Microplastics in Food: A Review on Analytical Methods and Challenges

Jung-Hwan Kwon, Jin-Woo Kim, Thanh Dat Pham, Abhrajyoti Tarafdar, Soonki Hong, Sa-Ho Chun, Sang-Hwa Lee, Da-Young Kang, Ju-Yang Kim, Su-Bin Kim, Jaehak Jung, Jung-Hwan Kwon, Jin-Woo Kim, Thanh Dat Pham, Abhrajyoti Tarafdar, Soonki Hong, Sa-Ho Chun, Sang-Hwa Lee, Da-Young Kang, Ju-Yang Kim, Su-Bin Kim, Jaehak Jung

Abstract

Human exposure to microplastics contained in food has become a significant concern owing to the increasing accumulation of microplastics in the environment. In this paper, we summarize the presence of microplastics in food and the analytical methods used for isolation and identification of microplastics. Although a large number of studies on seafood such as fish and shellfish exist, estimating the overall human exposure to microplastics via food consumption is difficult owing to the lack of studies on other food items. Analytical methods still need to be optimized for appropriate recovery of microplastics in various food matrices, rendering a quantitative comparison of different studies challenging. In addition, microplastics could be added or removed from ingredients during processing or cooking. Thus, research on processed food is crucial to estimate the contribution of food to overall human microplastic consumption and to mitigate this exposure in the future.

Keywords: FT-IR; density separation; digestion; microplastics; sea salt; seafood.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Fractions of plastic materials identified in seafood and salt. Data from References [11,14,15,21,24,29,30,34,39,40,45,47,48,50,51,52,62,71,74,75,76,77,78,80,81,86,90,91,95,96,98,99]. (PE: polyethylene, PP: polypropylene, PS: polystyrene, PET: polyethylene terephthalate, PA: polyacrylate).
Figure 2
Figure 2
Boxplot of microplastic fibers including filaments in different food items representing 5, 25, 50, 75, and 95 percentile values. Filled circles indicate outliers. Data from References [14,23,24,25,29,30,31,32,38,39,40,45,47,48,50,52,62,68,71,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,94,95,96,97,98,99].

References

    1. Moore C.J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 2008;108:131–139. doi: 10.1016/j.envres.2008.07.025.
    1. Cózar A., Echevarria F., Gonzákez-Gordillo J.I., Irigoien X., Ubeda B., Hernández-León S., Palma A.T., Navarro S., Garcá-de-Lomas J., Ruiz A., et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA. 2014;111:10239–10244. doi: 10.1073/pnas.1314705111.
    1. Eo S., Hong S.H., Song Y.K., Lee J., Lee J., Shim W.J. Abundance, composition, and distribution of microplastics larger than 20 μm in sand beaches of South Korea. Environ. Pollut. 2018;238:894–902. doi: 10.1016/j.envpol.2018.03.096.
    1. Ivar do Sul J.A., Costa M.F. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 2014;185:352–364. doi: 10.1016/j.envpol.2013.10.036.
    1. Zhang S., Yang X., Gertsen H., Peters P., Salánki T., Geissen V. A simple method for the extraction and identification of light density microplastics from soil. Sci. Total Environ. 2018;616–617:1056–1065. doi: 10.1016/j.scitotenv.2017.10.213.
    1. Scheurer M., Bigalke M. Microplastics in Swiss floodplain soils. Environ. Sci. Technol. 2018;52:3591–3598. doi: 10.1021/acs.est.7b06003.
    1. Leslie H.A., Brandsma S.H., van Velzen M.J.M., Vethaak A.D. Microplastics en route: Field measurements in the Dutch River Delta and Amsterdam Canals, wastewater treatment plants, North Sea sediments and biota. Environ. Int. 2017;101:133–142. doi: 10.1016/j.envint.2017.01.018.
    1. Mani T., Hauk A., Walter U., Burkhardt-Holm P. Microplastics profile along the Rhine River. Sci. Rep. 2015;5:17988. doi: 10.1038/srep17988.
    1. Park T.-J., Lee S.-H., Lee M.-S., Lee J.-K., Lee S.-H., Zoh K.-D. Occurrence of microplastics in the Han River and riverine fish in South Korea. Sci. Total Environ. 2020;708:134535. doi: 10.1016/j.scitotenv.2019.134535.
    1. Park H.-J., Oh M.-J., Kim P.-G., Kim G., Jeong D.-H., Ju B.-K., Lee W.-S., Chung H.-M., Kang H.-J., Kwon J.-H. National reconnaissance survey of microplastics in municipal wastewater treatment plants in Korea. Environ. Sci. Technol. 2020;54:1503–1512. doi: 10.1021/acs.est.9b04929.
    1. Catarino A.I., Macchia V., Sanderson W.G., Thompson R.C., Henry T.B. Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environ. Pollut. 2018;237:675–684. doi: 10.1016/j.envpol.2018.02.069.
    1. Akoueson F., Sheldon L.M., Danopoulos E., Morris S., Hotten J., Chapman E., Li J., Rotchell J.M. A preliminary analysis of microplastics in edible versus non-edible tissues from seafood samples. Environ. Pollut. 2020;263:114452. doi: 10.1016/j.envpol.2020.114452.
