Plastics and the microbiome: impacts and solutions

G Lear, J M Kingsbury, S Franchini, V Gambarini, S D M Maday, J A Wallbank, L Weaver, O Pantos, G Lear, J M Kingsbury, S Franchini, V Gambarini, S D M Maday, J A Wallbank, L Weaver, O Pantos

Abstract

Global plastic production has increased exponentially since manufacturing commenced in the 1950's, including polymer types infused with diverse additives and fillers. While the negative impacts of plastics are widely reported, particularly on marine vertebrates, impacts on microbial life remain poorly understood. Plastics impact microbiomes directly, exerting toxic effects, providing supplemental carbon sources and acting as rafts for microbial colonisation and dispersal. Indirect consequences include increased environmental shading, altered compositions of host communities and disruption of host organism or community health, hormone balances and immune responses. The isolation and application of plastic-degrading microbes are of substantial interest yet little evidence supports the microbial biodegradation of most high molecular weight synthetic polymers. Over 400 microbial species have been presumptively identified as capable of plastic degradation, but evidence for the degradation of highly prevalent polymers including polypropylene, nylon, polystyrene and polyvinyl chloride must be treated with caution; most studies fail to differentiate losses caused by the leaching or degradation of polymer monomers, additives or fillers. Even where polymer degradation is demonstrated, such as for polyethylene terephthalate, the ability of microorganisms to degrade more highly crystalline forms of the polymer used in commercial plastics appears limited. Microbiomes frequently work in conjunction with abiotic factors such as heat and light to impact the structural integrity of polymers and accessibility to enzymatic attack. Consequently, there remains much scope for extremophile microbiomes to be explored as a source of plastic-degrading enzymes and microorganisms. We propose a best-practice workflow for isolating and reporting plastic-degrading taxa from diverse environmental microbiomes, which should include multiple lines of evidence supporting changes in polymer structure, mass loss, and detection of presumed degradation products, along with confirmation of microbial strains and enzymes (and their associated genes) responsible for high molecular weight plastic polymer degradation. Such approaches are necessary for enzymatic degraders of high molecular weight plastic polymers to be differentiated from organisms only capable of degrading the more labile carbon within predominantly amorphous plastics, plastic monomers, additives or fillers.

Keywords: Biodegradation; Bioremediation; Community dysbiosis; Microbial community; Microplastics; Plastic additives; Plastic pollution; Plasticiser; Plastisphere; Rafting of pathogens and invasive species; Toxic impact.

Conflict of interest statement

No competing interests are declared.

Figures

Fig. 1
Fig. 1
Schematic highlighting the diversity of direct and indirect impacts of plastics for gut and environmental microbiome communities and possible microbial solutions for the remediation of plastic waste
Fig. 2
Fig. 2
Evidence for a role for insects, host-associated microbes, or host-independent, free-living microbes in plastic degradation. Degradation of the plastic polymer may be detected by a variety of methods, including: [i] mass loss of plastic such as clear zone development around colonies on plastic-infused/overlaid agar, [ii] altered plastic surface properties (e.g., visible by scanning electron microscopy) and [iii] generation of degradation products (e.g., CO2, polymer metabolites detected by Fourier-transform infrared spectroscopy or high-performance liquid chromatography)
Fig. 3
Fig. 3
Number of putative plastic-degrading organisms reported by Gambarini, et al. [28], classified at the level of phylum level. The number following the phylum name represents the number of species from that specific phylum that are reported as plastic-degraders
Fig. 4
Fig. 4
Percentage of studies using evidence for plastic degradation by microbial species based on: (i) changes in polymer structure (blue), (ii) physical loss of plastic mass (red), or (iii) detection of plastic metabolites (green), or these techniques in combination. Data were compiled using the

References

    1. Lithner D, Larsson A, Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ. 2011;409(18):3309–3324. doi: 10.1016/j.scitotenv.2011.04.038.
    1. Geyer R. Chapter 2 - Production, use, and fate of synthetic polymers. In: Letcher TM, editor. Plastic Waste and Recycling. Oxford: Academic Press; 2020:13–32.
    1. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782. doi: 10.1126/sciadv.1700782.
    1. European Bioplastics . Bioplastics market data 2018. Berlin: European Bioplastics; 2018.
    1. Lau WWY, Shiran Y, Bailey RM, Cook E, Stuchtey MR, Koskella J, et al. Evaluating scenarios toward zero plastic pollution. Science. 2020;369(6510):1455-61.
    1. Toussaint B, Raffael B, Angers-Loustau A, Gilliland D, Kestens V, Petrillo M, et al. Review of micro- and nanoplastic contamination in the food chain. Food Addit Contam Part A. 2019;36(5):639–673. doi: 10.1080/19440049.2019.1583381.
    1. Kelly JJ, London MG, Oforji N, Ogunsola A, Hoellein TJ. Microplastic selects for convergent microbiomes from distinct riverine sources. Freshwater Sci. 2020;39(2):281–291. doi: 10.1086/708934.
    1. Hoellein TJ, McCormick AR, Hittie J, London MG, Scott JW, Kelly JJ. Longitudinal patterns of microplastic concentration and bacterial assemblages in surface and benthic habitats of an urban river. Freshwater Sci. 2017;36(3):491–507. doi: 10.1086/693012.
    1. Chiba S, Saito H, Fletcher R, Yogi T, Kayo M, Miyagi S, et al. Human footprint in the abyss: 30 year records of deep-sea plastic debris. Mar Policy. 2018;96:204–212. doi: 10.1016/j.marpol.2018.03.022.
    1. Van Cauwenberghe L, Vanreusel A, Mees J, Janssen CR. Microplastic pollution in deep-sea sediments. Environ Pollut. 2013;182:495–499. doi: 10.1016/j.envpol.2013.08.013.
    1. Bergmann M, Mützel S, Primpke S, Tekman MB, Trachsel J, Gerdts G. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci Adv. 2019;5(8):eaax1157. doi: 10.1126/sciadv.aax1157.
