Plastic-Degrading Potential across the Global Microbiome Correlates with Recent Pollution Trends

Jan Zrimec, Mariia Kokina, Sara Jonasson, Francisco Zorrilla, Aleksej Zelezniak, Jan Zrimec, Mariia Kokina, Sara Jonasson, Francisco Zorrilla, Aleksej Zelezniak

Abstract

Biodegradation is a plausible route toward sustainable management of the millions of tons of plastic waste that have accumulated in terrestrial and marine environments. However, the global diversity of plastic-degrading enzymes remains poorly understood. Taking advantage of global environmental DNA sampling projects, here we constructed hidden Markov models from experimentally verified enzymes and mined ocean and soil metagenomes to assess the global potential of microorganisms to degrade plastics. By controlling for false positives using gut microbiome data, we compiled a catalogue of over 30,000 nonredundant enzyme homologues with the potential to degrade 10 different plastic types. While differences between the ocean and soil microbiomes likely reflect the base compositions of these environments, we find that ocean enzyme abundance increases with depth as a response to plastic pollution and not merely taxonomic composition. By obtaining further pollution measurements, we observed that the abundance of the uncovered enzymes in both ocean and soil habitats significantly correlates with marine and country-specific plastic pollution trends. Our study thus uncovers the earth microbiome's potential to degrade plastics, providing evidence of a measurable effect of plastic pollution on the global microbial ecology as well as a useful resource for further applied research. IMPORTANCE Utilization of synthetic biology approaches to enhance current plastic degradation processes is of crucial importance, as natural plastic degradation processes are very slow. For instance, the predicted lifetime of a polyethylene terephthalate (PET) bottle under ambient conditions ranges from 16 to 48 years. Moreover, although there is still unexplored diversity in microbial communities, synergistic degradation of plastics by microorganisms holds great potential to revolutionize the management of global plastic waste. To this end, the methods and data on novel plastic-degrading enzymes presented here can help researchers by (i) providing further information about the taxonomic diversity of such enzymes as well as understanding of the mechanisms and steps involved in the biological breakdown of plastics, (ii) pointing toward the areas with increased availability of novel enzymes, and (iii) giving a basis for further application in industrial plastic waste biodegradation. Importantly, our findings provide evidence of a measurable effect of plastic pollution on the global microbial ecology.

Keywords: bioinformatics; environmental microbiology; metagenomics; microbial ecology; plastic pollution.

Figures

FIG 1
FIG 1
Global microbiome harbors thousands of potential plastic-degrading enzymes. (A) Compiled enzyme data set and representative sequences obtained by clustering (95% sequence identity cutoff), covering the major types of pollutant plastics (PVA, polyvinyl alcohol; PLA, polylactic acid; PU, polyurethane; PHB, polyhydroxybutyrate; PBS, polybutylene succinate; PET, polyethylene terephthalate; PBAT, polybutylene adipate terephthalate; PE, polyethylene; PEG, polyethylene glycol; PHO, poly(3-hydroxyoctanoate)) and additives/plasticizers (phthalate; PA, phthalic acid; DBP, di-n-butyl phthalate; TP, terephthalic acid). The lower plot shows the final constructed HMMs across the different sequence identity cutoffs. (B) Schematic overview of the implemented and applied procedures in this study. (C) Number of plastic-degrading enzyme hits and degradable plastic types across the ocean and soil microbiome fractions. (D) Enzyme classes (EC) predicted with orthologous function mapping (66) at the topmost EC level. (Inset) Number of EC annotated results.
FIG 2
FIG 2
Plastic-degrading enzymes across the global microbiome. Depicted are 11,906 enzyme hits in the ocean and 18,119 in the soil data sets, obtained by constructing HMMs of known plastic-degrading enzymes and querying them across metagenomic sequencing data sets. The potential to degrade up to 10 and 9 different plastic types was observed in the respective ocean and soil fractions (Fig. S3A).