    1. Barboza L.G.A., Lopes C., Oliveira P., Bessa F., Otero V., Henriques B., Raimundo J., Caetano M., Vale C., Guilhermino L. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total Environ. 2020;717:134625. doi: 10.1016/j.scitotenv.2019.134625.
    1. Kim J.-S., Lee H.-J., Kim S.-K., Kim H.-J. Global pattern of microplastics (MPs) in commercial food-grade salts: Sea salt as an indicator of seawater MP pollution. Environ. Sci. Technol. 2018;52:12819–12828. doi: 10.1021/acs.est.8b04180.
    1. Yang D., Shi H., Li L., Li J., Jabeen K., Kolandhasamy P. Microplastic pollution in table salts from China. Environ. Sci. Technol. 2015;49:13622–13627. doi: 10.1021/acs.est.5b03163.
    1. Fadare O.O., Wan B., Guo L.-H., Zhao L. Microplastics from consumer plastic food containers: Are we consuming it? Chemosphere. 2020;253:126787. doi: 10.1016/j.chemosphere.2020.126787.
    1. Hernandez L.M., Xu E.G., Larsson H.C.E., Tahara R., Maisuria V.B., Tufenkji N. Plastic teabags release billions of microparticles and nanoparticles into tea. Environ. Sci. Technol. 2019;53:12300–12310. doi: 10.1021/acs.est.9b02540.
    1. Bouwmeester H., Hollman P.C.H., Peters R.J.B. Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: Experiences from nanotoxicology. Environ. Sci. Technol. 2015;49:8932–8947. doi: 10.1021/acs.est.5b01090.
    1. Catarino A.I., Thompson R., Sanderson W., Henry T.B. Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues. Environ. Toxicol. Chem. 2017;36:947–951. doi: 10.1002/etc.3608.
    1. De Witte B., Devriese L., Bekaert K., Hoffman S., Vandermeersch G., Cooreman K., Robbens J. Quality assessment of the blue mussel (Mytilus edulis): Comparison between commercial and wild types. Mar. Pollut. Bull. 2014;85:146–155. doi: 10.1016/j.marpolbul.2014.06.006.
    1. Hermabessiere L., Paul-Pont I., Cassone A.-L., Himber C., Receveur J., Jezequel R., El Rakwe M., Rinnert E., Rivière G., Lambert C., et al. Microplastic contamination and pollutant levels in mussels and cockles collected along the channel coasts. Environ. Pollut. 2019;250:807–819. doi: 10.1016/j.envpol.2019.04.051.
    1. Abbasi S., Soltani N., Keshavarzi B., Moore F., Turner A., Hassanaghaei M. Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf. Chemosphere. 2018;205:80–87. doi: 10.1016/j.chemosphere.2018.04.076.
    1. Akhbarizadeh R., Moore F., Keshavarzi B. Investigating a probable relationship between microplastics and potentially toxic elements in fish muscles from northeast of Persian Gulf. Environ. Pollut. 2018;232:154–163. doi: 10.1016/j.envpol.2017.09.028.
    1. Karami A., Golieskardi A., Choo C.K., Romano N., Ho Y.B., Salamatinia B. A high-performance protocol for extraction of microplastics in fish. Sci. Total. Environ. 2017;578:485–494. doi: 10.1016/j.scitotenv.2016.10.213.
    1. Neves D., Sobral P., Ferreira J.L., Pereira T. Ingestion of microplastics by commercial fish off the Portuguese coast. Mar. Pollut. Bull. 2015;101:119–126. doi: 10.1016/j.marpolbul.2015.11.008.
    1. Li Q., Feng Z., Zhang T., Ma C., Shi H. Microplastics in the commercial seaweed nori. J. Hazard. Mater. 2020;388:122060. doi: 10.1016/j.jhazmat.2020.122060.
    1. Karami A., Golieskardi A., Choo C.K., Larat V., Karbalaei S., Salamatinia B. Microplastic and mesoplastic contamination in canned sardines and sprats. Sci. Total Environ. 2018;612:1380–1386. doi: 10.1016/j.scitotenv.2017.09.005.
    1. Andrady A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011;62:1596–1605. doi: 10.1016/j.marpolbul.2011.05.030.
    1. Seth C.K., Shriwastav A. Contamination of Indian sea salts with microplastics and a potential prevention strategy. Environ. Sci. Pollut. Res. 2018;25:30122–30131. doi: 10.1007/s11356-018-3028-5.
    1. Gündoğdu S. Contamination of table salts from Turkey with microplastics. Food Addit. Contam. A. 2018;32:1006–1014. doi: 10.1080/19440049.2018.1447694.
    1. Karami A., Golieskardi A., Choo C.K., Larat V., Galloway T.S., Salamatinia B. The presence of microplastics in commercial salts from different countries. Sci. Rep. 2017;7:46173. doi: 10.1038/srep46173.