    1. Lamb JB, Willis BL, Fiorenza EA, Couch CS, Howard R, Rader DN, et al. Plastic waste associated with disease on coral reefs. Science. 2018;359(6374):460–462. doi: 10.1126/science.aar3320.
    1. Laganà P, Caruso G, Corsi I, Bergami E, Venuti V, Majolino D, et al. Do plastics serve as a possible vector for the spread of antibiotic resistance? First insights from bacteria associated to a polystyrene piece from King George Island (Antarctica) Int J Hyg Environ Health. 2019;222(1):89–100. doi: 10.1016/j.ijheh.2018.08.009.
    1. Borunda A. This young whale died with 88 pounds of plastic in its stomach. Natl Geogr Mag. 2019 (March 18). .
    1. Beachum L. Dead sperm whale had 220 pounds of garbage in its stomach, including rope, plastic and gloves. Wahington DC: The Washington Post; 2019.
    1. Brentano R, Petry MV. Marine debris ingestion and human impacts on the pygmy sperm whale (Kogia breviceps) in southern Brazil. Mar Pollut Bull. 2020;150:5. doi: 10.1016/j.marpolbul.2019.110595.
    1. Moore RC, Loseto L, Noel M, Etemadifar A, Brewster JD, MacPhee S, et al. Microplastics in beluga whales (Delphinapterus leucas) from the eastern Beaufort Sea. Mar Pollut Bull. 2020;150:7.
    1. Deudero S, Alomar C. Mediterranean marine biodiversity under threat: reviewing influence of marine litter on species. Mar Pollut Bull. 2015;98(1-2):58–68. doi: 10.1016/j.marpolbul.2015.07.012.
    1. Li RL, Zhang SP, Zhang LL, Yu KF, Wang SP, Wang YH. Field study of the microplastic pollution in sea snails (Ellobium chinense) from mangrove forest and their relationships with microplastics in water/sediment located on the north of Beibu gulf. Environ Pollut. 2020;263:8.
    1. Nelms SE, Parry HE, Bennett KA, Galloway TS, Godley BJ, Santillo D, et al. What goes in, must come out: combining scat-based molecular diet analysis and quantification of ingested microplastics in a marine top predator. Methods Ecol Evol. 2019;10(10):1712–1722. doi: 10.1111/2041-210X.13271.
    1. Santos RG, Andrades R, Demetrio GR, Kuwai GM, Sobral MF, Vieira JDS, et al. Exploring plastic-induced satiety in foraging green turtles. Environ Pollut. 2020;265(Pt B):114918. doi: 10.1016/j.envpol.2020.114918.
    1. Wilcox C, Van Sebille E, Hardesty BD. Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc Natl Acad Sci U S A. 2015;112(38):11899–11904. doi: 10.1073/pnas.1502108112.
    1. Jemec A, Horvat P, Kunej U, Bele M, Krzan A. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environ Pollut. 2016;219:201–209. doi: 10.1016/j.envpol.2016.10.037.
    1. Lei L, Wu S, Lu S, Liu M, Song Y, Fu Z, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci Total Environ. 2018;619-620:1–8. doi: 10.1016/j.scitotenv.2017.11.103.
    1. Farrell P, Nelson K. Trophic level transfer of microplastic: Mytilus edulis (L.) to. Carcinus maenas (L.) Environ Pollut. 2013;177:1–3. doi: 10.1016/j.envpol.2013.01.046.
    1. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson R. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L) Environ Sci Technol. 2008;42(13):5026–5031. doi: 10.1021/es800249a.
    1. Nelms SE, Galloway TS, Godley BJ, Jarvis DS, Lindeque PK. Investigating microplastic trophic transfer in marine top predators. Environ Pollut. 2018;238:999–1007. doi: 10.1016/j.envpol.2018.02.016.
    1. Gambarini V, Pantos O, Kingsbury JM, Weaver L, Handley KM, Lear G. An updated phylogenetic distribution fo plastic-degrading organisms and enzymes. mSystems. 2020;.
    1. Danso D, Chow J, Streit WR. Plastics: environmental and biotechnological perspectives on microbial degradation. Appl Environ Microbiol. 2019;85(19):14. doi: 10.1128/AEM.01095-19.
    1. Bombelli P, Howe CJ, Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth galleria mellonella. Curr Biol. 2017;27:R283–RR93. doi: 10.1016/j.cub.2017.04.005.
    1. Tetu SG, Sarker I, Schrameyer V, Pickford R, Elbourne LDH, Moore LR, et al. Plastic leacates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Commun Biol. 2019;2:article No.: 184. doi: 10.1038/s42003-019-0410-x.
    1. Partensky F, Hess WR, Vaulot D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev. 1999;63(1):106–127. doi: 10.1128/MMBR.63.1.106-127.1999.
    1. Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci U S A. 2013;110(24):9824–9829. doi: 10.1073/pnas.1307701110.
    1. Feng D, Zhang H, Jiang X, Zou J, Li Q, Mai H, et al. Bisphenol A exposure induces gut microbiota dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice. Environ Pollut. 2020;265(Pt A):114880. doi: 10.1016/j.envpol.2020.114880.
    1. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–323. doi: 10.1038/nri2515.
    1. Wright SL, Rowe D, Thompson RC, Galloway TS. Microplastic ingestion decreases energy reserves in marine worms. Curr Biol. 2013;23(23):R1031–R10R3. doi: 10.1016/j.cub.2013.10.068.
    1. Besseling E, Wegner A, Foekema EM, van den Heuvel-Greve MJ, Koelmans AA. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.) Environ Sci Technol. 2013;47(1):593–600. doi: 10.1021/es302763x.
    1. Lee K-W, Shim WJ, Kwon OY, Kang J. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environ Sci Technol. 2013;47:11278–11283. doi: 10.1021/es401932b.
    1. Jacobsen JK, Massey L, Gulland F. Fatal ingestion of floating debris by two sperm whales (Physeter macrocephalus) Mar Pollut Bull. 2010;60:765–767. doi: 10.1016/j.marpolbul.2010.03.008.
    1. Secci ER, Zarzur S. Plastic debris ingested by a Blainville’s beaked whale, Mesoplodon densirotris, washed ashore in Brazil. Aquat Mamm. 1999;25:21–24.
