Breast Milk: A Source of Functional Compounds with Potential Application in Nutrition and Therapy

Cristina Sánchez, Luis Franco, Patricia Regal, Alexandre Lamas, Alberto Cepeda, Cristina Fente, Cristina Sánchez, Luis Franco, Patricia Regal, Alexandre Lamas, Alberto Cepeda, Cristina Fente

Abstract

Breast milk is an unbeatable food that covers all the nutritional requirements of an infant in its different stages of growth up to six months after birth. In addition, breastfeeding benefits both maternal and child health. Increasing knowledge has been acquired regarding the composition of breast milk. Epidemiological studies and epigenetics allow us to understand the possible lifelong effects of breastfeeding. In this review we have compiled some of the components with clear functional activity that are present in human milk and the processes through which they promote infant development and maturation as well as modulate immunity. Milk fat globule membrane, proteins, oligosaccharides, growth factors, milk exosomes, or microorganisms are functional components to use in infant formulas, any other food products, nutritional supplements, nutraceuticals, or even for the development of new clinical therapies. The clinical evaluation of these compounds and their commercial exploitation are limited by the difficulty of isolating and producing them on an adequate scale. In this work we focus on the compounds produced using milk components from other species such as bovine, transgenic cattle capable of expressing components of human breast milk or microbial culture engineering.

Keywords: breast milk; breastmilk proteins; functional compounds; growth factors; infant formulas; milk exosomes; milk fat globule membrane; milk microbiome; oligosaccharides; probiotics.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. UNICEF . Nurturing the Health and Wealth of Nations: The Investment Case for Breastfeeding. World Health Organization; Geneva, Switzerland: 2017.
    1. Hansen K. Breastfeeding: A smart investment in people and in economies. Lancet. 2016;387:416. doi: 10.1016/S0140-6736(16)00012-X.
    1. Diplock A.T., Aggett P.J., Ashwell M., Bornet F., Fern E.B., Roberfroid M.B. Scientific Concepts of Functional Foods in Europe: Consensus document. Br. J. Nutr. 1999;81:1.
    1. Zhu J., Dingess K.A. The functional power of the human milk proteome. Nutrients. 2019;11:1834. doi: 10.3390/nu11081834.
    1. Bode L. The functional biology of human milk oligosaccharides. Early Hum. Dev. 2015;91:619–622. doi: 10.1016/j.earlhumdev.2015.09.001.
    1. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on the essential composition of infant and follow-on formulae. EFSA J. 2014;12:3760. doi: 10.2903/j.efsa.2014.3760.
    1. Bardanzellu F., Fanos V., Reali A. “Omics” in human colostrum and mature milk: Looking to old data with new eyes. Nutrients. 2017;9:843. doi: 10.3390/nu9080843.
    1. Verduci E., Banderali G., Barberi S., Radaelli G., Lops A., Betti F., Riva E., Giovannini M. Epigenetic effects of human breast milk. Nutrients. 2014;6:1711–1724. doi: 10.3390/nu6041711.
    1. Stam J., Sauer P.J.J., Boehm G. Can we define an infant’s need from the composition of human milk? Am. J. Clin. Nutr. 2013;98:521S–528S. doi: 10.3945/ajcn.112.044370.
    1. Lopez C., Cauty C., Guyomarc’h F. Unraveling the complexity of milk fat globules to tailor bioinspired emulsions providing health benefits: The key role played by the biological membrane. Eur. J. Lipid Sci. Technol. 2019;121:1800201. doi: 10.1002/ejlt.201800201.
    1. Baumgartner S., van de Heijning B.J.M., Acton D., Mensink R.P. Infant milk fat droplet size and coating affect postprandial responses in healthy adult men: A proof-of-concept study. Eur. J. Clin. Nutr. 2017;71:1108–1113. doi: 10.1038/ejcn.2017.50.
    1. Baars A., Oosting A., Engels E., Kegler D., Kodde A., Schipper L., Verkade H.J., van der Beek E.M. Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood. Br. J. Nutr. 2016;115:1930–1937. doi: 10.1017/S0007114516001082.
    1. Timby N., Domellöf E., Hernell O., Lönnerdal B., Domellöf M. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: A randomized controlled trial. Am. J. Clin. Nutr. 2014;99:860–868. doi: 10.3945/ajcn.113.064295.
    1. Brink L.R., Lönnerdal B. Milk fat globule membrane: The role of its various components in infant health and development. J. Nutr. Biochem. 2020;85:108465. doi: 10.1016/j.jnutbio.2020.108465.
    1. Fontecha J., Brink L., Wu S., Pouliot Y., Visioli F., Jiménez-Flores R. Sources, Production, and Clinical Treatments of Milk Fat Globule Membrane for Infant Nutrition and Well-Being. Nutrients. 2020;12:1607. doi: 10.3390/nu12061607.
    1. Brink L.R., Herren A.W., McMillen S., Fraser K., Agnew M., Roy N., Lönnerdal B. Omics analysis reveals variations among commercial sources of bovine milk fat globule membrane. J. Dairy Sci. 2020;103:3002–3016. doi: 10.3168/jds.2019-17179.
    1. Meyers L.D., Hellwig J.P., Otten J.J. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. National Academies Press; Washington, WA, USA: 2006.
    1. Efsa Panel On Dietetic Products, Nutrition And Allergies (NDA) A. Scientific Opinion on nutrient requirements and dietary intakes of infants and young children in the European Union. EFSA J. 2013;11:3408.
    1. Nilsson Å. Role of sphingolipids in infant gut health and immunity. J. Pediatr. 2016;173:S53–S59. doi: 10.1016/j.jpeds.2016.02.076.
    1. Park E.J., Suh M., Ramanujam K., Steiner K., Begg D., Clandinin M.T. Diet-induced changes in membrane gangliosides in rat intestinal mucosa, plasma and brain. J. Pediatr. Gastroenterol. Nutr. 2005;40:487–495. doi: 10.1097/01.MPG.0000157199.25923.64.
    1. Rueda R., Maldonado J., Narbona E., Gil A. Neonatal dietary gangliosides. Early Hum. Dev. 1998;53:S135–S147. doi: 10.1016/S0378-3782(98)00071-1.
    1. Brønnum H., Seested T., Hellgren L.I., Brix S., Frøkiær H. Milk-Derived GM3 and GD3 Differentially Inhibit Dendritic Cell Maturation and Effector Functionalities. Scand. J. Immunol. 2005;61:551–557. doi: 10.1111/j.1365-3083.2005.01566.x.
    1. Vázquez E., Gil A., Rueda R. Dietary gangliosides increase the number of intestinal IgA-secreting cells and the luminal content of secretory IgA in weanling mice. J. Pediatr. Gastroenterol. Nutr. 2000;31:S133.
    1. Zúñiga M., Monedero V., Yebra M.J. Utilization of host-derived glycans by intestinal Lactobacillus and Bifidobacterium species. Front. Microbiol. 2018;9:1917. doi: 10.3389/fmicb.2018.01917.
    1. Suh M., Belosevic M., Clandinin M.T. Dietary lipids containing gangliosides reduce Giardia muris infection in vivo and survival of Giardia lamblia trophozoites in vitro. Parasitology. 2004;128:595. doi: 10.1017/S0031182004005128.
    1. Lis-Kuberka J., Orczyk-Pawiłowicz M. Sialylated oligosaccharides and glycoconjugates of human milk. The impact on infant and newborn protection, development and well-being. Nutrients. 2019;11:306. doi: 10.3390/nu11020306.
    1. Park E.J., Suh M., Thomson A.B.R., Ramanujam K.S., Clandinin M.T. Dietary gangliosides increase the content and molecular percentage of ether phospholipids containing 20: 4n-6 and 22: 6n-3 in weanling rat intestine. J. Nutr. Biochem. 2006;17:337–344. doi: 10.1016/j.jnutbio.2005.08.005.
    1. Lee H., Padhi E., Hasegawa Y., Larke J., Parenti M., Wang A., Hernell O., Lönnerdal B., Slupsky C. Compositional dynamics of the milk fat globule and its role in infant development. Front. Pediatr. 2018;6:313. doi: 10.3389/fped.2018.00313.