    1. Kosuth M., Mason S.A., Wattenberg E.V. Anthropogenic contamination of tap water, beer, and sea salt. PLoS ONE. 2018;13:e0194970. doi: 10.1371/journal.pone.0194970.
    1. Iñiguez M.E., Conesa J.A., Fullana A. Microplastics in Spanish table salt. Sci. Rep. 2017;7:8620. doi: 10.1038/s41598-017-09128-x.
    1. Renzi M., Blašković A. Litter & microplastics features in table salts from marine origin: Italian versus Croatian brands. Mar. Pollut. Bull. 2018;135:62–68.
    1. Renzi M., Grazioli E., Bertacchini E., Blašković A. Microparticles in table salts: Levels and chemical composition of the smallest dimensional fraction. J. Mar. Sci. Eng. 2019;7:310. doi: 10.3390/jmse7090310.
    1. Lee H., Kunz A., Shim W.J., Walther B.A. Microplastic contamination of table salts from Taiwan, including a global review. Sci. Rep. 2019;9:10145. doi: 10.1038/s41598-019-46417-z.
    1. Löder M.G.J., Gerdts G. Methodology used for the detection and identification of microplastics—A critical appraisal. In: Bergmann M., Gutow L., Klages M., editors. Marine Anthropogenic Litter. Springer; Cham, Switzerland: 2015. pp. 201–227.
    1. Rochman C.M., Tahir A., Williams S.L., Baxa D.V., Lam R., Miller J.T., Teh F.-C., Werorilangi S., Teh S.J. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 2015;5:14340. doi: 10.1038/srep14340.
    1. Cheung L.T.O., Lui C.Y., Fok L. Microplastic contamination of wild and captive flathead grey mullet (Mugil cephalus) Int. J. Environ. Res. Pub. Health. 2018;15:597. doi: 10.3390/ijerph15040597.
    1. Jabeen K., Su L., Li J., Yang D., Tong C., Mu J. Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environ. Pollut. 2017;221:141–149. doi: 10.1016/j.envpol.2016.11.055.
    1. Avio C.G., Pittura L., d’Errico G., Abel S., Amorello S., Marino G., Gorbi S., Regoli F. Distribution and characterization of microplastic particles and textile microfibers in Adriatic food webs: General insights for biomonitoring strategies. Environ. Pollut. 2020;258:113766. doi: 10.1016/j.envpol.2019.113766.
    1. Biginagwa F.J., Mayoma B.S., Shashoua Y., Syberg K., Khan F.R. First evidence of microplastics in the African Great Lakes: Recovery from Lake Victoria Nile perch and Nile tilapia. J. Gt. Lakes Res. 2016;42:146–149. doi: 10.1016/j.jglr.2015.10.012.
    1. Azizah N., Saragih G.S. Microplastics in digestive tracts of fishes from Jakarta Bay. IOP Conf. Ser. Earth Environ. Sci. 2019;407:012008. doi: 10.1088/1755-1315/407/1/012008.
    1. Zhang D., Cui Y., Zhou H., Jin C., Yu X., Xu Y., Li Y., Zhang C. Microplastic pollution in water, sediment, and fish from artificial reefs around the Ma’an Archipelago, Shengsi, China. Sci. Total Environ. 2020;703:134768. doi: 10.1016/j.scitotenv.2019.134768.
    1. Fang C., Zheng R., Chen H., Hong F., Lin L., Lin H., Guo H., Bailey C., Segner H., Mu J., et al. Comparison of microplastic contamination in fish and bivalves from two major cities in Fujian province, China and the implications for human health. Aquaculture. 2019;512:734322. doi: 10.1016/j.aquaculture.2019.734322.
    1. Pozo K., Gomez V., Torres M., Vera L., Nuñez D., Oyarzún P., Mendoza G., Clarke B., Fossi M.C., Baini M., et al. Presence and characterization of microplastics in fish of commercial importance from the Biobío region in central Chile. Mar. Pollut. Bull. 2019;140:315–319. doi: 10.1016/j.marpolbul.2019.01.025.
    1. Tanaka K., Takada H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci. Rep. 2016;6:34351. doi: 10.1038/srep34351.
    1. Kazour M., Jemaa S., Issa C., Khalaf G., Amara R. Microplastics pollution along the Lebanese coast (Eastern Mediterranean Basin): Occurrence in surface water, sediments and biota samples. Sci. Total Environ. 2019;696:133933. doi: 10.1016/j.scitotenv.2019.133933.
    1. Silva-Cacalcanti J.S., Silva J.D.B., de França E.J., de Araújo M.C.B., Gusmão F. Microplastics ingestion by a common tropical freshwater fishing resource. Environ. Pollut. 2017;221:218–226. doi: 10.1016/j.envpol.2016.11.068.
    1. Lusher A.L., McHugh M., Thompson R.C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar. Pollut. Bull. 2013;67:94–99. doi: 10.1016/j.marpolbul.2012.11.028.
    1. Rummel C.D., Löder M.G.J., Fricke N.F., Lang T., Griebeler E.-M., Janke M., Gerdts G. Plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea. Mar. Pollut. Bull. 2016;102:134–141. doi: 10.1016/j.marpolbul.2015.11.043.
