Microplastics as Emerging Food Contaminants: A Challenge for Food Safety

Carmen Rubio-Armendáriz, Samuel Alejandro-Vega, Soraya Paz-Montelongo, Ángel J Gutiérrez-Fernández, Conrado J Carrascosa-Iruzubieta, Arturo Hardisson-de la Torre, Carmen Rubio-Armendáriz, Samuel Alejandro-Vega, Soraya Paz-Montelongo, Ángel J Gutiérrez-Fernández, Conrado J Carrascosa-Iruzubieta, Arturo Hardisson-de la Torre

Abstract

Microplastics (MPs) have been identified as emerging environmental pollutants classified as primary or secondary based on their source. Composition, shape, size, and colour, among other characteristics, are associated with their capacity to access the food chain and their risks. While the environmental impact of MPs has received much attention, the risks for humans derived from their dietary exposure have not been yet assessed. Several institutions and researchers support that the current knowledge does not supply solid data to complete a solid risk characterization of dietary MPs. The aim of this paper is to review the current knowledge about MPs in foods and to discuss the challenges and gaps for a risk analysis. The presence of MPs in food and beverages has been worldwide observed, but most authors considered the current data to be not only insufficient but of questionable quality mainly because of the outstanding lack of consensus about a standardized quantifying method and a unified nomenclature. Drinking water, crustaceans/molluscs, fish, and salt have been identified as relevant dietary sources of MPs for humans by most published studies. The hazard characterization presents several gaps concerning the knowledge of the toxicokinetic, toxicodynamic, and toxicity of MPs in humans that impede the estimation of food safety standards based on risk. This review provides a tentative exposure assessment based on the levels of MPs published for drinking water, crustaceans and molluscs, fish, and salt and using the mean European dietary consumption estimates. The intake of 2 L/day of water, 70.68 g/day of crustaceans/molluscs, 70.68 g/day of fish, and 9.4 g/day of salt would generate a maximum exposure to 33,626, 212.04, 409.94 and 6.40 particles of MPs/day, respectively. The inexistence of reference values to evaluate the MPs dietary intake prevents the dietary MPs risk characterization and therefore the management of this risk. Scientists and Food Safety Authorities face several challenges but also opportunities associated to the occurrence of MPs in foods. More research on the MPs characterization and exposure is needed bearing in mind that any future risk assessment report should involve a total diet perspective.

Keywords: dietary MPs; exposure assessment; hazard characterization; hazard identification; microplastics; risk analysis; risk characterization.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
MPs morphology types [15].
Figure 2
Figure 2
Summary of the MPs dietary intake ranges from each studied group.

References

    1. Jambeck Jenna R., Roland G., Chris W., Siegler Theodore R., Miriam P., Anthony A., Ramani N., Law K.L. Plastic waste inputs from land into the ocean. Science. 2015;347:768–771. doi: 10.1126/science.1260352.
    1. Alexy P., Anklam E., Emans T., Furfari A., Galgani F., Hanke G., Koelmans A., Pant R., Saveyn H., Sokull Kluettgen B. Managing the analytical challenges related to micro- and nanoplastics in the environment and food: Filling the knowledge gaps. Food Addit. Contam. Part A. 2020;37:1–10. doi: 10.1080/19440049.2019.1673905.
    1. Patrício Silva A.L., Prata J.C., Walker T.R., Duarte A.C., Ouyang W., Barcelò D., Rocha-Santos T. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chem. Eng. J. 2021;405:126683. doi: 10.1016/j.cej.2020.126683.
    1. Jennifer S., Adyel Tanveer M. Accumulation of plastic waste during COVID-19. Science. 2020;369:1314–1315. doi: 10.1126/science.abd9925.
    1. Akhbarizadeh R., Dobaradaran S., Nabipour I., Tangestani M., Abedi D., Javanfekr F., Jeddi F., Zendehboodi A. Abandoned COVID-19 personal protective equipment along the Bushehr shores, the Persian Gulf: An emerging source of secondary microplastics in coastlines. Mar. Pollut. Bull. 2021;168:112386. doi: 10.1016/j.marpolbul.2021.112386.