FIG 3
FIG 3
Plastic-degrading potential in the ocean microbiome. (A) Number of plastic-degrading enzyme hits and degradable plastic types found across 8 oceans. (B) Correlation between the number of enzyme hits and degradable plastic types with ocean environmental variables: longitude (°), depth (m), conductivity (mS/cm), temperature (°C), water density (kg/m) and nitrate content (μmol/liter) (35). Only results with a p-value of <1e−4 are shown. (C) Number of enzyme hits and degradable plastic types across the ocean sampling depth layers (35). (D) Number of enzyme hits relative to the number of species obtained with the metagenome-assembled genome (MAG) analysis at the phylum level (class level for Proteobacteria) (see “Metagenome assemblies and MAGs” in Materials and Methods). (Inset) Number of degradable plastic types per MAG. (E) Correlation of ocean plastic-degrading enzyme hits with experimentally measured plastic pollution across 4 ocean expeditions (51–55) (see “Enzyme function and environmental data analysis” in Materials and Methods). The black line denotes the repeated median fit (122).
FIG 4
FIG 4
Plastic-degrading potential in the soil microbiome. (A) Number of plastic-degrading enzyme hits and degradable plastic types found across 11 soil habitats. (B) Correlation between the number of enzyme hits and degradable plastic types with soil environmental variables: longitude (°), average monthly moisture content (%), net primary productivity (NPP) (g cm−2 year−1), and average yearly potential evapotranspiration and precipitation (liters/m2) (34). Only results with a p-value of <1e−4 are shown. (C) Correlation of soil plastic-degrading enzyme hits with the share of inadequately managed plastic per country (56). The black line denotes the repeated median fit (122).

References

    1. Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782. doi:10.1126/sciadv.1700782.
    1. Lau WWY, Shiran Y, Bailey RM, Cook E, Stuchtey MR, Koskella J, Velis CA, Godfrey L, Boucher J, Murphy MB, Thompson RC, Jankowska E, Castillo Castillo A, Pilditch TD, Dixon B, Koerselman L, Kosior E, Favoino E, Gutberlet J, Baulch S, Atreya ME, Fischer D, He KK, Petit MM, Sumaila UR, Neil E, Bernhofen MV, Lawrence K, Palardy JE. 2020. Evaluating scenarios toward zero plastic pollution. Science 369:1455–1461. doi:10.1126/science.aba9475.
    1. Ocean Conservancy. 2015. Stemming the tide: land-based strategies for a plastic-free ocean.
    1. Sathyanarayana S, Alcedo G, Saelens BE, Zhou C, Dills RL, Yu J, Lanphear B. 2013. Unexpected results in a randomized dietary trial to reduce phthalate and bisphenol A exposures. J Expo Sci Environ Epidemiol 23:378–384. doi:10.1038/jes.2013.9.
    1. Meeker JD, Sathyanarayana S, Swan SH. 2009. Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos Trans R Soc Lond B Biol Sci 364:2097–2113. doi:10.1098/rstb.2008.0268.
    1. Sharma A, Aloysius V, Visvanathan C. 2019. Recovery of plastics from dumpsites and landfills to prevent marine plastic pollution in Thailand. Waste Dispos Sustain Energy 1:237–249. doi:10.1007/s42768-019-00027-7.
    1. Hopewell J, Dvorak R, Kosior E. 2009. Plastics recycling: challenges and opportunities. Philos Trans R Soc Lond B Biol Sci 364:2115–2126. doi:10.1098/rstb.2008.0311.
    1. Chen C-C, Dai L, Ma L, Guo R-T. 2020. Enzymatic degradation of plant biomass and synthetic polymers. Nat Rev Chem 4:114–126. doi:10.1038/s41570-020-0163-6.
    1. Bank MS, Hansson SV. 2019. The plastic cycle: a novel and holistic paradigm for the Anthropocene. Environ Sci Technol 53:7177–7179. doi:10.1021/acs.est.9b02942.
    1. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199. doi:10.1126/science.aad6359.