    1. Avio C.G., Cardelli L.R., Gorbi S., Pellegrini D., Regoli F. Microplastics pollution after the removal of the Costa Concordia wreck: First evidences from a biomonitoring case study. Environ. Pollut. 2017;227:207–214. doi: 10.1016/j.envpol.2017.04.066.
    1. Bucol L.A., Romano E.F., Cabcaban S.M., Siplon L.M.D., Madrid G.C., Bucol A.A., Polidoro B. Microplastics in marine sediments and rabbitfish (Siganus fuscescens) from selected coastal areas of Negros Oriental, Philippines. Mar. Pollut. Bull. 2020;150:110685. doi: 10.1016/j.marpolbul.2019.110685.
    1. Chagnon C., Thiel M., Antunes J., Ferreira J.L., Sobral P., Ory N.C. Plastic ingestion and trophic transfer between Easter Island flying fish (Cheilopogon rapanouiensis) and yellowfin tuna (Thunnus albacares) from Rapa Nui (Easter Island) Environ. Pollut. 2018;243:127–133. doi: 10.1016/j.envpol.2018.08.042.
    1. De Vries A.N., Govoni D., Árnason S.H., Carlsson P. Microplastic ingestion by fish: Body size, condition factor and gut fullness are not related to the amount of plastics consumed. Mar. Pollut. Bull. 2020;151:110827. doi: 10.1016/j.marpolbul.2019.110827.
    1. Foekema E.M., De Gruijter C., Mergia M.T., van Franeker J.A., Murk A.T.J., Koelmans A.A. Plastic in North Sea fish. Environ. Sci. Technol. 2013;47:8818–8824. doi: 10.1021/es400931b.
    1. Güven O., Gökdağ K., Jovanović B., Kideyş A.E. Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish. Environ. Pollut. 2017;223:286–294. doi: 10.1016/j.envpol.2017.01.025.
    1. Hermsen E., Pompe R., Besseling E., Koelmans A.A. Detection of low numbers of microplastics in North Sea fish using strict quality assurance criteria. Mar. Pollut. Bull. 2017;122:253–258. doi: 10.1016/j.marpolbul.2017.06.051.
    1. Karlsson T.M., Vethaak A.D., Almroth B.C., Ariese F., van Velzen M., Hassellöv M., Leslie H.A. Screening for microplastics in sediment, water, marine invertebrates and fish: Method development and microplastic accumulation. Mar. Pollut. Bull. 2017;122:403–408. doi: 10.1016/j.marpolbul.2017.06.081.
    1. Liboiron M., Liboiron F., Wells E., Richárd N., Zahara A., Mather C., Bradshaw H., Murichi J. Low plastic ingestion rate in Atlantic cod (Gadus morhua) from Newfoundland destined for human consumption collected through citizen science methods. Mar. Pollut. Bull. 2016;113:428–437. doi: 10.1016/j.marpolbul.2016.10.043.
    1. Markic A., Niemand C., Bridson J.H., Mazouni-Gaertner N., Gaertner J.C., Eriksen M., Bowen M. Double trouble in the South Pacific subtropical gyre: Increased plastic ingestion by fish in the oceanic accumulation zone. Mar. Pollut. Bull. 2018;136:547–564. doi: 10.1016/j.marpolbul.2018.09.031.
    1. Mancia A., Chenet T., Bono G., Geraci M.L., Vaccaro C., Munari C., Mistri M., Cavazzini A., Pasti L. Adverse effects of plastic ingestion on the Mediterranean small-spotted catshark (Scyliorhinus canicula) Mar. Environ. Res. 2020;155:104876. doi: 10.1016/j.marenvres.2020.104876.
    1. Ogonowski M., Wenman V., Danielsson S., Gorokhova E. Ingested microplastic is not correlated to HOC concentrations in Baltic Sea herring; Proceedings of the 15th International Conference on Environmental Science and Technology; Rhodes, Greece. 31 August–2 September 2017.
    1. Koongolla J.B., Lin L., Pan Y.-F., Yang C.-P., Sun D.-R., Liu S., Xu X.-R., Maharana D., Huang J.-S., Li H.-X. Occurrence of microplastics in gastrointestinal tracts and gills of fish from Beibu Gulg, South China Sea. Environ. Pollut. 2020;258:113734. doi: 10.1016/j.envpol.2019.113734.
    1. Priscilla V., Patria M.P. Comparison of microplastic abundance in aquaculture ponds of milkfish Chanos (Forsskål, 1775) at Muara Kamal and Marunda, Jakarta Bay. IOP Conf. Ser. Earth Environ. Sci. 2020;404:012027. doi: 10.1088/1755-1315/404/1/012027.
    1. Boerger C.M., Lattin G.L., Moore S.L., Moore C.J. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull. 2010;60:2275–2278. doi: 10.1016/j.marpolbul.2010.08.007.
    1. Choy C.A., Drazen J.C. Plastic for dinner? Observations of frequent debris ingestion by pelagic predatory fishes from the central North Pacific. Mar. Ecol. Prog. Ser. 2013;485:155–163. doi: 10.3354/meps10342.