    1. Microplásticos. [(accessed on 21 September 2021)]. Available online: .
    1. Guerranti C., Martellini T., Perra G., Scopetani C., Cincinelli A. Microplastics in cosmetics: Environmental issues and needs for global bans. Environ. Toxicol. Pharmacol. 2019;68:75–79. doi: 10.1016/j.etap.2019.03.007.
    1. Andrady A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011;62:1596–1605. doi: 10.1016/j.marpolbul.2011.05.030.
    1. Fotopoulou K., Karapanagioti H. Degradation of Various Plastics in the Environment. Springer International Publishing; Cham, Switzerland: 2017.
    1. Gewert B., Plassmann M.M., MacLeod M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process Impacts. 2015;17:1513–1521. doi: 10.1039/C5EM00207A.
    1. Shruti V.C., Pérez-Guevara F., Elizalde-Martínez I., Kutralam-Muniasamy G. Reusable masks for COVID-19: A missing piece of the microplastic problem during the global health crisis. Mar. Pollut. Bull. 2020;161:111777. doi: 10.1016/j.marpolbul.2020.111777.
    1. Fadare O.O., Okoffo E.D. COVID-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 2020;737:140279. doi: 10.1016/j.scitotenv.2020.140279.
    1. Aragaw T.A. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Mar. Pollut. Bull. 2020;159:111517. doi: 10.1016/j.marpolbul.2020.111517.
    1. Holmes R., Ma J., Andra S.S., Wang H. Effect of common consumer washing methods on bisphenol A release in tritan drinking bottles. Chemosphere. 2021;277:130355. doi: 10.1016/j.chemosphere.2021.130355.
    1. Rillig M.C., Lehmann A., Ryo M., Bergmann J. Shaping Up: Toward Considering the Shape and Form of Pollutants. Environ. Sci. Technol. 2019;53:7925–7926. doi: 10.1021/acs.est.9b03520.
    1. Da Costa J.P., Santos P.S.M., Duarte A.C., Rocha-Santos T. (Nano)plastics in the environment—Sources, fates and effects. Sci. Total Environ. 2016;566–567:15–26. doi: 10.1016/j.scitotenv.2016.05.041.
    1. Lehtiniemi M., Hartikainen S., Näkki P., Engström-Öst J., Koistinen A., Setälä O. Size matters more than shape: Ingestion of primary and secondary microplastics by small predators. Food Webs. 2018;17:e00097. doi: 10.1016/j.fooweb.2018.e00097.
    1. Desforges J., Galbraith M., Dangerfield N., Ross P. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 2014;79:94–99. doi: 10.1016/j.marpolbul.2013.12.035.
    1. Sul J., Costa M. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 2013;185:352–364. doi: 10.1016/j.envpol.2013.10.036.
    1. Acosta-Coley I., Olivero-Verbel J. Microplastic resin pellets on an urban tropical beach in Colombia. Environ. Monit. Assess. 2015;187:435–437. doi: 10.1007/s10661-015-4602-7.
    1. Napper I., Thompson R. Plastic Debris in the Marine Environment: History and Future Challenges. Global Chall. 2020;4:1900081. doi: 10.1002/gch2.201900081.
    1. Parker B.W., Beckingham B.A., Ingram B.C., Ballenger J.C., Weinstein J.E., Sancho G. Microplastic and tire wear particle occurrence in fishes from an urban estuary: Influence of feeding characteristics on exposure risk. Mar. Pollut. Bull. 2020;160:111539. doi: 10.1016/j.marpolbul.2020.111539.
    1. Barboza L.G.A., Dick Vethaak A., Lavorante B.R.B.O., Lundebye A., Guilhermino L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 2018;133:336–348. doi: 10.1016/j.marpolbul.2018.05.047.
    1. Campanale C., Massarelli C., Savino I., Locaputo V., Uricchio V.F. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int. J. Environ. Res. Public Health. 2020;17:1212. doi: 10.3390/ijerph17041212.