    1. Gaytan I, Sanchez-Reyes A, Burelo M, Vargas-Suarez M, Liachko I, Press M, Sullivan S, Cruz-Gomez MJ, Loza-Tavera H. 2020. Degradation of recalcitrant polyurethane and xenobiotic additives by a selected landfill microbial community and its biodegradative potential revealed by proximity ligation-based metagenomic analysis. Front Microbiol 10:2986. doi:10.3389/fmicb.2019.02986.
    1. Ji JB, Zhang YT, Liu YC, Zhu PP, Yan X. 2020. Biodegradation of plastic monomer 2,6-dimethylphenol by Mycobacterium neoaurum B5-4. Environ Pollut 258:113793. doi:10.1016/j.envpol.2019.113793.
    1. Kumar A, Gudiukaite R, Gricajeva A, Sadauskas M, Malunavicius V, Kamyab H, Sharma S, Sharma T, Pant D. 2020. Microbial lipolytic enzymes—promising energy-efficient biocatalysts in bioremediation. Energy 192:116674. doi:10.1016/j.energy.2019.116674.
    1. Rosato A, Barone M, Negroni A, Brigidi P, Fava F, Xu P, Candela M, Zanaroli G. 2020. Microbial colonization of different microplastic types and biotransformation of sorbed PCBs by a marine anaerobic bacterial community. Sci Total Environ 705:135790. doi:10.1016/j.scitotenv.2019.135790.
    1. Urbanek AK, Urbanek AK, Mironczuk AM, Barcia-Martin A, Saborido A, de la Mata I, Arroyo M. 2020. Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. Biochim Biophys Acta Proteins Proteom 1868:140315. doi:10.1016/j.bbapap.2019.140315.
    1. Yuan JH, Ma J, Sun Y, Zhou T, Zhao Y, Yu F. 2020. Microbial degradation and other environmental aspects of microplastics/plastics. Sci Total Environ 715:136968. doi:10.1016/j.scitotenv.2020.136968.
    1. Bittner N, Nefzger H, Behnken G, Jaeger G, Behnken S, Reisky L. 2020. Novel urethanases for the enzymatic decomposition of polyurethanes. European patent application EP3587570A1.
    1. Dussud C, Meistertzheim AL, Conan P, Pujo-Pay M, George M, Fabre P, Coudane J, Higgs P, Elineau A, Pedrotti ML, Gorsky G, Ghiglione JF. 2018. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ Pollut 236:807–816. doi:10.1016/j.envpol.2017.12.027.
    1. Oberbeckmann S, Loeder MGJ, Gerdts G, Osborn AM. 2014. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol Ecol 90:478–492. doi:10.1111/1574-6941.12409.
    1. Oberbeckmann S, Kreikemeyer B, Labrenz M. 2017. Environmental factors support the formation of specific bacterial assemblages on microplastics. Front Microbiol 8:2709. doi:10.3389/fmicb.2017.02709.
    1. De Tender CA, Devriese LI, Haegeman A, Maes S, Ruttink T, Dawyndt P. 2015. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ Sci Technol 49:9629–9638. doi:10.1021/acs.est.5b01093.
    1. Skariyachan S, Patil AA, Shankar A, Manjunath M, Bachappanavar N, Kiran S. 2018. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym Degrad Stab 149:52–68. doi:10.1016/j.polymdegradstab.2018.01.018.
    1. Janatunaim RZ, Fibriani A. 2020. Construction and cloning of plastic-degrading recombinant enzymes (MHETase). Recent Pat Biotechnol 14:229–234. doi:10.2174/1872208314666200311104541.
    1. Munir E, Harefa RSM, Priyani N, Suryanto D. 2018. Plastic degrading fungi Trichoderma viride and Aspergillus nomius isolated from local landfill soil in Medan. IOP Conf Ser Earth Environ Sci 126:e012145. doi:10.1088/1755-1315/126/1/012145.
    1. Bardají DKR, Furlan JPR, Stehling EG. 2019. Isolation of a polyethylene degrading Paenibacillus sp. from a landfill in Brazil. Arch Microbiol 201:699–704. doi:10.1007/s00203-019-01637-9.