    1. Peterson J.A., Henderson T.R., Scallan C., Kiwan R., Mehta N.R., Taylor M.R., Ceriani R.L., Hamosh M. Human milk fat globule (mfg) glycoproteins are present in gastric aspirates of human milk-fed preterm infants. ▲ 739. Pediatr. Res. 1996;39:126. doi: 10.1203/00006450-199604001-00761.
    1. Floris L.M., Stahl B., Abrahamse-Berkeveld M., Teller I.C. Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins Leukot. Essent. Fat. Acids. 2019;156:102023. doi: 10.1016/j.plefa.2019.102023.
    1. Jensen R.G. Lipids in human milk. Lipids. 1999;34:1243–1271. doi: 10.1007/s11745-999-0477-2.
    1. Francois C.A., Connor S.L., Wander R.C., Connor W.E. Acute effects of dietary fatty acids on the fatty acids of human milk. Am. J. Clin. Nutr. 1998;67:301–308. doi: 10.1093/ajcn/67.2.301.
    1. Barreiro R., Díaz-Bao M., Cepeda A., Regal P., Fente C.A. Fatty acid composition of breast milk in Galicia (NW Spain): A cross-country comparison. Prostaglandins Leukot. Essent. Fat. Acids. 2018;135:102–114. doi: 10.1016/j.plefa.2018.06.002.
    1. Mehrotra V., Sehgal S.K., Bangale N.R. Fat structure and composition in human milk and infant formulas: Implications in infant health. Clin. Epidemiol. Glob. Heal. 2019;7:153–159. doi: 10.1016/j.cegh.2018.03.005.
    1. Miles E.A., Calder P.C. The influence of the position of palmitate in infant formula triacylglycerols on health outcomes. Nutr. Res. 2017;44:1–8. doi: 10.1016/j.nutres.2017.05.009.
    1. Béghin L., Marchandise X., Lien E., Bricout M., Bernet J.-P., Lienhardt J.-F., Jeannerot F., Menet V., Requillart J.-C., Marx J. Growth, stool consistency and bone mineral content in healthy term infants fed sn-2-palmitate-enriched starter infant formula: A randomized, double-blind, multicentre clinical trial. Clin. Nutr. 2019;38:1023–1030. doi: 10.1016/j.clnu.2018.05.015.
    1. Aglago E.K., Huybrechts I., Murphy N., Casagrande C., Nicolas G., Pischon T., Fedirko V., Severi G., Boutron-Ruault M.-C., Fournier A. Consumption of fish and long-chain n-3 polyunsaturated fatty acids is associated with reduced risk of colorectal cancer in a large European cohort. Clin. Gastroenterol. Hepatol. 2020;18:654–666. doi: 10.1016/j.cgh.2019.06.031.
    1. Martin C.R., DaSilva D.A., Cluette-Brown J.E., DiMonda C., Hamill A., Bhutta A.Q., Coronel E., Wilschanski M., Stephens A.J., Driscoll D.F. Decreased postnatal docosahexaenoic and arachidonic acid blood levels in premature infants are associated with neonatal morbidities. J. Pediatr. 2011;159:743–749. doi: 10.1016/j.jpeds.2011.04.039.
    1. Ronda O.A.H.O., van de Heijning B.J.M., Martini I., Gerding A., Wolters J.C., van der Veen Y.T., Koehorst M., Jurdzinski A., Havinga R., van der Beek E.M. Effects of an early life diet containing large phospholipid-coated lipid globules on hepatic lipid metabolism in mice. Sci. Rep. 2020;10:1–14. doi: 10.1038/s41598-020-72777-y.
    1. Timby N., Hernell O., Vaarala O., Melin M., Lönnerdal B., Domellöf M. Infections in infants fed formula supplemented with bovine milk fat globule membranes. J. Pediatr. Gastroenterol. Nutr. 2015;60:384–389. doi: 10.1097/MPG.0000000000000624.
    1. Timby N., Domellöf M., Holgerson P.L., West C.E., Lönnerdal B., Hernell O., Johansson I. Oral microbiota in infants fed a formula supplemented with bovine milk fat globule membranes-a randomized controlled trial. PLoS ONE. 2017;12:e0169831. doi: 10.1371/journal.pone.0169831.
    1. Grip T., Dyrlund T.S., Ahonen L., Domellöf M., Hernell O., Hyötyläinen T., Knip M., Lönnerdal B., Orešič M., Timby N. Serum, plasma and erythrocyte membrane lipidomes in infants fed formula supplemented with bovine milk fat globule membranes. Pediatr. Res. 2018;84:726–732. doi: 10.1038/s41390-018-0130-9.
    1. He X., Parenti M., Grip T., Lönnerdal B., Timby N., Domellöf M., Hernell O., Slupsky C.M. Fecal microbiome and metabolome of infants fed bovine MFGM supplemented formula or standard formula with breast-fed infants as reference: A randomized controlled trial. Sci. Rep. 2019;9:1–14. doi: 10.1038/s41598-019-48858-y.
    1. He X., Parenti M., Grip T., Domellöf M., Lönnerdal B., Hernell O., Timby N., Slupsky C.M. Metabolic phenotype of breast-fed infants, and infants fed standard formula or bovine MFGM supplemented formula: A randomized controlled trial. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-48858-y.
    1. Timby N., Lönnerdal B., Hernell O., Domellöf M. Cardiovascular risk markers until 12 mo of age in infants fed a formula supplemented with bovine milk fat globule membranes. Pediatr. Res. 2014;76:394–400. doi: 10.1038/pr.2014.110.
    1. Shi Y., Sun G., Zhang Z., Deng X., Kang X., Liu Z., Ma Y., Sheng Q. The chemical composition of human milk from Inner Mongolia of China. Food Chem. 2011;127:1193–1198. doi: 10.1016/j.foodchem.2011.01.123.
    1. Li X., Peng Y., Li Z., Christensen B., Heckmann A.B.L., Stenlund H., Lönnerdal B., Hernell O. Feeding infants formula with probiotics or milk fat globule membrane: A double-blind, randomized controlled trial. Front. Pediatr. 2019;7:347. doi: 10.3389/fped.2019.00347.
    1. Zavaleta N., Kvistgaard A.S., Graverholt G., Respicio G., Guija H., Valencia N., Lönnerdal B. Efficacy of an MFGM-enriched complementary food in diarrhea, anemia, and micronutrient status in infants. J. Pediatr. Gastroenterol. Nutr. 2011;53:561–568. doi: 10.1097/MPG.0b013e318225cdaf.
    1. Lee H., Zavaleta N., Chen S.-Y., Lönnerdal B., Slupsky C. Effect of bovine milk fat globule membranes as a complementary food on the serum metabolome and immune markers of 6-11-month-old Peruvian infants. NPJ Sci. Food. 2018;2:1–9. doi: 10.1038/s41538-018-0014-8.
    1. Li F., Wu S.S., Berseth C.L., Harris C.L., Richards J.D., Wampler J.L., Zhuang W., Cleghorn G., Rudolph C.D., Liu B. Improved Neurodevelopmental outcomes associated with bovine milk fat globule membrane and lactoferrin in infant formula: A randomized, controlled trial. J. Pediatr. 2019;215:24–31. doi: 10.1016/j.jpeds.2019.08.030.
    1. Nieto-Ruiz A., García-Santos J.A., Bermúdez M.G., Herrmann F., Diéguez E., Sepúlveda-Valbuena N., García S., Miranda M.T., De-Castellar R., Rodríguez-Palmero M. Cortical Visual Evoked Potentials and Growth in Infants Fed with Bioactive Compounds-Enriched Infant Formula: Results from COGNIS Randomized Clinical Trial. Nutrients. 2019;11:2456. doi: 10.3390/nu11102456.
    1. Veereman-Wauters G., Staelens S., Rombaut R., Dewettinck K., Deboutte D., Brummer R.-J., Boone M., Le Ruyet P. Milk fat globule membrane (INPULSE) enriched formula milk decreases febrile episodes and may improve behavioral regulation in young children. Nutrition. 2012;28:749–752. doi: 10.1016/j.nut.2011.10.011.