    1. Toussaint B., Raffael B., Angers-Loustau A., Gilliland D., Kestens V., Petrillo M., Rio-Echevarria I., Van den Eede G. Review of micro- and nanoplastic contamination in the food chain. Food Addit. Contam. Part A. 2019;36:639–673. doi: 10.1080/19440049.2019.1583381.
    1. Waring R.H., Harris R.M., Mitchell S.C. Plastic contamination of the food chain: A threat to human health? Maturitas. 2018;115:64–68. doi: 10.1016/j.maturitas.2018.06.010.
    1. Gallo F., Fossi C., Weber R., Santillo D., Sousa J., Ingram I., Nadal A., Romano D. Marine litter plastics and microplastics and their toxic chemicals components: The need for urgent preventive measures. Environ. Sci. Europe. 2018;30:13. doi: 10.1186/s12302-018-0139-z.
    1. Rubio Armendáriz C., Daschner Á., González Fandos E., González Muñoz M.J., Moreno-Arribas M.V., Talens Oliag P., de Castro G., Bustos J. Informe del comité científico de la agencia española de seguridad alimentaria y nutrición (AESAN) sobre la presencia y la seguridad de los plásticos como contaminantes en los alimentos. Agencia Española Segur. Aliment. Nutr. (AESAN) 2019;30:49–84.
    1. Cox K.D., Covernton G.A., Davies H.L., Dower J.F., Juanes F., Dudas S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019;53:7068–7074. doi: 10.1021/acs.est.9b01517.
    1. Hantoro I., Löhr A.J., Van Belleghem F.G.A.J., Widianarko B., Ragas A.M.J. Microplastics in coastal areas and seafood: Implications for food safety. Food Addit. Contam. Part A. 2019;36:674–711. doi: 10.1080/19440049.2019.1585581.
    1. EFSA Panel on Contaminants in the Food Chain, (CONTAM) Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016;14:e04501. doi: 10.2903/j.efsa.2016.4501.
    1. SAPEA . Working Group on Microplastics a Scientific Perspective on Microplastics in Nature and Society. SAPEA; Berlin, Germany: 2019. [(accessed on 19 August 2021)]. Available online:
    1. Skåre J.U., Alexander J., Haave M., Jakubowicz I., Knutsen H.K., Lusher A., Ogonowski M., Rakkestad K.E., Skaar I., Sverdrup L.E., et al. Microplastics; Occurrence, Levels and Implications for Environment and Human Health Related to Food. Scientific Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food and Environment; Oslo, Norway: 2019. [(accessed on 19 August 2021)]. Available online: .
    1. Polyrisk Polyrisk—Understanding Human Exposure and Health Hazard of Micro- and Nanoplastic Contaminants in our Environment. [(accessed on 21 September 2021)]. Available online: .
    1. Plasticfate Plasticsheal Plastics Fate and Effects in the Human Body. [(accessed on 21 September 2021)]. Available online: .
    1. Imptox An Innovative Analytical Platform to Investigate the Effect and Toxicity of Micro and Nano Plastics Combined with Environmental Contaminants on the Risk of Allergic Disease in Preclinical and Clinical. [(accessed on 21 September 2021)]. Available online: .
    1. Plasticsheal Innovative Tools to Study the Impact and Mode of Action of Micro and Nanoplastics on Human Health: Towards a Knowledge Base for Risk Assessment. [(accessed on 20 November 2021)]. Available online: .
    1. EFSA Panel on Dietetic Products, Nutrition, and Allergies, (NDA) Scientific Opinion on Dietary Reference Values for water. EFSA J. 2010;8:1459. doi: 10.2903/j.efsa.2010.1459.
    1. Directorate-General for Maritime Affairs and Fisheries (European Commision) EUMOFA EU Consumer Habits Regarding Fishery and Aquaulture Products-Final Report. Publications Office of the European Union; Luxembourg: 2021.