    1. Gupta KK, Devi D. 2017. Isolation and characterization of low density polyethylene degrading Bacillus spp. from garbage dump sites. World J Pharm Sci 6:609–617.
    1. Skariyachan S, Manjunatha V, Sultana S, Jois C, Bai V, Vasist KS. 2016. Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene. Environ Sci Pollut Res 23:18307–18319. doi:10.1007/s11356-016-7000-y.
    1. Sarmah P, Rout J. 2018. Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environ Sci Pollut Res Int 25:33508–33520. doi:10.1007/s11356-018-3079-7.
    1. Tramontano M, Andrejev S, Pruteanu M, Klünemann M, Kuhn M, Galardini M, Jouhten P, Zelezniak A, Zeller G, Bork P, Typas A, Patil KR. 2018. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat Microbiol 3:514–522. doi:10.1038/s41564-018-0123-9.
    1. Berini F, Casciello C, Marcone GL, Marinelli F. 2017. Metagenomics: novel enzymes from non-culturable microbes. FEMS Microbiol Lett 364. doi:10.1093/femsle/fnx211.
    1. Carniel A, Valoni E, Nicomedes J, Gomes AD, de Castro AM. 2017. Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochem 59:84–90. doi:10.1016/j.procbio.2016.07.023.
    1. Zettler ER, Mincer TJ, Amaral-Zettler LA. 2013. Life in the ‘plastisphere’: microbial communities on plastic marine debris. Environ Sci Technol 47:7137–7146. doi:10.1021/es401288x.
    1. Ferrer M, Martínez-Martínez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN. 2016. Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 9:22–34. doi:10.1111/1751-7915.12309.
    1. Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, Pent M, Põlme S, Sunagawa S, Ryberg M, Tedersoo L, Bork P. 2018. Structure and function of the global topsoil microbiome. Nature 560:233–237. doi:10.1038/s41586-018-0386-6.
    1. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, et al. . 2015. Ocean plankton. Structure and function of the global ocean microbiome. Science 348:1261359. doi:10.1126/science.1261359.
    1. Danso D, Chow J, Streit WR. 2019. Plastics: environmental and biotechnological perspectives on microbial degradation. Appl Environ Microbiol 85:e01095-19. doi:10.1128/AEM.01095-19.
    1. Roager L, Sonnenschein EC. 2019. Bacterial candidates for colonization and degradation of marine plastic debris. Environ Sci Technol 53:11636–11643. doi:10.1021/acs.est.9b02212.
    1. Miyakawa T, Mizushima H, Ohtsuka J, Oda M, Kawai F, Tanokura M. 2015. Structural basis for the Ca(2+)-enhanced thermostability and activity of PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190. Appl Microbiol Biotechnol 99:4297–4307. doi:10.1007/s00253-014-6272-8.
    1. Herrero Acero E, Ribitsch D, Steinkellner G, Gruber K, Greimel K, Eiteljoerg I, Trotscha E, Wei R, Zimmermann W, Zinn M, Cavaco-Paulo A, Freddi G, Schwab H, Guebitz G. 2011. Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules 44:4632–4640. doi:10.1021/ma200949p.
    1. Roth C, Wei R, Oeser T, Then J, Föllner C, Zimmermann W, Sträter N. 2014. Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. Appl Microbiol Biotechnol 98:7815–7823. doi:10.1007/s00253-014-5672-0.
    1. Oelschlägel M, Zimmerling J, Schlömann M, Tischler D. 2014. Styrene oxide isomerase of Sphingopyxis sp. Kp5.2. Microbiology (Reading) 160:2481–2491. doi:10.1099/mic.0.080259-0.
    1. Oelschlägel M, Gröning JAD, Tischler D, Kaschabek SR, Schlömann M. 2012. Styrene oxide isomerase of Rhodococcus opacus 1CP, a highly stable and considerably active enzyme. Appl Environ Microbiol 78:4330–4337. doi:10.1128/AEM.07641-11.
    1. Gan Z, Zhang H. 2019. PMBD: a comprehensive plastics microbial biodegradation database. Database 2019:baz119. doi:10.1093/database/baz119.