    1. Poppitt S.D., McGregor R.A., Wiessing K.R., Goyal V.K., Chitkara A.J., Gupta S., Palmano K., Kuhn-Sherlock B., McConnell M.A. Bovine complex milk lipid containing gangliosides for prevention of rotavirus infection and diarrhoea in northern Indian infants. J. Pediatr. Gastroenterol. Nutr. 2014;59:167–171. doi: 10.1097/MPG.0000000000000398.
    1. Pastor N., Soler B., Ferguson P., Lifschitz C. infants fed docosahexaenoic acid and arachidonic acid supplemented formula have decreased incidence of respiratory illnesses the first year of life: pn2-10. J. Pediatr. Gastroenterol. Nutr. 2005;40:698–699. doi: 10.1097/00005176-200505000-00249.
    1. Pastor N., Soler B., Mitmesser S.H., Ferguson P., Lifschitz C. Infants fed docosahexaenoic acid-and arachidonic acid-supplemented formula have decreased incidence of bronchiolitis/bronchitis the first year of life. Clin. Pediatr. 2006;45:850–855. doi: 10.1177/1073858406289801.
    1. Makrides M., Gibson R.A., McPhee A.J., Collins C.T., Davis P.G., Doyle L.W., Simmer K., Colditz P.B., Morris S., Smithers L.G. Neurodevelopmental outcomes of preterm infants fed high-dose docosahexaenoic acid: A randomized controlled trial. JAMA. 2009;301:175–182. doi: 10.1001/jama.2008.945.
    1. Simmer K., Patole S.K., Rao S.C. Longchain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst. Rev. 2011;12 doi: 10.1002/14651858.CD000376.pub3.
    1. Drover J.R., Hoffman D.R., Castañeda Y.S., Morale S.E., Garfield S., Wheaton D.H., Birch E.E. Cognitive function in 18-month-old term infants of the DIAMOND study: A randomized, controlled clinical trial with multiple dietary levels of docosahexaenoic acid. Early Hum. Dev. 2011;87:223–230. doi: 10.1016/j.earlhumdev.2010.12.047.
    1. Drover J.R., Felius J., Hoffman D.R., Castañeda Y.S., Garfield S., Wheaton D.H., Birch E.E. A randomized trial of DHA intake during infancy: School readiness and receptive vocabulary at 2–3.5 years of age. Early Hum. Dev. 2012;88:885–891. doi: 10.1016/j.earlhumdev.2012.07.007.
    1. Lapillonne A., Pastor N., Zhuang W., Scalabrin D.M.F. Infants fed formula with added long chain polyunsaturated fatty acids have reduced incidence of respiratory illnesses and diarrhea during the first year of life. BMC Pediatr. 2014;14:168. doi: 10.1186/1471-2431-14-168.
    1. Foiles A.M., Kerling E.H., Wick J.A., Scalabrin D.M.F., Colombo J., Carlson S.E. Formula with long-chain polyunsaturated fatty acids reduces incidence of allergy in early childhood. Pediatr. Allergy Immunol. 2016;27:156–161. doi: 10.1111/pai.12515.
    1. Miklavcic J.J., Larsen B.M.K., Mazurak V.C., Scalabrin D.M.F., MacDonald I.M., Shoemaker G.K., Casey L., Van Aerde J.E., Clandinin M.T. Reduction of arachidonate is associated with increase in B-cell activation marker in infants: A randomized trial. J. Pediatr. Gastroenterol. Nutr. 2017;64:446–453. doi: 10.1097/MPG.0000000000001283.
    1. Arsenault A.B., Gunsalus K.T.W., Laforce-Nesbitt S.S., Przystac L., DeAngelis E.J., Hurley M.E., Vorel E.S., Tucker R., Matthan N.R., Lichtenstein A.H. Dietary supplementation with medium-chain triglycerides reduces candida gastrointestinal colonization in preterm infants. Pediatr. Infect. Dis. J. 2019;38:164. doi: 10.1097/INF.0000000000002042.
    1. Jacobi S.K., Odle J. Nutritional factors influencing intestinal health of the neonate. Adv. Nutr. 2012;3:687–696. doi: 10.3945/an.112.002683.
    1. Korma S.A., Li L., Abdrabo K.A.E., Ali A.H., Rahaman A., Abed S.M., Bakry I.A., Wei W., Wang X. A comparative study of lipid composition and powder quality among powdered infant formula with novel functional structured lipids and commercial infant formulas. Eur. Food Res. Technol. 2020;246:2569–2586. doi: 10.1007/s00217-020-03597-7.
    1. Chouraqui J.-P. Does the contribution of human milk oligosaccharides to the beneficial effects of breast milk allow us to hope for an improvement in infant formulas? Crit. Rev. Food Sci. Nutr. 2020:1–12. doi: 10.1080/10408398.2020.1761772.
    1. Akkerman R., Faas M.M., de Vos P. Non-digestible carbohydrates in infant formula as substitution for human milk oligosaccharide functions: Effects on microbiota and gut maturation. Crit. Rev. Food Sci. Nutr. 2019;59:1486–1497. doi: 10.1080/10408398.2017.1414030.
    1. Stahl B., Thurl S., Henker J., Siegel M., Finke B., Sawatzki G. Bioactive Components of Human Milk. Springer; Berlin/Heidelberg, Germany: 2001. Detection of four human milk groups with respect to Lewis-bloodgroup-dependent oligosaccharides by serologic and chromatographic analysis; pp. 299–306.
    1. Wang M., Li M., Wu S., Lebrilla C.B., Chapkin R.S., Ivanov I., Donovan S.M. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. J. Pediatr. Gastroenterol. Nutr. 2015;60:825. doi: 10.1097/MPG.0000000000000752.
    1. Cabrera-Rubio R., Kunz C., Rudloff S., García-Mantrana I., Crehuá-Gaudiza E., Martínez-Costa C., Collado M.C. Association of maternal secretor status and human milk oligosaccharides with milk microbiota: An observational pilot study. J. Pediatr. Gastroenterol. Nutr. 2019;68:256–263. doi: 10.1097/MPG.0000000000002216.
    1. Garrido D., Ruiz-Moyano S., Kirmiz N., Davis J.C., Totten S.M., Lemay D.G., Ugalde J.A., German J.B., Lebrilla C.B., Mills D.A. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Sci. Rep. 2016;6:35045. doi: 10.1038/srep35045.
    1. Wickramasinghe S., Pacheco A.R., Lemay D.G., Mills D.A. Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells. BMC Microbiol. 2015;15:172. doi: 10.1186/s12866-015-0508-3.
    1. Newburg D.S., Ruiz-Palacios G.M., Morrow A.L. Human milk glycans protect infants against enteric pathogens. Annu. Rev. Nutr. 2005;25:37–58. doi: 10.1146/annurev.nutr.25.050304.092553.
    1. Cummings R.D., McEver R.P. Essentials of Glycobiology. 2nd ed. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2009. C-type lectins; pp. 1857–1929.
    1. Xiao L., van De Worp W.R.P.H., Stassen R., van Maastrigt C., Kettelarij N., Stahl B., Blijenberg B., Overbeek S.A., Folkerts G., Garssen J. Human milk oligosaccharides promote immune tolerance via direct interactions with human dendritic cells. Eur. J. Immunol. 2019;49:1001–1014. doi: 10.1002/eji.201847971.
    1. Lin A.E., Autran C.A., Szyszka A., Escajadillo T., Huang M., Godula K., Prudden A.R., Boons G.-J., Lewis A.L., Doran K.S. Human milk oligosaccharides inhibit growth of group B Streptococcus. J. Biol. Chem. 2017;292:11243–11249. doi: 10.1074/jbc.M117.789974.
    1. Angeloni S., Ridet J.L., Kusy N., Gao H., Crevoisier F., Guinchard S., Kochhar S., Sigrist H., Sprenger N. Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology. 2005;15:31–41. doi: 10.1093/glycob/cwh143.
    1. Autran C. Ph.D. Thesis. Technische Universität München; Munich, Germany: 2018. The Therapeutic Potential of Human Milk Oligosaccharides in the Context of Chronic Inflammation.