    1. Directorate-General Health and Consumers (European Commision) Implementation of the EU Salt Reduction Framework Results of Member States survey Health and Consumers. Publications Office of the European Union; Luxembourg: 2012.
    1. EFSA Glossary. Hazar Identification. [(accessed on 30 August 2021)]. Available online: .
    1. Kwon J., Kim J., Pham T.D., Tarafdar A., Hong S., Chun S., Lee S., Kang D., Kim J., Kim S., et al. Microplastics in Food: A Review on Analytical Methods and Challenges. Int. J. Environ. Res. Public Health. 2020;17:6710. doi: 10.3390/ijerph17186710.
    1. Ivleva N.P. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chem. Rev. 2021;121:11886–11936. doi: 10.1021/acs.chemrev.1c00178.
    1. Bai C., Liu L., Hu Y., Zeng E.Y., Guo Y. Microplastics: A review of analytical methods, occurrence and characteristics in food, and potential toxicities to biota. Sci. Total Environ. 2022;806:150263. doi: 10.1016/j.scitotenv.2021.150263.
    1. Vivekanand A.C., Mohapatra S., Tyagi V.K. Microplastics in aquatic environment: Challenges and perspectives. Chemosphere. 2021;282:131151. doi: 10.1016/j.chemosphere.2021.131151.
    1. Pellini G., Gomiero A., Fortibuoni T., Ferrà C., Grati F., Tassetti A.N., Polidori P., Fabi G., Scarcella G. Characterization of microplastic litter in the gastrointestinal tract of Solea solea from the Adriatic Sea. Environ. Pollut. 2018;234:943–952. doi: 10.1016/j.envpol.2017.12.038.
    1. Herrera A., Ŝtindlová A., Martínez I., Rapp J., Romero-Kutzner V., Samper M.D., Montoto T., Aguiar-González B., Packard T., Gómez M. Microplastic ingestion by Atlantic chub mackerel (Scomber colias) in the Canary Islands coast. Mar. Pollut. Bull. 2019;139:127–135. doi: 10.1016/j.marpolbul.2018.12.022.
    1. Neves D., Sobral P., Ferreira J.L., Pereira T. Ingestion of microplastics by commercial fish off the Portuguese coast. Mar. Pollut. Bull. 2015;101:119–126. doi: 10.1016/j.marpolbul.2015.11.008.
    1. Renzi M., Guerranti C., Blašković A. Microplastic contents from maricultured and natural mussels. Mar. Pollut. Bull. 2018;131:248–251. doi: 10.1016/j.marpolbul.2018.04.035.
    1. Cho Y., Shim W.J., Jang M., Han G.M., Hong S.H. Abundance and characteristics of microplastics in market bivalves from South Korea. Environ. Pollut. 2019;245:1107–1116. doi: 10.1016/j.envpol.2018.11.091.
    1. Catarino A.I., Macchia V., Sanderson W.G., Thompson R.C., Henry T.B. Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environ. Pollut. 2018;237:675–684. doi: 10.1016/j.envpol.2018.02.069.
    1. Welle F., Franz R. Microplastic in bottled natural mineral water—literature review and considerations on exposure and risk assessment. Food Addit. Contam. Part A. 2018;35:2482–2492. doi: 10.1080/19440049.2018.1543957.
    1. Koelmans A.A., Mohamed Nor N.H., Hermsen E., Kooi M., Mintenig S.M., De France J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019;155:410–422. doi: 10.1016/j.watres.2019.02.054.
    1. Danopoulos E., Jenner L.C., Twiddy M., Rotchell J.M. Microplastic Contamination of Seafood Intended for Human Consumption: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2020;128:126002. doi: 10.1289/EHP7171.
    1. Jin M., Wang X., Ren T., Wang J., Shan J. Microplastics contamination in food and beverages: Direct exposure to humans. J. Food Sci. 2021;86:2816–2837. doi: 10.1111/1750-3841.15802.
    1. Oßmann B.E., Sarau G., Holtmannspötter H., Pischetsrieder M., Christiansen S.H., Dicke W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018;141:307–316. doi: 10.1016/j.watres.2018.05.027.