    1. Li X, Jousset A, de Boer W, Carrión VJ, Zhang T, Wang X, Kuramae EE. 2019. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J 13:738–751. doi:10.1038/s41396-018-0300-0.
    1. Bissett A, Fitzgerald A, Court L, Meintjes T, Mele PM, Reith F, Dennis PG, Breed MF, Brown B, Brown MV, Brugger J, Byrne M, Caddy-Retalic S, Carmody B, Coates DJ, Correa C, Ferrari BC, Gupta VVSR, Hamonts K, Haslem A, Hugenholtz P, Karan M, Koval J, Lowe AJ, Macdonald S, McGrath L, Martin D, Morgan M, North KI, Paungfoo-Lonhienne C, Pendall E, Phillips L, Pirzl R, Powell JR, Ragan MA, Schmidt S, Seymour N, Snape I, Stephen JR, Stevens M, Tinning M, Williams K, Yeoh YK, Zammit CM, Young A. 2016. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. Gigascience 5:21. doi:10.1186/s13742-016-0126-5.
    1. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F. 2013. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103. doi:10.1038/nature12198.
    1. Pabortsava K, Lampitt RS. 2020. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat Commun 11:4073. doi:10.1038/s41467-020-17932-9.
    1. Choy CA, Robison BH, Gagne TO, Erwin B, Firl E, Halden RU, Hamilton JA, Katija K, Lisin SE, Rolsky C, S Van Houtan K. 2019. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci Rep 9:7843. doi:10.1038/s41598-019-44117-2.
    1. Woodall LC, Sanchez-Vidal A, Canals M, Paterson GLJ, Coppock R, Sleight V, Calafat A, Rogers AD, Narayanaswamy BE, Thompson RC. 2014. The deep sea is a major sink for microplastic debris. R Soc Open Sci 1:140317. doi:10.1098/rsos.140317.
    1. Alam I, et al. . 2020. Rapid evolution of plastic-degrading enzymes prevalent in the global ocean. bioRxiv doi:10.1101/2020.09.07.285692.
    1. Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J. 2014. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9:e111913. doi:10.1371/journal.pone.0111913.
    1. Goldstein MC, Rosenberg M, Cheng L. 2012. Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biol Lett 8:817–820. doi:10.1098/rsbl.2012.0298.
    1. Law KL, Morét-Ferguson SE, Goodwin DS, Zettler ER, Deforce E, Kukulka T, Proskurowski G. 2014. Distribution of surface plastic debris in the eastern Pacific Ocean from an 11-year data set. Environ Sci Technol 48:4732–4738. doi:10.1021/es4053076.
    1. Barrows A. 2016. Understanding microplastic distribution: a global citizen monitoring effort, p 22. In Baztan J, Jorgensen B, Pahl S, Thompson RC, Vanderlinden J-P (ed), MICRO 2016. Fate and Impact of Microplastics in Marine Ecosystems. Elsevier, Amsterdam, The Netherlands.
    1. Christiansen KS. 2018. Global and gallatin microplastics initiatives. Adventure Scientists, Bozeman, MT.
    1. Jambeck JR, Geyer R, Wilcox C, Siegler TR. 2015. Plastic waste inputs from land into the ocean. Science 347:768–771. doi:10.1126/science.1260352.
    1. Dresler K, van den Heuvel J, Müller R-J, Deckwer W-D. 2006. Production of a recombinant polyester-cleaving hydrolase from Thermobifida fusca in Escherichia coli. Bioprocess Biosyst Eng 29:169–183. doi:10.1007/s00449-006-0069-9.
    1. Vega RE, Main T, Howard GT. 1999. Cloning and expression in Escherichia coli of apolyurethane-degrading enzyme from Pseudomonasfluorescens. Int Biodeterior Biodegrad 43:49–55. doi:10.1016/S0964-8305(98)00068-7.
    1. Matsubara M, Suzuki J, Deguchi T, Miura M, Kitaoka Y. 1996. Characterization of manganese peroxidases from the hyperlignolytic fungus IZU-154. Appl Environ Microbiol 62:4066–4072. doi:10.1128/aem.62.11.4066-4072.1996.