    1. Wilcox C, Puckridge M, Schuyler QA, Townsend K, Hardesty BD. A quantitative analysis linking sea turtle mortality and plastic debris ingestion. Sci Rep. 2018;8:12536. doi: 10.1038/s41598-018-30038-z.
    1. Ryan PG, Moore CJ, van Franeker JA, Moloney CL. Monitoring the abundance of plastic debris in the marine environment. Philos Trans Phys Sci Eng. 2009;364:1999–2012.
    1. Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D, d’Errico G, et al. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ Pollut. 2015;198:211–222. doi: 10.1016/j.envpol.2014.12.021.
    1. Collard F, Gilbert B, Compère P, Eppe G, Das K, Jauiaux T, et al. Microplastics in the livers of European anchovies (Engraulis encrasicolus, L.) Environ Pollut. 2017;229:1000–1005. doi: 10.1016/j.envpol.2017.07.089.
    1. Deng Y, Zhang Y, Lemos B, Ren H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep. 2017;7:46687. doi: 10.1038/srep46687.
    1. von Moos N, Burkhardt-Holm P, Köhler A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol. 2012;46(20):11327–11335. doi: 10.1021/es302332w.
    1. Winter SE, Bäumler AJ. Dysbiosis in the inflamed intestine: chance favours the prepared microbe. Gut Microbes. 2014;5:71–73. doi: 10.4161/gmic.27129.
    1. Jing T-Z, Qi F-H, Wang Z-Y. Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? Microbiome. 2020;8(1):38.
    1. Velmurugan G, Ramprasath T, Swaminathan K, Mithieux G, Rajendhran J, Dhivakar M, et al. Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis. Genome Biol. 2017;18(1):8. doi: 10.1186/s13059-016-1134-6.
    1. Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14(7):685–690. doi: 10.1038/ni.2608.
    1. Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Bjorn A, et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B-Biol Sci. 2009;364(1526):2027–2045. doi: 10.1098/rstb.2008.0284.
    1. Kim E-J, Kim J-W, Lee S-K. Inhibition of oocyte development in Japanese medaka (Oryzias latipes) exposed to di-2-ethylhexyl phthalate. Environ Int. 2002;28(5):359–365. doi: 10.1016/S0160-4120(02)00058-2.
    1. Yin L, Yan LP, He B, Fang YJ, Liu XY, Duan CG, et al. The toxic effects of a plasticizer, dibutyl phthalate, on rat testis. Int J Clin Exp Pathol. 2016;9(11):11246–11253.
    1. Ohtani H, Miura I, Ichikawa Y. Effects of dibutyl phthalate as an environmental endocrine disruptor on gonadal sex differentiation of genetic males of the frog Rana rugosa. Environ Health Perspect. 2000;108(12):1189–1193. doi: 10.1289/ehp.001081189.
    1. Lahnsteiner F, Berger B, Kletzl M, Weismann T. Effect of bisphenol a on maturation and quality of semen and eggs in the brown trout, Salmo trutta f. fario. Aquat Toxicol. 2005;75:213–224. doi: 10.1016/j.aquatox.2005.08.004.
    1. Mandich A, Bottero S, Benfenati E, Cevasco A, Erratico C, Maggioni S, et al. In vivo exposure of carp to graded concentrations of bisphenol a. Gen Comp Endocrinol. 2007;153(1):15–24. doi: 10.1016/j.ygcen.2007.01.004.
    1. Oehlmann J, Schulte-Oehlmann U, Kloas W, Jagnytsch O, Lutz I, Kusk KO, et al. A critical analysis of the biological impacts of plasticizers on wildlife. Philos Trans R Soc Lond Ser B Biol Sci. 2009;364(1526):2047–2062. doi: 10.1098/rstb.2008.0242.
    1. Balbi T, Franzellitti S, Fabbri R, Montagna M, Fabbri E, Canesi L. Impact of bisphenol a (BPA) on early embryo development in the marine mussel Mytilus galloprovincialis: effects on gene transcription. Environ Pollut. 2016;218:996–1004. doi: 10.1016/j.envpol.2016.08.050.
    1. Savabieasfahani M, Kannan K, Astapova O, Evans NP, Padmanabhan V. Developmental programming: differential effects of prenatal exposure to bisphenol-a or methoxychlor on reproductive function. Endocrinol. 2006;147:5956–5966. doi: 10.1210/en.2006-0805.
    1. Rubin BS, Murray MK, Damassa DA, King JC, Soto AM. Perinatal exposure to low doses of bisphenol a affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect. 2001;109:675–680. doi: 10.1289/ehp.01109675.
    1. Rios LM, Jones PR, Moore C, Narayan UV. Quantitation of persistent organic pollutants adsorbed on plastic debris from the northern Pacific Gyre's "eastern garbage patch". J Environ Monit. 2010;12(12):2226–2236. doi: 10.1039/c0em00239a.
    1. Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol. 2001;35(2):318–324. doi: 10.1021/es0010498.
    1. Ryan PG, Connell AD, Gardner BD. Plastic ingestion and PCBs in seabirds: is there a relationship? Mar Pollut Bull. 1988;19(4):174–176. doi: 10.1016/0025-326X(88)90674-1.
    1. Li H-X, Getzinger GJ, Ferguson PL, Orihuela B, Zhu M, Rittschof D. Effects of toxic leachate from commercial plastics on larval survival and settlement of the barnacle Amphibalanus amphitrite. Environ Sci Technol. 2016;50(2):924–931. doi: 10.1021/acs.est.5b02781.
    1. Adamovsky O, Buerger AN, Vespalcova H, Sohag SR, Hanlon AT, Ginn PE, et al. Evaluation of microbiome-host relationships in the zebrafish gastrointenstinal system reveals adaptive immunity is a target of bis (2-ethylhexyl) phthalate (DEHP) exposure. Environ Sci Technol. 2020;54:5719–5728. doi: 10.1021/acs.est.0c00628.