    1. Dekimpe M., De Witte B., Deloof D., Hostens K., Van Loco J., Andjelkovic M., Van Hoeck E., Robbens J. Dietary Exposure of the Belgian Population to Microplastics Through a Diverse Food Basket; Proceedings of the Scientific Colloquium N°25: A Coordinated Approach to Assess Human Health Risks of Micro-and Nanoplastics in Food; Parma, Italy. 6–7 May 2021.
    1. Kutralam-Muniasamy G., Pérez-Guevara F., Elizalde-Martínez I., Shruti V.C. Branded milks—Are they immune from microplastics contamination? Sci. Total Environ. 2020;714:6823. doi: 10.1016/j.scitotenv.2020.136823.
    1. Huang Y., Chapman J., Deng Y., Cozzolino D. Rapid measurement of microplastic contamination in chicken meat by mid infrared spectroscopy and chemometrics: A feasibility study. Food Control. 2020;113:107187. doi: 10.1016/j.foodcont.2020.107187.
    1. Oliveri Conti G., Ferrante M., Banni M., Favara C., Nicolosi I., Cristaldi A., Fiore M., Zuccarello P. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res. 2020;187:109677. doi: 10.1016/j.envres.2020.109677.
    1. Shruti V.C., Pérez-Guevara F., Elizalde-Martínez I., Kutralam-Muniasamy G. First study of its kind on the microplastic contamination of soft drinks, cold tea and energy drinks—Future research and environmental considerations. Sci. Total Environ. 2020;726:138580. doi: 10.1016/j.scitotenv.2020.138580.
    1. Campanale C., Galafassi S., Savino I., Massarelli C., Ancona V., Volta P., Uricchio V.F. Microplastics pollution in the terrestrial environments: Poorly known diffuse sources and implications for plants. Sci. Total Environ. 2022;805:150431. doi: 10.1016/j.scitotenv.2021.150431.
    1. EFSA Glossary. Hazard Characterization. [(accessed on 30 August 2021)]. Available online: .
    1. Prata J.C., da Costa J.P., Lopes I., Duarte A.C., Rocha-Santos T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020;702:134455. doi: 10.1016/j.scitotenv.2019.134455.
    1. Usman S., Abdull Razis A.F., Shaari K., Amal M.N., Saad M.Z., Mat Isa N., Nazarudin M.F., Zulkifli S.Z., Sutra J., Ibrahim M.A. Microplastics Pollution as an Invisible Potential Threat to Food Safety and Security, Policy Challenges and the Way Forward. Int. J. Environ. Res. Public Health. 2020;17:9591. doi: 10.3390/ijerph17249591.
    1. Mohsen M., Zhang L., Sun L., Lin C., Wang Q., Liu S., Sun J., Yang H. Effect of chronic exposure to microplastic fibre ingestion in the sea cucumber Apostichopus japonicus. Ecotoxicol. Environ. Saf. 2021;209:111794. doi: 10.1016/j.ecoenv.2020.111794.
    1. Hodkovicova N., Hollerova A., Caloudova H., Blahova J., Franc A., Garajova M., Lenz J., Tichy F., Faldyna M., Kulich P., et al. Do foodborne polyethylene microparticles affect the health of rainbow trout (Oncorhynchus mykiss)? Sci. Total Environ. 2021;793:148490. doi: 10.1016/j.scitotenv.2021.148490.
    1. Alimba C.G., Faggio C. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environ. Toxicol. Pharmacol. 2019;68:61–74. doi: 10.1016/j.etap.2019.03.001.
    1. Ragusa A., Svelato A., Santacroce C., Catalano P., Notarstefano V., Carnevali O., Papa F., Rongioletti M.C.A., Baiocco F., Draghi S., et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021;146:106274. doi: 10.1016/j.envint.2020.106274.
    1. Fournier S.B., D’Errico J.N., Adler D.S., Kollontzi S., Goedken M.J., Fabris L., Yurkow E.J., Stapleton P.A. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part Fibre Toxicol. 2020;17:1–11. doi: 10.1186/s12989-020-00385-9.