    1. Cheng L., Kiewiet M.B.G., Groeneveld A., Nauta A., de Vos P. Human milk oligosaccharides and its acid hydrolysate LNT2 show immunomodulatory effects via TLRs in a dose and structure-dependent way. J. Funct. Foods. 2019;59:174–184. doi: 10.1016/j.jff.2019.05.023.
    1. Lin A.E., Autran C.A., Espanola S.D., Bode L., Nizet V. Human milk oligosaccharides protect bladder epithelial cells against uropathogenic Escherichia coli invasion and cytotoxicity. J. Infect. Dis. 2014;209:389–398. doi: 10.1093/infdis/jit464.
    1. Weichert S., Jennewein S., Hüfner E., Weiss C., Borkowski J., Putze J., Schroten H. Bioengineered 2′-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr. Res. 2013;33:831–838. doi: 10.1016/j.nutres.2013.07.009.
    1. Jacobi S.K., Yatsunenko T., Li D., Dasgupta S., Yu R.K., Berg B.M., Chichlowski M., Odle J. Dietary isomers of sialyllactose increase ganglioside sialic acid concentrations in the corpus callosum and cerebellum and modulate the colonic microbiota of formula-fed piglets. J. Nutr. 2016;146:200–208. doi: 10.3945/jn.115.220152.
    1. Vazquez E., Santos-Fandila A., Buck R., Rueda R., Ramirez M. Major human milk oligosaccharides are absorbed into the systemic circulation after oral administration in rats. Br. J. Nutr. 2017;117:237–247. doi: 10.1017/S0007114516004554.
    1. Seppo A.E., Autran C.A., Bode L., Järvinen K.M. Human milk oligosaccharides and development of cow’s milk allergy in infants. J. Allergy Clin. Immunol. 2017;139:708–711. doi: 10.1016/j.jaci.2016.08.031.
    1. Triantis V., Bode L., Van Neerven R.J. Immunological effects of human milk oligosaccharides. Front. Pediatr. 2018;6:190. doi: 10.3389/fped.2018.00190.
    1. Van Leeuwen S.S., Stoutjesdijk E., Geert A., Schaafsma A., Dijck-Brouwer J., Muskiet F.A.J., Dijkhuizen L. Regional variations in human milk oligosaccharides in Vietnam suggest FucTx activity besides FucT2 and FucT3. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-34882-x.
    1. Xu G., Davis J.C.C., Goonatilleke E., Smilowitz J.T., German J.B., Lebrilla C.B. Absolute quantitation of human milk oligosaccharides reveals phenotypic variations during lactation. J. Nutr. 2017;147:117–124. doi: 10.3945/jn.116.238279.
    1. Vandenplas Y., De Greef E., Veereman G. Prebiotics in infant formula. Gut Microbes. 2014;5:681–687. doi: 10.4161/19490976.2014.972237.
    1. Ashley C., Johnston W.H., Harris C.L., Stolz S.I., Wampler J.L., Berseth C.L. Growth and tolerance of infants fed formula supplemented with polydextrose (PDX) and/or galactooligosaccharides (GOS): Double-blind, randomized, controlled trial. Nutr. J. 2012;11:38. doi: 10.1186/1475-2891-11-38.
    1. Bode L., Contractor N., Barile D., Pohl N., Prudden A.R., Boons G.-J., Jin Y.-S., Jennewein S. Overcoming the limited availability of human milk oligosaccharides: Challenges and opportunities for research and application. Nutr. Rev. 2016;74:635–644. doi: 10.1093/nutrit/nuw025.
    1. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J. 2010;8:1462.
    1. Urashima T., Fukuda K., Messer M. Evolution of milk oligosaccharides and lactose: A hypothesis. Anim. Int. J. Anim. Biosci. 2012;6:369. doi: 10.1017/S1751731111001248.
    1. Yu H., Chen X. Enzymatic and Chemoenzymatic Synthesis of Human Milk Oligosaccharides (HMOS) Synth. Glycomes. 2019;11:254.
    1. Faijes M., Castejón-Vilatersana M., Val-Cid C., Planas A. Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnol. Adv. 2019;37:667–697. doi: 10.1016/j.biotechadv.2019.03.014.
    1. Sprenger G.A., Baumgärtner F., Albermann C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. J. Biotechnol. 2017;258:79–91. doi: 10.1016/j.jbiotec.2017.07.030.
    1. Walsh C., Lane J.A., van Sinderen D., Hickey R.M. From lab bench to formulated ingredient: Characterization, production, and commercialization of human milk oligosaccharides. J. Funct. Foods. 2020;72:104052. doi: 10.1016/j.jff.2020.104052.
    1. Puccio G., Alliet P., Cajozzo C., Janssens E., Corsello G., Sprenger N., Wernimont S., Egli D., Gosoniu L., Steenhout P. Effects of infant formula with human milk oligosaccharides on growth and morbidity: A randomized multicenter trial. J. Pediatr. Gastroenterol. Nutr. 2017;64:624. doi: 10.1097/MPG.0000000000001520.
    1. Steenhout P., Sperisen P., Martin F., Sprenger N., Wernimont S., Pecquet S., Berger B. Term Infant Formula Supplemented with Human Milk Oligosaccharides (2′ Fucosyllactose and Lacto-N-neotetraose) Shifts Stool Microbiota and Metabolic Signatures Closer to that of Breastfed Infants. FASEB J. 2016;30:275–277.
    1. Vandenplas Y., Berger B., Carnielli V.P., Ksiazyk J., Lagström H., Sanchez Luna M., Migacheva N., Mosselmans J.-M., Picaud J.-C., Possner M. Human milk oligosaccharides: 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients. 2018;10:1161. doi: 10.3390/nu10091161.
    1. Leung T.F., Ulfman L.H., Chong M.K.C., Hon K.L., Khouw I.M.S.L., Chan P.K.S., Delsing D.J., Kortman G.A.M., Bovee-Oudenhoven I.M.J. A randomized controlled trial of different young child formulas on upper respiratory and gastrointestinal tract infections in Chinese toddlers. Pediatr. Allergy Immunol. 2020;31:745–754. doi: 10.1111/pai.13276.
    1. Marriage B.J., Buck R.H., Goehring K.C., Oliver J.S., Williams J.A. Infants fed a lower calorie formula with 2′ FL show growth and 2′ FL uptake like breast-fed infants. J. Pediatr. Gastroenterol. Nutr. 2015;61:649. doi: 10.1097/MPG.0000000000000889.
    1. Iribarren C., Törnblom H., Aziz I., Magnusson M.K., Sundin J., Vigsnæs L.K., Amundsen I.D., McConnell B., Seitzberg D., Öhman L. Human milk oligosaccharide supplementation in irritable bowel syndrome patients: A parallel, randomized, double-blind, placebo-controlled study. Neurogastroenterol. Motil. 2020;32:e13920. doi: 10.1111/nmo.13920.
    1. Beck K.L., Weber D., Phinney B.S., Smilowitz J.T., Hinde K., Lönnerdal B., Korf I., Lemay D.G. Comparative proteomics of human and macaque milk reveals species-specific nutrition during postnatal development. J. Proteome Res. 2015;14:2143–2157. doi: 10.1021/pr501243m.
    1. Haschke F., Haiden N., Thakkar S.K. Nutritive and bioactive proteins in breastmilk. Ann. Nutr. Metab. 2016;69:16–26. doi: 10.1159/000452820.
    1. Lönnerdal B. Bioactive proteins in human milk: Health, nutrition, and implications for infant formulas. J. Pediatr. 2016;173:S4–S9. doi: 10.1016/j.jpeds.2016.02.070.
    1. Lönnerdal B., Woodhouse L.R., Glazier C. Compartmentalization and quantitation of protein in human milk. J. Nutr. 1987;117:1385–1395. doi: 10.1093/jn/117.8.1385.
    1. Daly A., Evans S., Pinto A., Jackson R., Ashmore C., Rocha J.C., MacDonald A. The Impact of the Use of Glycomacropeptide on Satiety and Dietary Intake in Phenylketonuria. Nutrients. 2020;12:2704. doi: 10.3390/nu12092704.