    1. Ceresana Market Research . Market Study: Plasticisers (5th Edition) Germany: Ceresana Ltd; 2017. p. 350.
    1. Chen LG, Guo YY, Hu CY, Lam PKS, Lam JCW, Zhou BS. Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol a: implications for host health in zebrafish. Environ Pollut. 2018;234:307–317. doi: 10.1016/j.envpol.2017.11.074.
    1. Javurek AB, Spollen WG, Johnson SA, Bivens NJ, Bromert KH, Givan SA, et al. Effects of exposure to bisphenol a and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model. Gut Microbes. 2016;7(6):471–485. doi: 10.1080/19490976.2016.1234657.
    1. Lai K-P, Chung Y-T, Li R, Wan H-T, Wong CK-C. Bisphenol a alters gut microbiome: comparative metagenomics analysis. Environ Pollut. 2016;218:923–930. doi: 10.1016/j.envpol.2016.08.039.
    1. Xu J, Huang GN, Nagy T, Teng Q, Guo TL. Sex-dependent effects of bisphenol a on type 1 diabetes development in non-obese diabetic (NOD) mice. Arch Toxicol. 2019;93(4):997–1008. doi: 10.1007/s00204-018-2379-5.
    1. DeLuca JAA, Allred KF, Menon R, Riordan R, Weeks BR, Jayaraman A, et al. Bisphenol-a alters microbiota metabolites derived from aromatic amino acids and worsens disease activity during colitis. Exp Biol Med. 2018;243(10):864–875. doi: 10.1177/1535370218782139.
    1. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13:R79. doi: 10.1186/gb-2012-13-9-r79.
    1. Kirstein IV, Kirmizi S, Wichels A, Garin-Fernandez A, Erler R, Löder M, et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res. 2016;120:1–8. doi: 10.1016/j.marenvres.2016.07.004.
    1. Fackelmann G, Sommer S. Microplastics and the gut microbiome: how chronically exposed species may suffer from gut dysbiosis. Mar Pollut Bull. 2019;143:193–203. doi: 10.1016/j.marpolbul.2019.04.030.
    1. Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol. 2013;47(13):7137–7146. doi: 10.1021/es401288x.
    1. Steinmetz Z, Wollmann C, Schaefer M, Buchmann C, David J, Troeger J, et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci Total Environ. 2016;550:690–705. doi: 10.1016/j.scitotenv.2016.01.153.
    1. Huang Y, Liu Q, Jia W, Yan C, Wang J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ Pollut. 2020;260:114096. doi: 10.1016/j.envpol.2020.114096.
    1. Serrano-Ruiz H, Martin-Closas L, Pelacho AM. Biodegradable plastic mulches: impact on the agricultural biotic environment. Sci Total Environ. 2021;750:141228. doi: 10.1016/j.scitotenv.2020.141228.
    1. Machado AAD, Lau CW, Kloas W, Bergmann J, Bacheher JB, Faltin E, et al. Microplastics can change soil properties and affect plant performance. Environ Sci Technol. 2019;53(10):6044–6052. doi: 10.1021/acs.est.9b01339.
    1. Drenovsky RE, Vo D, Graham KJ, Scow KM. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb Ecol. 2004;48(3):424–430. doi: 10.1007/s00248-003-1063-2.
    1. Davidson EA, Belk E, Boone RD. Soil water Contant and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Chang Biol. 1998;4(2):217–227. doi: 10.1046/j.1365-2486.1998.00128.x.
    1. Qi YL, Ossowicki A, Yang XM, Lwanga EH, Dini-Andreote F, Geissen V, et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J Hazard Mater. 2020;387:7.
    1. Sjollema SB, Redondo-Hasselerharm P, Leslie HA, Kraak MHS, Vethaak AD. Do plastic particles affect microalgal photosynthesis and growth? Aquat Toxicol. 2016;170:259–261. doi: 10.1016/j.aquatox.2015.12.002.
    1. Besseling E, Wang B, Lürling M, Koelmans AA. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol. 2014;48:12336–12343. doi: 10.1021/es503001d.
    1. Li C, Moore-Kucera J, Lee J, Corbin A, Brodhagen M, Miles C, et al. Effects of biodegradable mulch on soil quality. Appl Soil Ecol. 2014;79:59–69. doi: 10.1016/j.apsoil.2014.02.012.
    1. Muroi F, Tachibana Y, Kobayashi Y, Sakurai T. Kasuya K-i. influences of poly (butylene adipate-co-terephthalate) on soil microbiota and plant growth. Poly Degrad Stab. 2016;129:338–346. doi: 10.1016/j.polymdegradstab.2016.05.018.
    1. Kong S, Ji Y, Liu L, Chen L, Zhao X, Wang J, et al. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China. Environ Pollut. 2012;170:161–168. doi: 10.1016/j.envpol.2012.06.017.
    1. Kong X, Jin D, Jin S, Wang Z, Yin H, Xu M, et al. Responses of bacterial community to dibutyl phthalate pollution in a soil-vegetable ecosystem. J Hazard Mater. 2018;353:142–150. doi: 10.1016/j.jhazmat.2018.04.015.
    1. Xie H-J, Shi Y-J, Zhang J, Cui Y, Teng S-X, Wang S-G, et al. Degradation of phthalate esters (PAEs) in soil and the effects of PAEs on soil microcosm activity. J Chem Technol Biotechnol. 2010;85(8):1108–1116. doi: 10.1002/jctb.2406.
    1. Cartwright CD, Thompson IP, Burns RG. Degradation and impact of phthalate plasticizers on soil microbial communties. Environ Toxicol Chem. 2009;19(5):1253–1261. doi: 10.1002/etc.5620190506.
    1. Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater. 2018;344:179–199. doi: 10.1016/j.jhazmat.2017.10.014.
    1. Herrera Paredes S, Lebeis SL. Giving back to the community: microbial mechanisms of plant–soil interactions. Front Ecol. 2016;30(7):1043–1052.
    1. Bray N, Wickings K. The roles of invertebrates in the urban soil microbiome. Front Ecol Evol. 2019;7:359. doi: 10.3389/fevo.2019.00359.