    1. Nakamura K, Tomita T, Abe N, Kamio Y. 2001. Purification and characterization of an extracellular poly(L-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104-1. Appl Environ Microbiol 67:345–353. doi:10.1128/AEM.67.1.345-353.2001.
    1. Matsuda E, Abe N, Tamakawa H, Kaneko J, Kamio Y. 2005. Gene cloning and molecular characterization of an extracellular poly(L-lactic acid) depolymerase from Amycolatopsis sp. strain K104-1. J Bacteriol 187:7333–7340. doi:10.1128/JB.187.21.7333-7340.2005.
    1. Beltrametti F, Marconi AM, Bestetti G, Colombo C, Galli E, Ruzzi M, Zennaro E. 1997. Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 63:2232–2239. doi:10.1128/aem.63.6.2232-2239.1997.
    1. Eddy SR. 2004. What is a hidden Markov model?? Nat Biotechnol 22:1315–1316. doi:10.1038/nbt1004-1315.
    1. The UniProt Consortium. 2016. UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. doi:10.1093/nar/gkw1099.
    1. Tian W, Skolnick J. 2003. How well is enzyme function conserved as a function of pairwise sequence identity?? J Mol Biol 333:863–882. doi:10.1016/j.jmb.2003.08.057.
    1. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. doi:10.1093/nar/gky1085.
    1. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol 34:2115–2122. doi:10.1093/molbev/msx148.
    1. Cózar A, Sanz-Martín M, Martí E, González-Gordillo JI, Ubeda B, Gálvez JÁ, Irigoien X, Duarte CM. 2015. Plastic accumulation in the Mediterranean Sea. PLoS One 10:e0121762. doi:10.1371/journal.pone.0121762.
    1. Ryan PG. 2015. A brief history of marine litter research, p 1–25. In Bergmann M, Gutow L, Klages M (ed), Marine anthropogenic litter. Springer, Cham, Switzerland.
    1. Carpenter EJ, Smith KL, Jr.. 1972. Plastics on the Sargasso sea surface. Science 175:1240–1241. doi:10.1126/science.175.4027.1240.
    1. Ritchie H, Roser M. 2018. Plastic pollution. Our World in Data.
    1. Paul MB, Stock V, Cara-Carmona J, Lisicki E, Shopova S, Fessard V, Braeuning A, Sieg H, Böhmert L. 2020. Micro- and nanoplastics—current state of knowledge with the focus on oral uptake and toxicity. Nanoscale Adv 2:4350–4367. doi:10.1039/D0NA00539H.
    1. Leslie HA. 2014. Review of microplastics in cosmetics. IVM Institute for Environmental Studies, Amsterdam, The Netherlands.
    1. Hirt N, Body-Malapel M. 2020. Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature. Part Fibre Toxicol 17:57. doi:10.1186/s12989-020-00387-7.
    1. Fournier E, Etienne-Mesmin L, Grootaert C, Jelsbak L, Syberg K, Blanquet-Diot S, Mercier-Bonin M. 2021. Microplastics in the human digestive environment: a focus on the potential and challenges facing in vitro gut model development. J Hazard Mater 415:125632. doi:10.1016/j.jhazmat.2021.125632.
    1. Lu L, Luo T, Zhao Y, Cai C, Fu Z, Jin Y. 2019. Interaction between microplastics and microorganism as well as gut microbiota: a consideration on environmental animal and human health. Sci Total Environ 667:94–100. doi:10.1016/j.scitotenv.2019.02.380.
    1. Lei L, Wu S, Lu S, Liu M, Song Y, Fu Z, Shi H, Raley-Susman KM, He D. 2018. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci Total Environ 619–620:1–8. doi:10.1016/j.scitotenv.2017.11.103.
    1. Qiao R, Sheng C, Lu Y, Zhang Y, Ren H, Lemos B. 2019. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci Total Environ 662:246–253. doi:10.1016/j.scitotenv.2019.01.245.