    1. Daly A., Evans S., Pinto A., Ashmore C., Rocha J.C., MacDonald A. A 3 Year Longitudinal Prospective Review Examining the Dietary Profile and Contribution Made by Special Low Protein Foods to Energy and Macronutrient Intake in Children with Phenylketonuria. Nutrients. 2020;12:3153. doi: 10.3390/nu12103153.
    1. Hoefle A.S., Bangert A.M., Rist M.J., Gedrich K., Lee Y.-M., Skurk T., Danier J., Schwarzenbolz U., Daniel H. Postprandial metabolic responses to ingestion of bovine glycomacropeptide compared to a whey protein isolate in prediabetic volunteers. Eur. J. Nutr. 2019;58:2067–2077. doi: 10.1007/s00394-018-1763-5.
    1. O’Riordan N., O’Callaghan J., Buttò L.F., Kilcoyne M., Joshi L., Hickey R.M. Bovine glycomacropeptide promotes the growth of Bifidobacterium longum ssp. infantis and modulates its gene expression. J. Dairy Sci. 2018;101:6730–6741. doi: 10.3168/jds.2018-14499.
    1. Cadée J.A., Chang C.-Y., Chen C.-W., Huang C.-N., Chen S.-L., Wang C.-K. Bovine casein hydrolysate (C12 peptide) reduces blood pressure in prehypertensive subjects. Am. J. Hypertens. 2007;20:1–5. doi: 10.1016/j.amjhyper.2006.06.005.
    1. Labandeira-Garcia J.L., Rodríguez-Perez A.I., Garrido-Gil P., Rodriguez-Pallares J., Lanciego J.L., Guerra M.J. Brain renin-angiotensin system and microglial polarization: Implications for aging and neurodegeneration. Front. Aging Neurosci. 2017;9:129. doi: 10.3389/fnagi.2017.00129.
    1. Davies N.M., Kehoe P.G., Ben-Shlomo Y., Martin R.M. Associations of anti-hypertensive treatments with Alzheimer’s disease, vascular dementia, and other dementias. J. Alzheimer’s Dis. 2011;26:699–708. doi: 10.3233/JAD-2011-110347.
    1. Fazal K., Perera G., Khondoker M., Howard R., Stewart R. Associations of centrally acting ACE inhibitors with cognitive decline and survival in Alzheimer’s disease. Bjpsych Open. 2017;3:158–164. doi: 10.1192/bjpo.bp.116.004184.
    1. O’Caoimh R., Healy L., Gao Y., Svendrovski A., Kerins D.M., Eustace J., Kehoe P.G., Guyatt G., Molloy D.W. Effects of centrally acting angiotensin converting enzyme inhibitors on functional decline in patients with Alzheimer’s disease. J. Alzheimer’s Dis. 2014;40:595–603. doi: 10.3233/JAD-131694.
    1. Min L.-J., Kobayashi Y., Mogi M., Tsukuda K., Yamada A., Yamauchi K., Abe F., Iwanami J., Xiao J.-Z., Horiuchi M. Administration of bovine casein-derived peptide prevents cognitive decline in Alzheimer disease model mice. PLoS ONE. 2017;12:e0171515. doi: 10.1371/journal.pone.0171515.
    1. Yuda N., Tanaka M., Yamauchi K., Abe F., Kakiuchi I., Kiyosawa K., Miyasaka M., Sakane N., Nakamura M. Effect of the Casein-Derived Peptide Met-Lys-Pro on Cognitive Function in Community-Dwelling Adults Without Dementia: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Interv. Aging. 2020;15:743. doi: 10.2147/CIA.S253116.
    1. Boldogh I., Kruzel M.L. ColostrininTM: An oxidative stress modulator for prevention and treatment of age-related disorders. J. Alzheimer’s Dis. 2008;13:303–321. doi: 10.3233/JAD-2008-13308.
    1. Janusz M., Zablocka A. Colostral proline-rich polypeptides-immunoregulatory properties and prospects of therapeutic use in Alzheimer’s disease. Curr. Alzheimer Res. 2010;7:323–333. doi: 10.2174/156720510791162377.
    1. Janusz M., Woszczyna M., Lisowski M., Kubis A., Macała J., Gotszalk T., Lisowski J. Ovine colostrum nanopeptide affects amyloid beta aggregation. Febs Lett. 2009;583:190–196. doi: 10.1016/j.febslet.2008.11.053.
    1. Popik P., Bobula B., Janusz M., Lisowski J., Vetulani J. Colostrinin, a polypeptide isolated from early milk, facilitates learning and memory in rats. Pharm. Biochem. Behav. 1999;64:183–189. doi: 10.1016/S0091-3057(99)00101-X.
    1. Stewart M.G. ColostrininTM: A naturally occurring compound derived from mammalian colostrum with efficacy in treatment of neurodegenerative diseases, including Alzheimer’s. Expert Opin. Pharm. 2008;9:2553–2559. doi: 10.1517/14656566.9.14.2553.
    1. Layman D.K., Lönnerdal B., Fernstrom J.D. Applications for α-lactalbumin in human nutrition. Nutr. Rev. 2018;76:444–460. doi: 10.1093/nutrit/nuy004.
    1. Maase K. $g (a)-Lactalbumin as Prebiotic Agent. 10/467,005. U.S. Patent. 2004 Apr 22;
    1. Wada Y., Lönnerdal B. Bioactive peptides derived from human milk proteins—Mechanisms of action. J. Nutr. Biochem. 2014;25:503–514. doi: 10.1016/j.jnutbio.2013.10.012.
    1. Sandström O., Lönnerdal B., Graverholt G., Hernell O. Effects of α-lactalbumin–enriched formula containing different concentrations of glycomacropeptide on infant nutrition. Am. J. Clin. Nutr. 2008;87:921–928. doi: 10.1093/ajcn/87.4.921.
    1. English K.L., Mettler J.A., Ellison J.B., Mamerow M.M., Arentson-Lantz E., Pattarini J.M., Ploutz-Snyder R., Sheffield-Moore M., Paddon-Jones D. Leucine partially protects muscle mass and function during bed rest in middle-aged adults, 2. Am. J. Clin. Nutr. 2016;103:465–473. doi: 10.3945/ajcn.115.112359.
    1. Markus C.R., Jonkman L.M., Lammers J.H.C.M., Deutz N.E.P., Messer M.H., Rigtering N. Evening intake of α-lactalbumin increases plasma tryptophan availability and improves morning alertness and brain measures of attention. Am. J. Clin. Nutr. 2005;81:1026–1033. doi: 10.1093/ajcn/81.5.1026.
    1. Murphy C.H., Saddler N.I., Devries M.C., McGlory C., Baker S.K., Phillips S.M. Leucine supplementation enhances integrative myofibrillar protein synthesis in free-living older men consuming lower-and higher-protein diets: A parallel-group crossover study. Am. J. Clin. Nutr. 2016;104:1594–1606. doi: 10.3945/ajcn.116.136424.
    1. Scrutton H., Carbonnier A., Cowen P.J., Harmer C.J. Effects of α-lactalbumin on emotional processing in healthy women. J. Psychopharmacol. 2007;21:519–524. doi: 10.1177/0269881106075271.
    1. Rath E.M., Duff A.P., Håkansson A.P., Vacher C.S., Liu G.J., Knott R.B., Church W.B. Structure and potential cellular targets of HAMLET-like anti-cancer compounds made from milk components. J. Pharm. Pharm. Sci. 2015;18:773–824. doi: 10.18433/J3G60C.
    1. Saito A., Usui M., Song Y., Azakami H., Kato A. Secretion of glycosylated α-lactalbumin in yeast Pichia pastoris. J. Biochem. 2002;132:77–82. doi: 10.1093/oxfordjournals.jbchem.a003202.
    1. Wang J., Yang P., Tang B., Sun X., Zhang R., Guo C., Gong G., Liu Y., Li R., Zhang L. Expression and characterization of bioactive recombinant human α-lactalbumin in the milk of transgenic cloned cows. J. Dairy Sci. 2008;91:4466–4476. doi: 10.3168/jds.2008-1189.