    1. Jiang X, Chen H, Liao Y, Ye Z, Li M, Klobučar G. Ecotoxicity and genotoxicity if polystyrene microplastics on higher plant Vicia faba. Environ Pollut. 2019;250:831–838. doi: 10.1016/j.envpol.2019.04.055.
    1. Kalčíková G, Žgajnar Gotvajn A, Kladnik A, Jemec A. Impact of polyethylene microbeads on the floating freshwater plant duckweed lemma minor. Environ Pollut. 2017;230:1108–1115. doi: 10.1016/j.envpol.2017.07.050.
    1. Zhang C, Liu GB, Xue S, Song ZL. Rhizosphere soil microbial activity under different vegetation types on the loess plateau, China. Geoderma. 2011;161(3-4):115–125. doi: 10.1016/j.geoderma.2010.12.003.
    1. Pérez-Jaramillo JE, Mendes R, Raaijmakers JM. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol. 2016;90:635–644. doi: 10.1007/s11103-015-0337-7.
    1. Judy JD, Williams M, Gregg A, Oliver D, Kumar A, Kookana R, et al. Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota. Environ Pollut. 2019;252:522–531. doi: 10.1016/j.envpol.2019.05.027.
    1. Lacerda ALDF, Rodrigues LDS, van Sebille E, Rodrigues FL, Ribeiro L, Secchi ER, et al. Plastics in sea surface waters around the Antarctic peninsula. Sci Rep. 2019;9:3977. doi: 10.1038/s41598-019-40311-4.
    1. Audrézet F, Zaiko A, Lear G, Wood SA, Tremblay LA, Pochon X. Biosecurity implications of drifting marine plastic debris: current knowledge and future research. Mar Pollut Bull. 2020:111835. 10.1016/j.marpolbul.2020.111835.
    1. Casabianca S, Capellacci S, Giacobbe MG, Dell'Aversano C, Tartaglione L, Varriale F, et al. Plastic-associated harmful microalgal assemblages in marine environment. Environ Pollut. 2019;244:617–626. doi: 10.1016/j.envpol.2018.09.110.
    1. Goldstein MC, Carson HS, Eriksen M. Relationship of diversity and habitat area in North Pacific plastic-associated rafting communities. Mar Biol. 2014;161:1441–1453. doi: 10.1007/s00227-014-2432-8.
    1. McCormick A, Hoellein TJ, Mason SA, Schluep J, Kelly JJ. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ Sci Technol. 2014;48:11863–11871. doi: 10.1021/es503610r.
    1. Moore RE, Millar BC, Moore JE. Antimicrobial resistance (AMR) and marine plastics: can food packaging litter act as a dispersal mechanism for AMR in oceanic environments? Mar Pollut Bull. 2020;150:7.
    1. Bowley J, Baker-Austin C, Porter A, Hartnell R, Lewis C. Oceanic hitchhikers – Assessing pathogen risks from marine microplastic. Trends Microbiol. 2020; 10.1016/j.tim.2020.06.011.
    1. Naik RK, Naik MM, D'Costa PM, Shaikh F. Microplastics in ballast water as an emerging source and vector for harmful chemicals, antibiotics, metals, bacterial pathogens and HAB species: a potential risk to the marine environment and human health. Mar Pollut Bull. 2019;149:110525. doi: 10.1016/j.marpolbul.2019.110525.
    1. Barnes DKA. Biodiversity - invasions by marine life on plastic debris. Nature. 2002;416:808–809. doi: 10.1038/416808a.
    1. Hoellein TJ, Shogren AJ, Tank JL, Risteca P, Kelly JJ. Microplastic deposition velocity in streams follows patterns for naturally occurring allochthonous particles. Sci Rep. 2019;9:3740.
    1. Kooi M, van Nes EH, Scheffer M, Koelmans AA. Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ Sci Technol. 2017;51(14):7963–7971. doi: 10.1021/acs.est.6b04702.
    1. Debroas D, Mone A, Ter Halle A. Plastics in the North Atlantic garbage patch: A boat-microbe for hitchhikers and plastic degraders. Sci Total Environ. 2017;599-600:1222–1232. doi: 10.1016/j.scitotenv.2017.05.059.
    1. Oberbeckmann S, Kreikemeyer B, Labrenz M. Environmental factors support the formation of specific bacterial assemblages on microplastics. Front Microbiol. 2017;8:2709. doi: 10.3389/fmicb.2017.02709.
    1. Dussud C, Meistertzheim AL, Conan P, Pujo-Pay M, George M, Fabre P, et al. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ Pollut. 2018;236:807–816. doi: 10.1016/j.envpol.2017.12.027.
    1. Kettner MT, Rojas-Jimenez K, Oberbeckmann S, Labrenz M, Grossart HP. Microplastics alter composition of fungal communities in aquatic ecosystems. Environ Microbiol. 2017;19(11):4447–4459. doi: 10.1111/1462-2920.13891.
    1. Oberbeckmann S, Loeder MGJ, Gerdts G, Osborn AM. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in northern European waters. FEMS Microbiol Ecol. 2014;90(2):478–492. doi: 10.1111/1574-6941.12409.
    1. Bryant JA, Clemente TM, Viviani DA, Fong AA, Thomas KA, Kemp P, et al. Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. mSystems. 2016;1(3):e00024–e00016. doi: 10.1128/mSystems.00024-16.
    1. Oberbeckmann S, Osborn AM, Duhaime MB. Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One. 2016;11(8):e0159289. doi: 10.1371/journal.pone.0159289.
    1. Pinto M, Langer TM, Huffer T, Hofmann T, Herndl GJ. The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS One. 2019;14(6):e0217165. doi: 10.1371/journal.pone.0217165.
    1. Dang H, Li T, Chen M, Huang G. Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl Environ Microbiol. 2008;74(1):52–60. doi: 10.1128/AEM.01400-07.
    1. Ogonowski M, Motiei A, Ininbergs K, Hell E, Gerdes Z, Udekwu KI, et al. Evidence for selective bacterial community structuring on microplastics. Environ Microbiol. 2018;20(8):2796–2808. doi: 10.1111/1462-2920.14120.