    1. Bellas J., Martínez-Armental J., Martínez-Cámara A., Besada V., Martínez-Gómez C. Ingestion of microplastics by demersal fish from the Spanish Atlantic and Mediterranean coasts. Mar. Pollut. Bull. 2016;109:55–60. doi: 10.1016/j.marpolbul.2016.06.026.
    1. Su L., Deng H., Li B., Chen Q., Pettigrove V., Chenxi W., Shi H. The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of east China. J. Hazard. Mater. 2019;365:716–724. doi: 10.1016/j.jhazmat.2018.11.024.
    1. Huang J.-S., Koongolla J.B., Li H.-X., Lin L., Pan Y.-F., Liu S., He W.-H., Maharana D., Xu X.-R. Microplastic accumulation in fish from Zhanjiang mangrove wetland, South China. Sci. Total Environ. 2020;208:134839. doi: 10.1016/j.scitotenv.2019.134839.
    1. Feng Z., Zhang T., Li Y., He X., Wang R., Xu J., Gao G. The accumulation of microplastics in fish from an important fish farm and mariculture area, Haizhou Bay, China. Sci. Total Environ. 2019;696:133948. doi: 10.1016/j.scitotenv.2019.133948.
    1. Hurt R., O’Reilly C.M., Perry W.L. Microplastic prevalence in two fish species in two U.S. reservoirs. Limnol. Oceanogr. Lett. 2020;5:147–153. doi: 10.1002/lol2.10140.
    1. Fareza A.A., Sembiring E. Occurrence of microplastics in water, sediment and milkfish (Chanos chanos) in Citarum River downstream (Case study: Muara Gembong) E3S Web Conf. 2020;148:07005. doi: 10.1051/e3sconf/202014807005.
    1. Wu F., Wang Y., Leung J.Y.S., Huang W., Zeng J., Tang Y., Chen J., Shi A., Yu X., Xu X., et al. Accumulation of microplastics in typical commercial aquatic species: A case study at a productive aquaculture site in China. Sci. Total Environ. 2020;708:135432. doi: 10.1016/j.scitotenv.2019.135432.
    1. Zhu J., Zhang Q., Li Y., Tan S., Kang Z., Yu X., Lan W., Cai L., Wang J., Shi H. Microplastic pollution in the Maowei Sea, a typical mariculture bay of China. Sci. Total Environ. 2019;658:62–68. doi: 10.1016/j.scitotenv.2018.12.192.
    1. Li Q., Sun C., Wang Y., Cai H., Li L., Li J., Shi H. Fusion of microplastics into the mussel byssus. Environ. Pollut. 2019;252:420–426. doi: 10.1016/j.envpol.2019.05.093.
    1. Li J., Green C., Reynolds A., Shi H., Rotchell J.M. Microplastics in mussels sampled from coastal waters and supermarkets in the United Kingdom. Environ. Pollut. 2018;241:35–44. doi: 10.1016/j.envpol.2018.05.038.
    1. Cho Y., Shim W.J., Jang M., Han G.M., Hong S.H. Abundance and characteristics of microplastics in market bivalves from South Korea. Environ. Pollut. 2019;245:1107–1116. doi: 10.1016/j.envpol.2018.11.091.
    1. Li J., Yang D., Li L., Jabeen K., Shi H. Microplastics in commercial bivalves from China. Environ. Pollut. 2015;207:190–195. doi: 10.1016/j.envpol.2015.09.018.
    1. Li J., Qu X., Su L., Zhang W., Yang D., Kolandhasamy P., Li D., Shi H. Microplastics in mussels along the coastal waters of China. Environ. Pollut. 2016;214:177–184. doi: 10.1016/j.envpol.2016.04.012.
    1. Phuong N.N., Poirier L., Pham Q.T., Lagarde F., Zalouk-Vergnoux A. Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: Location, season and/or mode of life? Mar. Pollut. Bull. 2018;129:664–674. doi: 10.1016/j.marpolbul.2017.10.054.
    1. Mathalson A., Hill P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull. 2014;81:69–79. doi: 10.1016/j.marpolbul.2014.02.018.
    1. Van Cauwenberghe L., Janssen C.R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014;193:65–70. doi: 10.1016/j.envpol.2014.06.010.
    1. Martinelli J.C., Phan S., Luscombe C.K., Padilla-Gamiño J.L. Low incidence of microplastic contaminants in Pacific oysters (Crassostrea gigas Thunberg) from the Salish Sea, USA. Sci. Total Environ. 2020;715:136826. doi: 10.1016/j.scitotenv.2020.136826.
    1. Waite H.R., Donnelly M.J., Walters L.J. Quantity and types of microplastics in the organic tissues of the eastern oyster Crassostrea virginica and Atlantic mud crab Panopeus herbstii from a Florida estuary. Mar. Pollut. Bull. 2018;129:179–185. doi: 10.1016/j.marpolbul.2018.02.026.