    1. Mossberg A., Wullt B., Gustafsson L., Månsson W., Ljunggren E., Svanborg C. Bladder cancers respond to intravesical instillation of (HAMLET human α-lactalbumin made lethal to tumor cells) Int. J. Cancer. 2007;121:1352–1359. doi: 10.1002/ijc.22810.
    1. Gibbs S. Breakthrough in the treatment of warts? Arch. Derm. 2006;142:767–768. doi: 10.1001/archderm.142.6.767.
    1. De Caro C., Leo A., Nesci V., Ghelardini C., di Cesare Mannelli L., Striano P., Avagliano C., Calignano A., Mainardi P., Constanti A. Intestinal inflammation increases convulsant activity and reduces antiepileptic drug efficacy in a mouse model of epilepsy. Sci. Rep. 2019;9:1–10. doi: 10.1038/s41598-019-50542-0.
    1. Citraro R., Scicchitano F., De Fazio S., Raggio R., Mainardi P., Perucca E., De Sarro G., Russo E. Preclinical activity profile of α-lactoalbumin, a whey protein rich in tryptophan, in rodent models of seizures and epilepsy. Epilepsy Res. 2011;95:60–69. doi: 10.1016/j.eplepsyres.2011.02.013.
    1. Russo E., Scicchitano F., Citraro R., Aiello R., Camastra C., Mainardi P., Chimirri S., Perucca E., Donato G., De Sarro G. Protective activity of α-lactoalbumin (ALAC), a whey protein rich in tryptophan, in rodent models of epileptogenesis. Neuroscience. 2012;226:282–288. doi: 10.1016/j.neuroscience.2012.09.021.
    1. Errichiello L., Pezzella M., Santulli L., Striano S., Zara F., Minetti C., Mainardi P., Striano P. A proof-of-concept trial of the whey protein alfa-lactalbumin in chronic cortical myoclonus. Mov. Disord. 2011;26:2573–2575. doi: 10.1002/mds.23908.
    1. Mainardi P., Leonardi A., Albano C. Potentiation of brain serotonin activity may inhibit seizures, especially in drug-resistant epilepsy. Med. Hypotheses. 2008;70:876–879. doi: 10.1016/j.mehy.2007.06.039.
    1. Superti F. Lactoferrin from Bovine Milk: A Protective Companion for Life. Nutrients. 2020;12:2562. doi: 10.3390/nu12092562.
    1. Fernandes K.E., Carter D.A. The antifungal activity of lactoferrin and its derived peptides: Mechanisms of action and synergy with drugs against fungal pathogens. Front. Microbiol. 2017;8:2. doi: 10.3389/fmicb.2017.00002.
    1. Ellison R.T., 3rd, Giehl T.J. Killing of gram-negative bacteria by lactoferrin and lysozyme. J. Clin. Investig. 1991;88:1080–1091. doi: 10.1172/JCI115407.
    1. León-Sicairos N., López-Soto F., Reyes-López M., Godínez-Vargas D., Ordaz-Pichardo C., De La Garza M. Amoebicidal activity of milk, apo-lactoferrin, sIgA and lysozyme. Clin. Med. Res. 2006;4:106–113. doi: 10.3121/cmr.4.2.106.
    1. Ward P.P., Paz E., Conneely O.M. Lactoferrin. Cell. Mol. Life Sci. 2005;62:2540. doi: 10.1007/s00018-005-5369-8.
    1. Berlutti F., Pantanella F., Natalizi T., Frioni A., Paesano R., Polimeni A., Valenti P. Antiviral properties of lactoferrin—A natural immunity molecule. Molecules. 2011;16:6992–7018. doi: 10.3390/molecules16086992.
    1. Peroni D.G., Fanos V. Lactoferrin is an important factor when breastfeeding and COVID-19 are considered. Acta Paediatr. 2020;109:2139–2140. doi: 10.1111/apa.15417.
    1. Legrand D. Lactoferrin, a key molecule in immune and inflammatory processes. Biochem. Cell Biol. 2012;90:252–268. doi: 10.1139/o11-056.
    1. Sharma D., Shastri S., Sharma P. Role of lactoferrin in neonatal care: A systematic review. J. Matern. Neonatal Med. 2017;30:1920–1932. doi: 10.1080/14767058.2016.1232384.
    1. Kawakami H., Lonnerdal B. Isolation and function of a receptor for human lactoferrin in human fetal intestinal brush-border membranes. Am. J. Physiol. Liver Physiol. 1991;261:G841–G846. doi: 10.1152/ajpgi.1991.261.5.G841.
    1. Edde L., Hipolito R.B., Hwang F.F.Y., Headon D.R., Shalwitz R.A., Sherman M.P. Lactoferrin protects neonatal rats from gut-related systemic infection. Am. J. Physiol. Liver Physiol. 2001;281:G1140–G1150. doi: 10.1152/ajpgi.2001.281.5.G1140.
    1. Ke C., Lan Z., Hua L., Ying Z., Humina X., Jia S., Weizheng T., Ping Y., Lingying C., Meng M. Iron metabolism in infants: Influence of bovine lactoferrin from iron-fortified formula. Nutrition. 2015;31:304–309. doi: 10.1016/j.nut.2014.07.006.
    1. King J.C., Jr., Cummings G.E., Guo N., Trivedi L., Readmond B.X., Keane V., Feigelman S., de Waard R. A double-blind, placebo-controlled, pilot study of bovine lactoferrin supplementation in bottle-fed infants. J. Pediatr. Gastroenterol. Nutr. 2007;44:245–251. doi: 10.1097/01.mpg.0000243435.54958.68.
    1. Manzoni P., Rinaldi M., Cattani S., Pugni L., Romeo M.G., Messner H., Stolfi I., Decembrino L., Laforgia N., Vagnarelli F. Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: A randomized trial. JAMA. 2009;302:1421–1428. doi: 10.1001/jama.2009.1403.
    1. Manzoni P., Stolfi I., Messner H., Cattani S., Laforgia N., Romeo M.G., Bollani L., Rinaldi M., Gallo E., Quercia M. Bovine lactoferrin prevents invasive fungal infections in very low birth weight infants: A randomized controlled trial. Pediatrics. 2012;129:116–123. doi: 10.1542/peds.2011-0279.
    1. Ochoa T.J., Chea-Woo E., Baiocchi N., Pecho I., Campos M., Prada A., Valdiviezo G., Lluque A., Lai D., Cleary T.G. Randomized double-blind controlled trial of bovine lactoferrin for prevention of diarrhea in children. J. Pediatr. 2013;162:349–356. doi: 10.1016/j.jpeds.2012.07.043.
    1. Ochoa T.J., Mendoza K., Carcamo C., Zegarra J., Bellomo S., Jacobs J., Cossey V. Is Mother’s Own Milk Lactoferrin Intake Associated with Reduced Neonatal Sepsis, Necrotizing Enterocolitis, and Death? Neonatology. 2020;117:167–174. doi: 10.1159/000505663.
    1. Brock J.H. Lactoferrin–50 years on. Biochem. Cell Biol. 2012;90:245–251. doi: 10.1139/o2012-018.
    1. Sherman M.P., Sherman J., Arcinue R., Niklas V. Randomized control trial of human recombinant lactoferrin: A substudy reveals effects on the fecal microbiome of very low birth weight infants. J. Pediatr. 2016;173:S37–S42. doi: 10.1016/j.jpeds.2016.02.074.
    1. Sherman M.P., Adamkin D.H., Niklas V., Radmacher P., Sherman J., Wertheimer F., Petrak K. Randomized controlled trial of talactoferrin oral solution in preterm infants. J. Pediatr. 2016;175:68–73. doi: 10.1016/j.jpeds.2016.04.084.
    1. Pammi M., Abrams S.A. Enteral lactoferrin for the treatment of sepsis and necrotizing enterocolitis in neonates. Cochrane Database Syst. Rev. 2019;5 doi: 10.1002/14651858.CD007138.pub4.
    1. Tarnow-Mordi W.O., Abdel-Latif M.E., Martin A., Pammi M., Robledo K., Manzoni P., Osborn D., Lui K., Keech A., Hague W. The effect of lactoferrin supplementation on death or major morbidity in very low birthweight infants (LIFT): A multicentre, double-blind, randomised controlled trial. Lancet Child. Adolesc. Heal. 2020;4:444–454. doi: 10.1016/S2352-4642(20)30093-6.