    1. Kirstein IV, Wichels A, Krohne G, Gerdts G. Mature biofilm communities on synthetic polymers in seawater - specific or general? Mar Environ Res. 2018;142:147–154. doi: 10.1016/j.marenvres.2018.09.028.
    1. Kirstein IV, Wichels A, Gullans E, Krohne G, Gerdts G. The Plastisphere - Uncovering tightly attached plastic "specific" microorganisms. PLoS One. 2019;14(4):e0215859–e021585e. doi: 10.1371/journal.pone.0215859.
    1. Erni-Cassola G, Wright RJ, Gibson MI, Christie-Oleza JA. Early colonization of weathered polyethylene by distinct bacteria in marine coastal seawater. Microb Ecol. 2020;79(3):517–526. doi: 10.1007/s00248-019-01424-5.
    1. Wen B, Liu J-H, Zhang Y, Zhang H-R, Gao J-Z, Chen Z-Z. Community structure and functional diversity of the plastisphere in aquaculture waters: does plastic color matter? Sci Total Environ. 2020;740:140082. doi: 10.1016/j.scitotenv.2020.140082.
    1. Harrison JP, Schratzberger M, Sapp M, Osborn AM. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol. 2014;14:232. doi: 10.1186/s12866-014-0232-4.
    1. Hermans SM, Buckley HL, Case BS, Curran-Cournane F, Taylor M, Lear G. Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome. 2020;8(1):79. doi: 10.1186/s40168-020-00858-1.
    1. Wright RJ, Erni-Cassola G, Zadjelovic V, Latva M, Christie-Oleza JA. Marine plastic debris: a new surface for microbial colonization. Environ Sci Technol. 2020; 54(19):11657-72.
    1. Ledger T, Pieper DH, Gonzalez B. Chlorophenol hydroxylases encoded by plasmid pJP4 differentially contribute to chlorophenoxyacetic acid degradation. Appl Environ Microbiol. 2006;72(4):2783–2792. doi: 10.1128/AEM.72.4.2783-2792.2006.
    1. Blankenship A, Chang DPY, Jones AD, Kelly PB, Kennedy IM, Matsumura F, et al. Toxic combustion by-products from the incineration of chlorinated hydrocarbons and plastics. Chemosphere. 1994;28(1):183–196. doi: 10.1016/0045-6535(94)90212-7.
    1. Cao J, Lai Q, Yuan J, Shao Z. Genomic and metabolic analysis of fluoranthene degradation pathway in Celeribacter indicus P73T. Sci Rep. 2015;5:7741. doi: 10.1038/srep07741.
    1. Pinnell LJ, Turner JW. Shotgun metagenomics reveals the benthic microbial community response to plastic and bioplastic in a coastal marine environment. Front Microbiol. 2019;1:1252. doi: 10.3389/fmicb.2019.01252.
    1. Wang W, Shao Z. Enzymes and genes involved in aerobic alkane degradation. Front Microbiol. 2013;4:article 116.
    1. Piccardi P, Vessman B, Mitri S. Toxicity drives facilitation between 4 bacterial species. Proc Natl Acad Sci U S A. 2019;116(32):15979–15984. doi: 10.1073/pnas.1906172116.
    1. Gatica J, Jurkevitch E, Cytryn E. Comparative metagenomics and network analyses provide novel insights into the scope and distribution of β-lactamase homologs in the environment. Front Microbiol. 2019;10:146. doi: 10.3389/fmicb.2019.00146.
    1. Yang J, Yang Y, Wu WM, Zhao J, Jiang L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol. 2014;48(23):13776–13784. doi: 10.1021/es504038a.
    1. Peng BY, Su YM, Chen ZB, Chen JB, Zhou XF, Benbow ME, et al. Biodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae) Environ Sci Technol. 2019;53(9):5256–5265. doi: 10.1021/acs.est.8b06963.
    1. Yang Y, Wang JL, Xia ML. Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Sci Total Environ. 2020;708:7.
    1. Lou Y, Ekaterina P, Yang SS, Lu BY, Liu BF, Ren NQ, et al. Biodegradation of polyethylene and polystyrene by greater wax moth larvae (galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environ Sci Technol. 2020;54(5):2821–2831. doi: 10.1021/acs.est.9b07044.
    1. Kundungal H, Gangarapu M, Sarangapani S, Patchaiyappan A, Devipriya SP. Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella) Environ Sci Pollut Res. 2019;26:18509–18519. doi: 10.1007/s11356-019-05038-9.
    1. Taipale SJ, Peltomaa E, Kukkonen JVK, Kainz MJ, Kautonen P, Tiirola M. Tracing the fate of microplastic carbon in the aquatic food web by compound-specific isotope analysis. Sci Rep. 2019;9:19894. doi: 10.1038/s41598-019-55990-2.
    1. Lusher AL, McHugh M, Thompson RC. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull. 2013;67(1-2):94–99. doi: 10.1016/j.marpolbul.2012.11.028.
    1. Hurley RR, Woodward JC, Rothwell JJ. Ingestion of microplastics by freshwater tubifex worms. Environ Sci Technol. 2017;51(21):12844–12851. doi: 10.1021/acs.est.7b03567.
    1. Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J. Microplastic ingestion by zooplankton. Environ Sci Technol. 2013;47(12):6646–6655. doi: 10.1021/es400663f.
    1. Huerta Lwanga E, Gertsen H, Gooren H, Peters P, Salánki T, van der Ploeg M, et al. Microplastics in the terrestial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae) Environ Sci Technol. 2016;50:2685–2691. doi: 10.1021/acs.est.5b05478.
    1. Yang Y, Yang J, Wu WM, Zhao J, Song YL, Gao LC, et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ Sci Technol. 2015;49(20):12087–12093. doi: 10.1021/acs.est.5b02663.
    1. Brandon AM, El Abbadi SH, Ibekwe UA, Cho Y-M, Wu W-M, Criddle CS. Fate of hexabromocyclododecane (HBCD), a common flame retardant, in polystyrene-degrading mealworms: elevated HBCD levels in egested polymer but no bioaccumulation. Environ Sci Technol. 2020;54(1):364–371.