    1. Jahan S., Strezov V., Weldekidan H., Kumar R., Kan T., Sarkodie S.A., He J., Dastjerdi B., Wilson S.P. Interrelationship of microplastic pollution in sediments and oysters in a seaport environment of the eastern coast of Australia. Sci. Total Environ. 2019;695:133924. doi: 10.1016/j.scitotenv.2019.133924.
    1. Naji A., Nuri M., Vethaak A.D. Microplastics contamination in molluscs from the northern part of the Persian Gulf. Environ. Pollut. 2018;235:113–120. doi: 10.1016/j.envpol.2017.12.046.
    1. Davidson K., Dudas S.E. Microplastic ingestion by wild and cultured Manila clams (Venerupis philippinarum) from Baynes Sound, British Columbia. Arch. Environ. Contam. Toxicol. 2016;71:147–156. doi: 10.1007/s00244-016-0286-4.
    1. Su L., Cai H., Kolandhasamy P., Wu C., Rochman C.M., Shi H. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ. Pollut. 2018;234:347–355. doi: 10.1016/j.envpol.2017.11.075.
    1. Su L., Xue Y., Li L., Yang D., Kolandhasamy P., Li D., Shi H. Microplastics in Taihu Lake, China. Environ. Pollut. 2016;216:711–719. doi: 10.1016/j.envpol.2016.06.036.
    1. Xu X., Wong C.Y., Tam N.F.Y., Lo H.-S., Cheung S.-G. Microplastics in invertebrates on soft shores in Hong Kong: Influence of habitat, taxa and feeding mode. Sci. Total Environ. 2020;715:136999. doi: 10.1016/j.scitotenv.2020.136999.
    1. Jones K.L., Hartl M.G.J., Bell M.C., Capper A. Microplastic accumulation in a Zostera marina L. bed at Deerness Sound, Orkney, Scotland. Mar. Pollut. Bull. 2020;152:110883. doi: 10.1016/j.marpolbul.2020.110883.
    1. Doyle D., Gammell M., Frias J., Griffin G., Nash R. Low levels of microplastics recorded from the common periwinkle, Littorina littorea on the west coast of Ireland. Mar. Pollut. Bull. 2019;149:110645. doi: 10.1016/j.marpolbul.2019.110645.
    1. Devriese L.I., van der Meulen M.D., Maes T., Bekaert K., Paul-Pont I., Frère L., Vethaak A.D. Microplastic contamination in brown shrimp (Crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Mar. Pollut. Bull. 2015;98:179–187. doi: 10.1016/j.marpolbul.2015.06.051.
    1. Nan B., Su L., Kellar C., Craig N.J., Keough M.J., Pettigrove V. Identification of microplastics in surface water and Australian freshwater shrimp Paratya australiensis in Victoria, Australia. Environ. Pollut. 2020;259:113865. doi: 10.1016/j.envpol.2019.113865.
    1. Hossain M.S., Rahman M.S., Uddin M.N., Sharifuzzaman S.M., Chowdhury S.R., Sarker S., Chowdhury M.S.N. Microplastic contamination in Penaeid shrimp from the Northern Bay of Bengal. Chemosphere. 2020;238:124688. doi: 10.1016/j.chemosphere.2019.124688.
    1. Hara J., Frias J., Nash R. Quantification of microplastic ingestion by the decapod crustacean Nephrops norvegicus from Irish waters. Mar. Pollut. Bull. 2020;152:110905. doi: 10.1016/j.marpolbul.2020.110905.
    1. Cau A., Avio C.G., Dessì C., Follesa M.C., Moccia D., Regoli F., Pusceddu A. Microplastics in the crustaceans Nephrops norvegicus and Aristeus antennatus: Flagship species for deep-sea environments? Environ. Pollut. 2019;255:113107. doi: 10.1016/j.envpol.2019.113107.
    1. Waddell E.N., Lascelles N., Conkle J.L. Microplastic contamination in Corpus Christi Bay blue crabs, Callinectes sapidus. Limn. Oceanogr. Lett. 2020;5:92–102. doi: 10.1002/lol2.10142.
    1. Munno K., Helm P.A., Jackson D.A., Rochman C., Sims A. Impacts of temperature and selected chemical digestion methods on microplastic particles. Environ. Toxicol. Chem. 2018;37:91–98. doi: 10.1002/etc.3935.
    1. Farrington J.W., Goldberg E.D., Risebrough R.W., Martin J.H., Bowen V.T. U.S. “Mussel Watch” 1976–1978: An overview of the trace-metal, DDE, PCB, hydrocarbon and artificial radionuclide data. Environ. Sci. Technol. 1983;17:490–496. doi: 10.1021/es00114a010.
    1. Monirith I., Ueno D., Takahashi S., Nakada H., Sudaryanto A., Subramanian A., Karuppiah S., Ismail A., Muchtar M., Zheng J., et al. Asia-Pacific mussel watch: Monitoring contamination of persistent organochlorine compounds in coastal waters of Asian countries. Mar. Pollut. Bull. 2003;46:281–300. doi: 10.1016/S0025-326X(02)00400-9.