    1. Deng Y, Yan Z, Shen R, Wang M, Huang Y, Ren H, Zhang Y, Lemos B. 2020. Microplastics release phthalate esters and cause aggravated adverse effects in the mouse gut. Environ Int 143:105916. doi:10.1016/j.envint.2020.105916.
    1. Wan Z, Wang C, Zhou J, Shen M, Wang X, Fu Z, Jin Y. 2019. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere 217:646–658. doi:10.1016/j.chemosphere.2018.11.070.
    1. Fackelmann G, Sommer S. 2019. Microplastics and the gut microbiome: how chronically exposed species may suffer from gut dysbiosis. Mar Pollut Bull 143:193–203. doi:10.1016/j.marpolbul.2019.04.030.
    1. Yang J, Yang Y, Wu W-M, Zhao J, Jiang L. 2014. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784. doi:10.1021/es504038a.
    1. Cassone BJ, Grove HC, Elebute O, Villanueva SMP, LeMoine CMR. 2020. Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella. Proc Biol Sci 287:20200112.
    1. Yang Y, Yang J, Wu W-M, Zhao J, Song Y, Gao L, Yang R, Jiang L. 2015. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ Sci Technol 49:12087–12093. doi:10.1021/acs.est.5b02663.
    1. Urbanek AK, Rybak J, Wróbel M, Leluk K, Mirończuk AM. 2020. A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. Environ Pollut 262:114281. doi:10.1016/j.envpol.2020.114281.
    1. Brandon AM, Gao S-H, Tian R, Ning D, Yang S-S, Zhou J, Wu W-M, Criddle CS. 2018. Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome. Environ Sci Technol 52:6526–6533. doi:10.1021/acs.est.8b02301.
    1. Chamas A, Moon H, Zheng J, Qiu Y. 2020. Degradation rates of plastics in the environment. ACS Sustainable Chem Eng 8:3494–3511. doi:10.1021/acssuschemeng.9b06635.
    1. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J-E. 2008. Polymer biodegradation: mechanisms and estimation techniques—a review. Chemosphere 73:429–442. doi:10.1016/j.chemosphere.2008.06.064.
    1. Min K, Cuiffi JD, Mathers RT. 2020. Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nat Commun 11:727. doi:10.1038/s41467-020-14538-z.
    1. Gewert B, Plassmann MM, MacLeod M. 2015. Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts 17:1513–1521. doi:10.1039/c5em00207a.
    1. Walters KE, Martiny JBH. 2020. Alpha-, beta-, and gamma-diversity of bacteria varies across global habitats. PloS One 15(9):e0233872. doi:10.1371/journal.pone.0233872.
    1. Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. 2018. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199. doi:10.1016/j.jhazmat.2017.10.014.
    1. de Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC. 2018. Microplastics as an emerging threat to terrestrial ecosystems. Glob Change Biol 24:1405–1416. doi:10.1111/gcb.14020.
    1. Fankhauser-Noti A, Grob K. 2006. Migration of plasticizers from PVC gaskets of lids for glass jars into oily foods: amount of gasket material in food contact, proportion of plasticizer migrating into food and compliance testing by simulation. Trends Food Sci Technol 17:105–112. doi:10.1016/j.tifs.2005.10.013.
    1. Fasano E, Bono-Blay F, Cirillo T, Montuori P, Lacorte S. 2012. Migration of phthalates, alkylphenols, bisphenol A and di(2-ethylhexyl)adipate from food packaging. Food Control 27:132–138. doi:10.1016/j.foodcont.2012.03.005.
    1. Li C, Xu J, Chen D, Xiao Y. 2016. Detection of phthalates migration from disposable tablewares to drinking water using hexafluoroisopropanol-induced catanionic surfactant coacervate extraction. J Pharm Anal 6:292–299. doi:10.1016/j.jpha.2016.04.002.
    1. Main KM, Mortensen GK, Kaleva MM, Boisen KA, Damgaard IN, Chellakooty M, Schmidt IM, Suomi A-M, Virtanen HE, Petersen JH, Andersson A-M, Toppari J, Skakkebæk NE. 2006. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect 114:270–276. doi:10.1289/ehp.8075.