    1. Kong HG, Kim HH, Chung JH, Jun J, Lee SB, Kim HM, et al. The galleria mellonella hologenome supports microbiota independent metabolism of long-chain hydrocarbon beeswax. Cell Rep. 2019;26:2451–2464. doi: 10.1016/j.celrep.2019.02.018.
    1. Vigneron A, Jehan C, Rigaud T, Moret Y. Immune defenses of a beneficial pest: The mealworm beetle, Tenebrio molitor. Front Physiol. 2019;10:138. doi: 10.3389/fphys.2019.00138.
    1. Cassone BJ, Grove HC, Elebute O, Villanueva SMP, LeMoine CMR. Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, galleria mellonella. Proc R Soc B-Biol Sci. 2020;287(1922):9.
    1. Zhang JQ, Gao DL, Li QH, Zhao YX, Li L, Lin HF, et al. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth galleria mellonella. Sci Total Environ. 2020;704:8.
    1. Fields RD, Rodriguez F, Finn RK. Microbial degradation of polyesters: Polycaprolactone degraded by P. pullulans. J Appl Polym Sci. 1974;18:3571–3579. doi: 10.1002/app.1974.070181207.
    1. Almeida EL, Carrillo Rincón AF, Jackson SA, Dobson ADW. In silico screening and heterologous expression of a polyethylene terephthalate hydrolase (PETase)-like enzyme (SM14est) with polycaprolactone (PCL)-degrading activity, from the marine sponge-derived strain Streptomyces sp. SM14. Front Microbiol. 2019;10:2187. doi: 10.3389/fmicb.2019.02187.
    1. Koitabashi M, Noguchi MT, Sameshima-Yamashita Y, Hiradate S, Suzuki K, Yoshida S, et al. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants. AMB Express. 2012;2(1):40. doi: 10.1186/2191-0855-2-40.
    1. Mergaert J, Webb A, Anderson C, Wouters A, Swings J. Microbial degradation of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in soils. Appl Environ Microbiol. 1993;59(10):3233–3238. doi: 10.1128/AEM.59.10.3233-3238.1993.
    1. Shahreza H, Sepahy AA, Hosseini F, Nejad RK. Molecular identification of Pseudomonas strains with polyethylene degradation ability from soil and cloning of alkB gene. Arch Pharm Pract. 2019;10:43–48.
    1. Kleeberg I, Hetz C, Kroppenstedt RM, Müller RJ, Deckwer WD. Biodegradation of aliphatic-aromatic copolyesters by Thermomonospora fusca and other thermophilic compost isolates. Appl Environ Microbiol. 1998;64(5):1731–1735. doi: 10.1128/AEM.64.5.1731-1735.1998.
    1. Gajendiran A, Krishnamoorthy S, Abraham J. Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech. 2016;6(1):52. doi: 10.1007/s13205-016-0394-x.
    1. da Luz JMR, Paes SA, Bazzolli DMS, Tótola MR, Demuner AJ, Kasuya MCM. Abiotic and biotic degradation of oxo-biodegradable plastic bags by Pleurotus ostreatus. PLoS One. 2014;9(11):e107438. doi: 10.1371/journal.pone.0107438.
    1. Montazer Z, Habibi Najafi MB, Levin DB. Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Can J Microbiol. 2019;65(3):224–234. doi: 10.1139/cjm-2018-0335.
    1. Skariyachan S, Manjunatha V, Sultana S, Jois C, Bai V, Vasist KS. Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene. Environ Sci Pollut Res. 2016;23(18):18307–18319. doi: 10.1007/s11356-016-7000-y.
    1. Kawai F, Oda M, Tamashiro T, Waku T, Tanaka N, Yamamoto M, et al. A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl Microbiol Biotechnol. 2014;98(24):10053–10064. doi: 10.1007/s00253-014-5860-y.
    1. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, et al. A bacterium that degrades and assimilates poly (ethylene terephthalate) Science. 2016;351:1196–1199. doi: 10.1126/science.aad6359.
    1. Skariyachan S, Patil AA, Shankar A, Manjunath M, Bachappanavar N, Kiran S. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. And Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Poly Degrad Stab. 2018;149:52–68. doi: 10.1016/j.polymdegradstab.2018.01.018.
    1. Tian L, Kolvenbach B, Corvini N, Wang S, Tavanaie N, Wang L, et al. Mineralisation of 14C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment. New Biotechnol. 2017;38:101–105. doi: 10.1016/j.nbt.2016.07.008.
    1. Hung CS, Zingarelli S, Nadeau LJ, Biffinger JC, Drake CA, Crouch AL, et al. Carbon catabolite repression and Impranil polyurethane degradation in Pseudomonas protegens strain Pf-5. Appl Environ Microbiol. 2016;82(20):6080–6090. doi: 10.1128/AEM.01448-16.
    1. Sumathi T, Viswanath B, Sri Lakshmi A, SaiGopal DVR. Production of laccase by Cochliobolus sp isolated from plastic dumped soils and their ability to degrade low molecular weight PVC. Biochem Res Int. 2016;2016:9519527. doi: 10.1155/2016/9519527.
    1. Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci U S A. 2018;115(19):E4350–E43E7. doi: 10.1073/pnas.1718804115.
    1. Son HF, Cho IJ, Joo S, Seo H, Sagong H-Y, Choi SY, et al. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catal. 2019;9(4):3519–3526. doi: 10.1021/acscatal.9b00568.
    1. Yasuhira K, Uedo Y, Takeo M, Kato D-I, Negoro S. Genetic organization of nylon-oligomer-degrading enzymes from alkalophilic bacterium, Agromyces sp. KY5R. J Biosci Bioeng. 2007;104(6):521–524. doi: 10.1263/jbb.104.521.
    1. Montazer Z, Habibi-Najafi MB, Mohebbi M, Oromiehei A. Microbial degradation of UV-pretreated low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil. J Polym Environ. 2018;26(9):3613–3625. doi: 10.1007/s10924-018-1245-0.