    1. Birnstiel S., Soares-Gomes A., da Gama B.A.P. Depuration reduces microplastic content in wild and farmed mussels. Mar. Pollut. Bull. 2019;140:241–247. doi: 10.1016/j.marpolbul.2019.01.044.
    1. Liebezeit G., Liebezeit E. Synthetic particles as contaminants in German beers. Food Addit. Contam. A. 2014;31:1574–1578. doi: 10.1080/19440049.2014.945099.
    1. Liebezeit G., Liebezeit E. Non-pollen particulates in honey and sugar. Food Addit. Contam. A. 2013;30:2136–2140. doi: 10.1080/19440049.2013.843025.
    1. Liebezeit G., Liebezeit E. Origin of synthetic particles in honeys. Pol. J. Food Nutr. Sci. 2015;65:143–147. doi: 10.1515/pjfns-2015-0025.
    1. Mühlschlegel P., Hauk A., Walter U., Sieber R. Lack of evidence for microplastic contamination in honey. Food Addit. Contam. A. 2017;34:1982–1989. doi: 10.1080/19440049.2017.1347281.
    1. Kutralam-Muniasamy G., Pérez-Guevara F., Elizalde-Martínez I., Shruti V.C. Branded milks—Are they immune from microplastics contamination? Sci. Total Environ. 2020;714:136823. doi: 10.1016/j.scitotenv.2020.136823.
    1. Lu S., Qiu R., Hu J., Li X., Chen Y., Zhang X., Cao C., Shi H., Xie B., Wu W.-M., et al. Prevalence of microplastics in animal-based traditional medicinal materials: Widespread pollution in terrestrial environments. Sci. Total Environ. 2020;709:136214. doi: 10.1016/j.scitotenv.2019.136214.
    1. Fernández-Severini M.D., Villagran D.M., Buzzi N.S., Sartor G.C. Microplastics in oysters (Crassostrea gigas) and water at the Bahía Blanca Estuary (Southwestern Atlantic): An emerging issue of global concern. Reg. Stud. Mar. Sci. 2019;32:100829. doi: 10.1016/j.rsma.2019.100829.
    1. Sujathan S., Kniggendorf A.K., Kumar A., Roth B., Rosenwinkel K.H., Nogueira R. Heat and bleach: A cost-efficient method for extracting microplastics from return activated sludge. Arch. Environ. Contam. Toxicol. 2017;73:641–648. doi: 10.1007/s00244-017-0415-8.
    1. Tagg A.S., Harrison J.P., Ju-Nam Y., Sapp M., Bradley E.L., Sinclair C.J., Ojeda J.J. Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater. Chem. Comm. 2017;53:372–375. doi: 10.1039/C6CC08798A.
    1. Kühn S., van Franeker J.A., Donoghue A.M.O., Swiers A., Starkenburg M., van Werven B., Lindeboom H. Details of plastic ingestion and fibre contamination in North Sea. Environ. Pollut. 2020;257:113569. doi: 10.1016/j.envpol.2019.113569.
    1. Cole M., Webb H., Lindeque P.K., Fileman E.S., Halsband C., Galloway T.S. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 2014;4:1–8. doi: 10.1038/srep04528.
    1. Dehaut A., Cassone A.L., Frère L., Hermabessiere L., Himber C., Rinnert E., Paul-Pont I. Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environ. Pollut. 2016;215:223–233. doi: 10.1016/j.envpol.2016.05.018.
    1. Van Cauwenberghe L., Claessens M., Vandegehuchte M.B., Janssen C.R. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 2015;199:10–17. doi: 10.1016/j.envpol.2015.01.008.
    1. Rist S., Steensgaard I.M., Guven O., Nielsen T.G., Jensen L.H., Møller L.F., Hartmann N.B. The fate of microplastics during uptake and depuration phases in a blue mussel exposure system. Environ. Toxicol. Chem. 2019;38:99–105. doi: 10.1002/etc.4285.
    1. Dawson A.L., Kawaguchi S., King C.K., Townsend K.A., King R., Huston W.M., Bengtson Nash S.M. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 2018;9:1–8. doi: 10.1038/s41467-018-03465-9.
    1. Courtene-Jones W., Quinn B., Murphy F., Gary S.F., Narayanaswamy B.E. Optimisation of enzymatic digestion and validation of specimen preservation methods for the analysis of ingested microplastics. Anal. Methods. 2017;9:1437–1445. doi: 10.1039/C6AY02343F.
    1. Mintenig S.M., Int-Veen I., Löder M.G.J., Primpke S., Gerdts G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017;108:365–372. doi: 10.1016/j.watres.2016.11.015.
    1. Löder M.G.J., Imhof H.K., Ladehoff M., Löschel L.A., Lorenz C., Mintenig S., Piehl S., Primpke S., Schrank I., Laforsch C., et al. Enzymatic porification of microplastics in environmental samples. Environ. Sci. Technol. 2017;51:14283–14292. doi: 10.1021/acs.est.7b03055.
    1. Nuelle M.-T., Dekiff J.H., Remy D., Fries E. A new analytical approach for monitoring microplastics in marine sediments. Environ. Pollut. 2014;184:161–169. doi: 10.1016/j.envpol.2013.07.027.