    1. Avio C.G., Gorbi S., Regoli F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 2017;128:2–11. doi: 10.1016/j.marenvres.2016.05.012.
    1. Pedà C., Caccamo L., Fossi M.C., Gai F., Andaloro F., Genovese L., Perdichizzi A., Romeo T., Maricchiolo G. Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: Preliminary results. Environ. Pollut. 2016;212:251–256. doi: 10.1016/j.envpol.2016.01.083.
    1. Rodriguez-Seijo A., Lourenço J., Rocha-Santos T.A.P., da Costa J., Duarte A.C., Vala H., Pereira R. Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environ. Pollut. 2017;220:495–503. doi: 10.1016/j.envpol.2016.09.092.
    1. Guzzetti E., Sureda A., Tejada S., Faggio C. Microplastic in marine organism: Environmental and toxicological effects. Environ. Toxicol. Pharmacol. 2018;64:164–171. doi: 10.1016/j.etap.2018.10.009.
    1. Wang W., Gao H., Jin S., Li R., Na G. The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: A review. Ecotoxicol. Environ. Saf. 2019;173:110–117. doi: 10.1016/j.ecoenv.2019.01.113.
    1. Xie X., Deng T., Duan J., Xie J., Yuan J., Chen M. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway. Ecotoxicol. Environ. Saf. 2020;190:110133. doi: 10.1016/j.ecoenv.2019.110133.
    1. Wang Y., Huang J., Zhu F., Zhou S. Airborne Microplastics: A Review on the Occurrence, Migration and Risks to Humans. Bull. Environ. Contam. Toxicol. 2021:657–664. doi: 10.1007/s00128-021-03180-0.
    1. Karbalaei S., Hanachi P., Rafiee G., Seifori P., Walker T.R. Toxicity of polystyrene microplastics on juvenile Oncorhynchus mykiss (rainbow trout) after individual and combined exposure with chlorpyrifos. J. Hazard. Mater. 2021;403:123980. doi: 10.1016/j.jhazmat.2020.123980.
    1. Yu S., Chan B.K.K. Intergenerational microplastics impact the intertidal barnacle Amphibalanus amphitrite during the planktonic larval and benthic adult stages. Environ. Pollut. 2020;267:115560. doi: 10.1016/j.envpol.2020.115560.
    1. Umamaheswari S., Priyadarshinee S., Bhattacharjee M., Kadirvelu K., Ramesh M. Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio) Chemosphere. 2021;281:128592. doi: 10.1016/j.chemosphere.2020.128592.
    1. Jin Y., Lu L., Tu W., Luo T., Fu Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci. Total Environ. 2019;649:308–317. doi: 10.1016/j.scitotenv.2018.08.353.
    1. EFSA Glossary. Exposure Assessment. [(accessed on 30 August 2021)]. Available online: .
    1. Mintenig S.M., Löder M.G.J., Primpke S., Gerdts G. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total Environ. 2019;648:631–635. doi: 10.1016/j.scitotenv.2018.08.178.
    1. Almaiman L., Aljomah A., Bineid M., Aljeldah F.M., Aldawsari F., Liebmann B., Lomako I., Sexlinger K., Alarfaj R. The occurrence and dietary intake related to the presence of microplastics in drinking water in Saudi Arabia. Environ. Monit. Assess. 2021;193:390–399. doi: 10.1007/s10661-021-09132-9.
    1. Smith M., Love D.C., Rochman C.M., Neff R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018;5:375–386. doi: 10.1007/s40572-018-0206-z.
    1. Cho Y., Shim W.J., Jang M., Han G.M., Hong S.H. Nationwide monitoring of microplastics in bivalves from the coastal environment of Korea. Environ. Pollut. 2021;270:116175. doi: 10.1016/j.envpol.2020.116175.