    1. Clarke BO, Smith SR. 2011. Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ Int 37:226–247. doi:10.1016/j.envint.2010.06.004.
    1. Khosravi K, Price GW. 2015. Determination of phthalates in soils and biosolids using accelerated solvent extraction coupled with SPE cleanup and GC–MS quantification. Microchem J 121:205–212. doi:10.1016/j.microc.2015.03.013.
    1. Newton MS, Arcus VL, Gerth ML, Patrick WM. 2018. Enzyme evolution: innovation is easy, optimization is complicated. Curr Opin Struct Biol 48:110–116. doi:10.1016/j.sbi.2017.11.007.
    1. Chaguza C. 2020. Bacterial survival: evolve and adapt or perish. Nat Rev Microbiol 18:5–5. doi:10.1038/s41579-019-0303-5.
    1. Cordova ST, Sanford J. 2019. Testing the hypothesis that the nylonase NylB protein arose de novo via a frameshift mutation. ChemRxiv doi:10.26434/chemrxiv.7865009.v2.
    1. Siddiq MA, Hochberg GK, Thornton JW. 2017. Evolution of protein specificity: insights from ancestral protein reconstruction. Curr Opin Struct Biol 47:113–122. doi:10.1016/j.sbi.2017.07.003.
    1. Muller RJ, Kleeberg I, Deckwer WD. 2001. Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86:87–95. doi:10.1016/S0168-1656(00)00407-7.
    1. Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, Kamionka E, Desrousseaux M-L, Texier H, Gavalda S, Cot M, Guémard E, Dalibey M, Nomme J, Cioci G, Barbe S, Chateau M, André I, Duquesne S, Marty A. 2020. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580:216–219. doi:10.1038/s41586-020-2149-4.
    1. Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, Pollard BC, Dominick G, Duman R, El Omari K, Mykhaylyk V, Wagner A, Michener WE, Amore A, Skaf MS, Crowley MF, Thorne AW, Johnson CW, Woodcock HL, McGeehan JE, Beckham GT. 2018. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci USA 115:E4350–E4357. doi:10.1073/pnas.1718804115.
    1. Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152. doi:10.1093/bioinformatics/bts565.
    1. Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659. doi:10.1093/bioinformatics/btl158.
    1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2.
    1. Eddy SR. 1998. Profile hidden Markov models. Bioinformatics 14:755–763. doi:10.1093/bioinformatics/14.9.755.
    1. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676. doi:10.1093/bioinformatics/btv033.
    1. Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527. doi:10.1038/nbt.3519.
    1. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C. 2014. Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146. doi:10.1038/nmeth.3103.
    1. Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. 2019. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7:e7359. doi:10.7717/peerj.7359.
    1. Wu Y-W, Simmons BA, Singer SW. 2016. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607. doi:10.1093/bioinformatics/btv638.
    1. Uritskiy GV, DiRuggiero J, Taylor J. 2018. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6:158. doi:10.1186/s40168-018-0541-1.
    1. Zorrilla F, Buric F, Patil KR, Zelezniak A. 6 October 2021. metaGEM: reconstruction of genome scale metabolic models directly from metagenomes. Nucleic Acids Res doi:10.1093/nar/gkab815.
    1. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M. 2011. Scikit-learn: machine learning in Python. J Machine Learning Res 12:2825–2830.
    1. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy 1.0 Contributors . 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:261–272. doi:10.1038/s41592-019-0686-2.
    1. Box GEP, Cox DR. 1964. An analysis of transformations. J R Stat Soc Ser B Stat Methodol 26:211–243. doi:10.1111/j.2517-6161.1964.tb00553.x.
    1. Köster J, Rahmann S. 2012. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28:2520–2522. doi:10.1093/bioinformatics/bts480.
    1. Siegel AF. 1982. Robust regression using repeated medians. Biometrika 69:242–244. doi:10.1093/biomet/69.1.242.

Source: PubMed

3
Tilaa