    1. Fries E., Dekiff J.H., Willmeyer J., Nuelle M.-T., Ebert M., Remy D. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ. Sci. Process. Impacts. 2013;15:1949–1956. doi: 10.1039/c3em00214d.
    1. Fischer M., Scholz-Böttcher B.M. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography-mass spectrometry. Environ. Sci. Technol. 2017;51:5052–5060. doi: 10.1021/acs.est.6b06362.
    1. Hermabessiere L., Himber C., Boricaud B., Kazour M., Amara R., Cassone A.-L., Laurentie M., Paul-Pont I., Soudant P., Dehaut A., et al. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics. Anal. Bioanal. Chem. 2018;410:6663–6676. doi: 10.1007/s00216-018-1279-0.
    1. Kang H.-J., Park H.-J., Kwon O.-K., Lee W.-S., Jeong D.-H., Ju B.-K., Kwon J.-H. Occurrence of microplastics in municipal sewage treatment plants: A review. Environ. Health Toxicol. 2018;33:e2018013. doi: 10.5620/eht.e2018013.
    1. Qiao R., Deng Y., Zhang S., Wolosker M.B., Zhu Q., Ren H., Zhang Y. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere. 2019;236:124334. doi: 10.1016/j.chemosphere.2019.07.065.
    1. Ziajahromi S., Kumar A., Neale P.A., Leusch F.D.L. Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: Implications of single and mixture exposures. Environ. Sci. Technol. 2017;51:13397–13406. doi: 10.1021/acs.est.7b03574.
    1. Au S.Y., Bruce T.F., Bridges W.C., Klaine S.J. Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ. Toxicol. Chem. 2015;34:2564–2572. doi: 10.1002/etc.3093.
    1. Thiele C.J., Hudson M.D., Russell A.E. Evaluation of existing methods to extract microplastics from bivalve tissue: Adapted KOH digestion protocol improves filtration at single-digit pore size. Mar. Pollut. Bull. 2019;142:384–393. doi: 10.1016/j.marpolbul.2019.03.003.
    1. Käppler A., Fischer D., Oberbeckmann S., Schernewski G., Labrenz M., Eichhorn K.-J., Voit B. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal. Bioanl. Chem. 2016;408:8377–8391. doi: 10.1007/s00216-016-9956-3.
    1. Renner G., Schmidt T.C., Schram J. Automated rapid & intelligent microplastics mapping by FTIR microscopy: A Python-based workflow. MethodsX. 2020;7:100742.
    1. Primpke S., Lorenz C., Rascher-Friesenhausen R., Gerdts G. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Anal. Methods. 2017;9:1499–1511. doi: 10.1039/C6AY02476A.
    1. Kögel T., Bjorøy Ø., Toto B., Bienfait A.M., Sanden M. Micro-and nanoplastic toxicity on aquatic life: Determining factors. Sci. Total Environ. 2020;709:136050. doi: 10.1016/j.scitotenv.2019.136050.
    1. Yong C.Q.Y., Valiyaveetill S., Tang B.L. Toxicity of microplastics and nanoplastics in mammalian systems. Int. J. Environ. Res. Public Health. 2020;17:1509. doi: 10.3390/ijerph17051509.
    1. Peeken I., Primpke S., Beyer B., Gütermann J., Katlein C., Krumpen T., Bergmann M., Hehemann L., Gerdts G. Arctic Sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 2018;9:1505. doi: 10.1038/s41467-018-03825-5.
    1. Enders K., Lenz R., Stedmon C.A., Nielsen T.G. Abundance, size and polymer composition of marine microplastics ≥10 μm in the Atlantic Ocean and their modelled vertical distribution. Mar. Pollut. Bull. 2015;100:70–81. doi: 10.1016/j.marpolbul.2015.09.027.
    1. Pedrotti M.L., Petit S., Elineau A., Bruzaud S., Crebassa J.C., Dumontet B., Martí E., Gorsky G., Cózar A. Changes in the floating plastic pollution of the Mediterranean Sea in relation to the distance to land. PLoS ONE. 2016;11:e0161581. doi: 10.1371/journal.pone.0161581.
    1. Magri D., Sánchez-Moreno P., Caputo G., Gatto F., Veronesi M., Bardi G., Catelani T., Guarnieri D., Athanassiou A., Pompa P.P., et al. Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: Characterization and toxicology assessment. ACS Nano. 2018;12:7690–7700. doi: 10.1021/acsnano.8b01331.
    1. Gasperi J., Wright S.L., Dris R., Collard F., Mandin C., Guerrouache M., Langlois V., Kelly F.J., Tassin B. Microplastics in air: Are we breathing it in? Curr. Opinion Environ. Sci. Health. 2018;1:1–5. doi: 10.1016/j.coesh.2017.10.002.
    1. Vianello A., Jensen R.L., Liu L., Vollertsen J. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci. Rep. 2019;9:8670. doi: 10.1038/s41598-019-45054-w.

Source: PubMed

3
Tilaa