    1. Guntupalli K., Dean N., Morris P.E., Bandi V., Margolis B., Rivers E., Levy M., Lodato R.F., Ismail P.M., Reese A. A phase 2 randomized, double-blind, placebo–controlled study of the safety and efficacy of talactoferrin in patients with severe sepsis. Crit. Care Med. 2013;41:706–716. doi: 10.1097/CCM.0b013e3182741551.
    1. De Bortoli N., Leonardi G., Ciancia E., Merlo A., Bellini M., Costa F., Mumolo M.G., Ricchiuti A., Cristiani F., Santi S. Helicobacter pylori Eradication: A Randomized Prospective Study of Triple Therapy: Versus: Triple Therapy Plus Lactoferrin and Probiotics. Am. J. Gastroenterol. 2007;102:951–956. doi: 10.1111/j.1572-0241.2007.01085.x.
    1. Laffan A.M., McKenzie R., Forti J., Conklin D., Marcinko R., Shrestha R., Bellantoni M., Greenough III W.B. Lactoferrin for the prevention of post-antibiotic diarrhoea. J. Health. Popul. Nutr. 2011;29:547. doi: 10.3329/jhpn.v29i6.9889.
    1. Kaito M., Iwasa M., Fujita N., Kobayashi Y., Kojima Y., Ikoma J., Imoto I., Adachi Y., Hamano H., Yamauchi K. Effect of lactoferrin in patients with chronic hepatitis C: Combination therapy with interferon and ribavirin. J. Gastroenterol. Hepatol. 2007;22:1894–1897. doi: 10.1111/j.1440-1746.2007.04858.x.
    1. Vitetta L., Coulson S., Beck S.L., Gramotnev H., Du S., Lewis S. The clinical efficacy of a bovine lactoferrin/whey protein Ig-rich fraction (Lf/IgF) for the common cold: A double blind randomized study. Complement. Med. 2013;21:164–171. doi: 10.1016/j.ctim.2012.12.006.
    1. Appelmelk B.J., An Y.-Q., Geerts M., Thijs B.G., De Boer H.A., MacLaren D.M., De Graaff J., Nuijens J.H. Lactoferrin is a lipid A-binding protein. Infect. Immun. 1994;62:2628–2632. doi: 10.1128/IAI.62.6.2628-2632.1994.
    1. Tung Y.-T., Chen H.-L., Yen C.-C., Lee P.-Y., Tsai H.-C., Lin M.-F., Chen C.-M. Bovine lactoferrin inhibits lung cancer growth through suppression of both inflammation and expression of vascular endothelial growth factor. J. Dairy Sci. 2013;96:2095–2106. doi: 10.3168/jds.2012-6153.
    1. Abdelmoneem M.A., Abd Elwakil M.M., Khattab S.N., Helmy M.W., Bekhit A.A., Abdulkader M.A., Zaky A., Teleb M., Elkhodairy K.A., Albericio F. Lactoferrin-dual drug nanoconjugate: Synergistic anti-tumor efficacy of docetaxel and the NF-κB inhibitor celastrol. Mater. Sci. Eng. C. 2020;118:111422. doi: 10.1016/j.msec.2020.111422.
    1. Kozu T., Iinuma G., Ohashi Y., Saito Y., Akasu T., Saito D., Alexander D.B., Iigo M., Kakizoe T., Tsuda H. Effect of orally administered bovine lactoferrin on the growth of adenomatous colorectal polyps in a randomized, placebo-controlled clinical trial. Cancer Prev. Res. 2009;2:975–983. doi: 10.1158/1940-6207.CAPR-08-0208.
    1. Parodi P.W. A role for milk proteins and their peptides in cancer prevention. Curr. Pharm. Des. 2007;13:813–828. doi: 10.2174/138161207780363059.
    1. Digumarti R., Wang Y., Raman G., Doval D.C., Advani S.H., Julka P.K., Parikh P.M., Patil S., Nag S., Madhavan J. A randomized, double-blind, placebo-controlled, phase II study of oral talactoferrin in combination with carboplatin and paclitaxel in previously untreated locally advanced or metastatic non-small cell lung cancer. J. Thorac. Oncol. 2011;6:1098–1103. doi: 10.1097/JTO.0b013e3182156250.
    1. Sun X., Jiang R., Przepiorski A., Reddy S., Palmano K.P., Krissansen G.W. “Iron-saturated” bovine lactoferrin improves the chemotherapeutic effects of tamoxifen in the treatment of basal-like breast cancer in mice. BMC Cancer. 2012;12:591. doi: 10.1186/1471-2407-12-591.
    1. Demmelmair H., Prell C., Timby N., Lönnerdal B. Benefits of lactoferrin, osteopontin and milk fat globule membranes for infants. Nutrients. 2017;9:817. doi: 10.3390/nu9080817.
    1. Hill D.R., Newburg D.S. Clinical applications of bioactive milk components. Nutr. Rev. 2015;73:463–476. doi: 10.1093/nutrit/nuv009.
    1. Dunne-Castagna V.P., Mills D.A., Lönnerdal B. Milk, Mucosal Immunity, and the Microbiome: Impact on the Neonate. Volume 94. Karger Publishers; Basel, Switzerland: 2020. Effects of milk secretory immunoglobulin A on the commensal microbiota; pp. 1–11.
    1. Tawfeek H.I., Najim N.H., Al-Mashikhi S. Efficacy of an infant formula containing anti-Escherichia coli colostral antibodies from hyperimmunized cows in preventing diarrhea in infants and children: A field trial. Int. J. Infect. Dis. 2003;7:120–128. doi: 10.1016/S1201-9712(03)90007-5.
    1. Otto W., Najnigier B., Stelmasiak T., Robins-Browne R.M. Randomized control trials using a tablet formulation of hyperimmune bovine colostrum to prevent diarrhea caused by enterotoxigenic Escherichia coli in volunteers. Scand. J. Gastroenterol. 2011;46:862–868. doi: 10.3109/00365521.2011.574726.
    1. Martín-Gómez S., Alvarez-Sánchez M.A., Rojo-Vázquez F.A. Oral administration of hyperimmune anti-Cryptosporidium parvum ovine colostral whey confers a high level of protection against cryptosporidiosis in newborn NMRI mice. J. Parasitol. 2005;91:674–678. doi: 10.1645/GE-3423.
    1. Steele J., Sponseller J., Schmidt D., Cohen O., Tzipori S. Hyperimmune bovine colostrum for treatment of GI infections: A review and update on Clostridium difficile. Hum. Vaccin. Immunother. 2013;9:1565–1568. doi: 10.4161/hv.24078.
    1. Sponseller J.K., Steele J.A., Schmidt D.J., Kim H.B., Beamer G., Sun X., Tzipori S. Hyperimmune bovine colostrum as a novel therapy to combat Clostridium difficile infection. J. Infect. Dis. 2015;211:1334–1341. doi: 10.1093/infdis/jiu605.
    1. Kramski M., Lichtfuss G.F., Navis M., Isitman G., Wren L., Rawlin G., Center R.J., Jaworowski A., Kent S.J., Purcell D.F.J. Anti-HIV-1 antibody-dependent cellular cytotoxicity mediated by hyperimmune bovine colostrum I g G. Eur. J. Immunol. 2012;42:2771–2781. doi: 10.1002/eji.201242469.
    1. Schack L., Lange A., Kelsen J., Agnholt J., Christensen B., Petersen T.E., Sørensen E.S. Considerable variation in the concentration of osteopontin in human milk, bovine milk, and infant formulas. J. Dairy Sci. 2009;92:5378–5385. doi: 10.3168/jds.2009-2360.
    1. Azuma N., Maeta A., Fukuchi K., Kanno C. A rapid method for purifying osteopontin from bovine milk and interaction between osteopontin and other milk proteins. Int. Dairy J. 2006;16:370–378. doi: 10.1016/j.idairyj.2005.03.012.
