli L. C. F. L., do Carmo-Rodrigues M. S., Araújo-Filho H. B., Solé D., de Morais M. B. Intestinal microbiota and allergic diseases: a systematic review. Allergologia et Immunopathologia. 2016;44(2):177–188. doi: 10.1016/j.aller.2015.01.013.
    1. Michael W. Microbial Inheritant of Humans: Their Ecology and Role in Health and Disease. Cambridge, UK: Cambridge University Press; 2005.
    1. Sokol H., Pigneur B., Watterlot L., et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences. 2008;105(43):16731–16736. doi: 10.1073/pnas.0804812105.
    1. Thomas-White K., Brady M., Wolfe A. J., Mueller E. R. The bladder is not sterile: history and current discoveries on the urinary microbiome. Current Bladder Dysfunction Reports. 2016;11(1):18–24. doi: 10.1007/s11884-016-0345-8.
    1. Zhang D., Chen G., Manwani D., et al. Neutrophil ageing is regulated by the microbiome. Nature. 2015;525(7570):528–532. doi: 10.1038/nature15367.
    1. Hoffmann C., Dollive S., Grunberg S., et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE. 2013;8(6) doi: 10.1371/journal.pone.0066019.e66019
    1. Goodrich J. K., Davenport E. R., Waters J. L., Clark A. G., Ley R. E. Cross-species comparisons of host genetic associations with the microbiome. Science. 2016;352(6285):532–535. doi: 10.1126/science.aad9379.
    1. Monachese M., Burton J. P., Reid G. Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Applied and Environmental Microbiology. 2012;78(18):6397–6404. doi: 10.1128/aem.01665-12.

Source: PubMed

3
Tilaa