    1. Novotný Č, Malachová K, Adamus G, Kwiecień M, Lotti N, Soccio M, et al. Deterioration of irradiation/high-temperature pretreated, linear low-density polyethylene (LLDPE) by Bacillus amyloliquefaciens. Int Biodeterior Biodegradation. 2018;132:259–267. doi: 10.1016/j.ibiod.2018.04.014.
    1. Hu X, Osaki S, Hayashi M, Kaku M, Katuen S, Kobayashi H, et al. Degradation of a terephthalate-containing polyester by thermophilic actinomycetes and Bacillus species derived from composts. J Polym Environ. 2008;16(2):103–108. doi: 10.1007/s10924-008-0088-5.
    1. Oberbeckmann S, Labrenz M. Marine microbial assemblages on microplastics: Diversity, adaptation, and role in degradation. 2020. pp. 209–232.
    1. Watanabe T, Ohtake Y, Asabe H, Murakami N, Furukawa M. Biodegradability and degrading microbes of low-density polyethylene. J Appl Polym Sci. 2009;111(1):551–559. doi: 10.1002/app.29102.
    1. Ikada E. Electron microscope observation of biodegradation of polymers. J Environ Polym Degrad. 1999;7(4):197–201. doi: 10.1023/A:1022882732403.
    1. Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: a comprehensive review. Biotechnol Adv. 2008;26(3):246–265. doi: 10.1016/j.biotechadv.2007.12.005.
    1. Mierzwa-Hersztek M, Gondek K, Kopeć M. Degradation of polyethylene and biocomponent-derived polymer materials: an overview. J Polym Environ. 2019;27(3):600–611. doi: 10.1007/s10924-019-01368-4.
    1. Swift GJHobpHA, Amsterdam . Non-medical biodegradable polymers: environmentally degradable polymers. In: Domb AJ, Kost J, Wiseman DM, editors. Handbook of biodegradable polymers. Amsterdam: Harwood Academic Publishers; 1997. pp. 473–511.
    1. Nishida H, Tokiwa Y. Distribution of poly (β-hydroxybutyrate) and poly (ε-caprolactone) aerobic degrading microorganisms in different environments. J Environ Polym Degrad. 1993;1(3):227–233. doi: 10.1007/BF01458031.
    1. Li M, Shi Y, Li Y, Sun Y, Song C, Huang Z, et al. Shift of microbial diversity and function in high-efficiency performance biotrickling filter for gaseous xylene treatment. J Air Waste Manag Assoc. 2019;69(9):1059–1069. doi: 10.1080/10962247.2019.1600603.
    1. Scott MJ, Jones MN. The biodegradation of surfactants in the environment. Biochim Biophys Acta Biomembr. 2000;1508(1):235–251. doi: 10.1016/S0304-4157(00)00013-7.
    1. Pitt JJ. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev. 2009;30(1):19–34.
    1. Jung H-W, Yang M-K, Su R-C. Purification, characterization, and gene cloning of an Aspergillus fumigatus polyhydroxybutyrate depolymerase used for degradation of polyhydroxybutyrate, polyethylene succinate, and polybutylene succinate. Poly Degrad Stab. 2018;154:186–194. doi: 10.1016/j.polymdegradstab.2018.06.002.
    1. Seo H, Kim S, Son HF, Sagong H-Y, Joo S, Kim K-J. Production of extracellular PETase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli. Biochem Biophys Res Commun. 2019;508(1):250–255. doi: 10.1016/j.bbrc.2018.11.087.
    1. Perz V, Bleymaier K, Sinkel C, Kueper U, Bonnekessel M, Ribitsch D, et al. Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates. New Biotechnol. 2016;33(2):295–304. doi: 10.1016/j.nbt.2015.11.004.
    1. Acero EH, Ribitsch D, Steinkellner G, Gruber K, Greimel K, Eiteljoerg I, et al. Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules. 2011;44(12):4632–4640. doi: 10.1021/ma200949p.
    1. Sulaiman S, Yamato S, Kanaya E, Kim J-J, Koga Y, Takano K, et al. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol. 2012;78(5):1556. doi: 10.1128/AEM.06725-11.
    1. Kawai F, Kawabata T, Oda M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl Microbiol Biotechnol. 2019;103(11):4253–4268. doi: 10.1007/s00253-019-09717-y.
    1. Ronkvist ÅM, Xie W, Lu W, Gross RA. Cutinase-catalyzed hydrolysis of poly (ethylene terephthalate) Macromolecules. 2009;42(14):5128–5138. doi: 10.1021/ma9005318.
    1. Marten E, Müller R-J, Deckwer W-D. Studies on the enzymatic hydrolysis of polyesters I. low molecular mass model esters and aliphatic polyesters. Poly Degrad Stab. 2003;80(3):485–501. doi: 10.1016/S0141-3910(03)00032-6.
    1. Marten E, Müller R-J, Deckwer W-D. Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic–aromatic copolyesters. Poly Degrad Stab. 2005;88(3):371–381. doi: 10.1016/j.polymdegradstab.2004.12.001.
    1. Müller R-J, Schrader H, Profe J, Dresler K, Deckwer W-D. Enzymatic degradation of poly (ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca. Macromol Rapid Commun. 2005;26(17):1400–1405. doi: 10.1002/marc.200500410.
    1. Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature. 2020;580(7802):216–219. doi: 10.1038/s41586-020-2149-4.
    1. Che S, Men Y. Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges. J Indust Microbiol Biotechnol. 2019;46(9-10):1343–1358. doi: 10.1007/s10295-019-02211-4.
    1. Zanaroli G, Di Toro S, Todaro D, Varese GC, Bertolotto A, Fava F. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms. Microb Cell Factories. 2010;9(1):10. doi: 10.1186/1475-2859-9-10.
    1. McCarty NS, Ledesma-Amaro R. Synthetic biology tools to engineer microbial communities for botechnology. Trends Biotechnol. 2019;37(2):181–197. doi: 10.1016/j.tibtech.2018.11.002.
    1. Bernstein HC, Carlson RP. Microbial consortia engineering for cellular factories: in vitro to in silico systems. Comput Struct Biotechnol J. 2012;3:e201210017. doi: 10.5936/csbj.201210017.

Source: PubMed

3
Tilaa