    1. Shabaka S.H., Marey R.S., Ghobashy M., Abushady A.M., Ismail G.A., Khairy H.M. Thermal analysis and enhanced visual technique for assessment of microplastics in fish from an Urban Harbor, Mediterranean Coast of Egypt. Mar. Pollut. Bull. 2020;159:111465. doi: 10.1016/j.marpolbul.2020.111465.
    1. O’Connor J.D., Murphy S., Lally H.T., O’Connor I., Nash R., O’Sullivan J., Bruen M., Heerey L., Koelmans A.A., Cullagh A., et al. Microplastics in brown trout (Salmo trutta Linnaeus, 1758) from an Irish riverine system. Environ. Pollut. 2020;267:115572. doi: 10.1016/j.envpol.2020.115572.
    1. Van Cauwenberghe L., Janssen C.R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014;193:65–70. doi: 10.1016/j.envpol.2014.06.010.
    1. Devriese L.I., van der Meulen M.D., Maes T., Bekaert K., Paul-Pont I., Frère L., Robbens J., Vethaak A.D. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Mar. Pollut. Bull. 2015;98:179–187. doi: 10.1016/j.marpolbul.2015.06.051.
    1. Ding J., Sun C., He C., Li J., Ju P., Li F. Microplastics in four bivalve species and basis for using bivalves as bioindicators of microplastic pollution. Sci. Total Environ. 2021;782:146830. doi: 10.1016/j.scitotenv.2021.146830.
    1. Daniel D.B., Ashraf P.M., Thomas S.N., Thomson K.T. Microplastics in the edible tissues of shellfishes sold for human consumption. Chemosphere. 2021;264:128554. doi: 10.1016/j.chemosphere.2020.128554.
    1. Bessa F., Barría P., Neto J.M., Frias J.P.G.L., Otero V., Sobral P., Marques J.C. Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar. Pollut. Bull. 2018;128:575–584. doi: 10.1016/j.marpolbul.2018.01.044.
    1. Renzi M., Blašković A. Litter & microplastics features in table salts from marine origin: Italian versus Croatian brands. Mar. Pollut. Bull. 2018;135:62–68.
    1. Yang D., Shi H., Li L., Li J., Jabeen K., Kolandhasamy P. Microplastic Pollution in Table Salts from China. Environ. Sci. Technol. 2015;49:13622–13627. doi: 10.1021/acs.est.5b03163.
    1. Iñiguez M.E., Conesa J.A., Fullana A. Microplastics in Spanish Table Salt. Sci. Rep. 2017;7:8620. doi: 10.1038/s41598-017-09128-x.
    1. Vidyasakar A., Krishnakumar S., Kumar K.S., Neelavannan K., Anbalagan S., Kasilingam K., Srinivasalu S., Saravanan P., Kamaraj S., Magesh N.S. Microplastic contamination in edible sea salt from the largest salt-producing states of India. Mar. Pollut. Bull. 2021;171:112728. doi: 10.1016/j.marpolbul.2021.112728.
    1. Nithin A., Sundaramanickam A., Surya P., Sathish M., Soundharapandiyan B., Balachandar K. Microplastic contamination in salt pans and commercial salts—A baseline study on the salt pans of Marakkanam and Parangipettai, Tamil Nadu, India. Mar. Pollut. Bull. 2021;165:112101. doi: 10.1016/j.marpolbul.2021.112101.
    1. EFSA Glossary. Risk Characterisation. [(accessed on 30 August 2021)]. Available online: .
    1. Stock V., Böhmert L., Lisicki E., Block R., Cara-Carmona J., Pack L.K., Selb R., Lichtenstein D., Voss L., Henderson C.J., et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch. Toxicol. 2019;93:1817–1833. doi: 10.1007/s00204-019-02478-7.
    1. Sana S.S., Dogiparthi L.K., Gangadhar L., Chakravorty A., Abhishek N. Effects of microplastics and nanoplastics on marine environment and human health. Environ. Sci. Pollut. Res. 2020;27:44743–44756. doi: 10.1007/s11356-020-10573-x.

Source: PubMed

3
Tilaa