    1. Kainonen E., Rautava S., Isolauri E. Immunological programming by breast milk creates an anti-inflammatory cytokine milieu in breast-fed infants compared to formula-fed infants. Br. J. Nutr. 2013;109:1962–1970. doi: 10.1017/S0007114512004229.
    1. West C.E., Kvistgaard A.S., Peerson J.M., Donovan S.M., Peng Y., Lönnerdal B. Effects of osteopontin-enriched formula on lymphocyte subsets in the first 6 months of life: A randomized controlled trial. Pediatr. Res. 2017;82:63–71. doi: 10.1038/pr.2017.77.
    1. Joung S., Fil J.E., Heckmann A.B., Kvistgaard A.S., Dilger R.N. Early-Life Supplementation of Bovine Milk Osteopontin Supports Neurodevelopment and Influences Exploratory Behavior. Nutrients. 2020;12:2206. doi: 10.3390/nu12082206.
    1. Lindquist S., Hernell O. Lipid digestion and absorption in early life: An update. Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:314–320. doi: 10.1097/MCO.0b013e328337bbf0.
    1. Andersson Y., Sävman K., Bläckberg L., Hernell O. Pasteurization of mother’s own milk reduces fat absorption and growth in preterm infants. Acta Paediatr. 2007;96:1445–1449. doi: 10.1111/j.1651-2227.2007.00450.x.
    1. Casper C., Carnielli V.P., Hascoet J.-M., Lapillonne A., Maggio L., Timdahl K., Olsson B., Vågerö M., Hernell O. rhBSSL improves growth and LCPUFA absorption in preterm infants fed formula or pasteurized breast milk. J. Pediatr. Gastroenterol. Nutr. 2014;59:61. doi: 10.1097/MPG.0000000000000365.
    1. Casper C., Hascoet J.-M., Ertl T., Gadzinowski J.S., Carnielli V., Rigo J., Lapillonne A., Couce M.L., Vågerö M., Palmgren I. Recombinant bile salt-stimulated lipase in preterm infant feeding: A randomized phase 3 study. PLoS ONE. 2016;11:e0156071. doi: 10.1371/journal.pone.0156071.
    1. Ruvoën-Clouet N., Mas E., Marionneau S., Guillon P., Lombardo D., Le Pendu J. Bile-salt-stimulated lipase and mucins from milk of ‘secretor’mothers inhibit the binding of Norwalk virus capsids to their carbohydrate ligands. Biochem. J. 2006;393:627–634. doi: 10.1042/BJ20050898.
    1. Naarding M.A., Dirac A.M., Ludwig I.S., Speijer D., Lindquist S., Vestman E.-L., Stax M.J., Geijtenbeek T.B.H., Pollakis G., Hernell O. Bile salt-stimulated lipase from human milk binds DC-SIGN and inhibits human immunodeficiency virus type 1 transfer to CD4+ T cells. Antimicrob. Agents Chemother. 2006;50:3367–3374. doi: 10.1128/AAC.00593-06.
    1. Ballard O., Morrow A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. 2013;60:49–74.
    1. Da Costa T.H.M., Haisma H., Wells J.C.K., Mander A.P., Whitehead R.G., Bluck L.J.C. How much human milk do infants consume? Data from 12 countries using a standardized stable isotope methodology. J. Nutr. 2010;140:2227–2232. doi: 10.3945/jn.110.123489.
    1. Van Sadelhoff J.H.J., Van de Heijning B.J.M., Stahl B., Amodio S., Rings E.H.H.M., Mearin M.L., Garssen J., Hartog A. Longitudinal variation of amino acid levels in human milk and their associations with infant gender. Nutrients. 2018;10:1233. doi: 10.3390/nu10091233.
    1. Zhang Z., Adelman A.S., Rai D., Boettcher J., Lőnnerdal B. Amino acid profiles in term and preterm human milk through lactation: A systematic review. Nutrients. 2013;5:4800–4821. doi: 10.3390/nu5124800.
    1. Van Sadelhoff J.H.J., Wiertsema S.P., Garssen J., Hogenkamp A. Free Amino Acids in Human Milk: A Potential Role for Glutamine and Glutamate in the Protection Against Neonatal Allergies and Infections. Front. Immunol. 2020;11:1–26. doi: 10.3389/fimmu.2020.01007.
    1. Larnkjær A., Bruun S., Pedersen D., Zachariassen G., Barkholt V., Agostoni C., Christian M., Husby S., Michaelsen K.F. Free amino acids in human milk and associations with maternal anthropometry and infant growth. J. Pediatr. Gastroenterol. Nutr. 2016;63:374–378. doi: 10.1097/MPG.0000000000001195.
    1. Baldeón M.E., Zertuche F., Flores N., Fornasini M. Free amino acid content in human milk is associated with infant gender and weight gain during the first four months of lactation. Nutrients. 2019;11:2239. doi: 10.3390/nu11092239.
    1. Koletzko B. Glutamate supply and metabolism in infants. Ann. Nutr. Metab. 2018;73:29–35. doi: 10.1159/000494780.
    1. Italianer M.F., Naninck E.F.G., Roelants J.A., van der Horst G.T.J., Reiss I.K.M., Van Goudoever J.B., Joosten K.F.M., Chaves I., Vermeulen M.J. Circadian Variation in Human Milk Composition, a Systematic Review. Nutrients. 2020;12:2328. doi: 10.3390/nu12082328.
    1. He X., Sotelo-Orozco J., Rudolph C., Lönnerdal B., Slupsky C.M. The Role of Protein and Free Amino Acids on Intake, Metabolism, and Gut Microbiome: A Comparison Between Breast-Fed and Formula-Fed Rhesus Monkey Infants. Front. Pediatr. 2020;7:563. doi: 10.3389/fped.2019.00563.
    1. Bischoff R., Schlüter H. Amino acids: Chemistry, functionality and selected non-enzymatic post-translational modifications. J. Proteom. 2012;75:2275–2296. doi: 10.1016/j.jprot.2012.01.041.
    1. Heird W.C. Taurine in neonatal nutrition–revisited. Arch. Dis. Child. Fetal Neonatal Ed. 2004;89:F473–F474. doi: 10.1136/adc.2004.055095.
    1. Wharton B.A., Morley R., Isaacs E.B., Cole T.J., Lucas A. Low plasma taurine and later neurodevelopment. Arch. Dis. Child. Fetal Neonatal Ed. 2004;89:F497–F498. doi: 10.1136/adc.2003.048389.
    1. Ripps H., Shen W. taurine: A “very essential” amino acid. Mol. Vis. 2012;18:2673.
    1. Penn D., Dolderer M., Schmidt-Sommerfeld E. Carnitine concentrations in the milk of different species and infant formulas. Neonatology. 1987;52:70–79. doi: 10.1159/000242686.
    1. Campoy C., Pedrosa T., Rivero M., Bayes R. Papel de la Carnitina en la Inhibición de la Proteólisis Muscular en el Período Neonatal. [(accessed on 4 February 2021)];1994 Available online: .
    1. Tang S., Xu S., Lu X., Gullapalli R.P., McKenna M.C., Waddell J. Neuroprotective effects of acetyl-l-carnitine on neonatal hypoxia ischemia-induced brain injury in rats. Dev. Neurosci. 2016;38:384–396. doi: 10.1159/000455041.
    1. Aggett P.J., Haschke F., Heine W., Hernell O., Koletzko B., Launiala K., Rubino A., Schöch G., Senterre J., Tormo R. Comment on the content and composition of lipids in infant formulas. Acta Pædiatrica. 1991;80:887–896. doi: 10.1111/j.1651-2227.1991.tb11969.x.
    1. Koletzko B., Baker S., Cleghorn G., Neto U.F., Gopalan S., Hernell O., Hock Q.S., Jirapinyo P., Lonnerdal B., Pencharz P. Global standard for the composition of infant formula: Recommendations of an ESPGHAN coordinated international expert group. J. Pediatr. Gastroenterol. Nutr. 2005;41:584–599. doi: 10.1097/01.mpg.0000187817.38836.42.
    1. Ter Steege J.C.A., Buurman W.A., Forget P.-P. Spermine induces maturation of the immature intestinal immune system in neonatal mice. J. Pediatr. Gastroenterol. Nutr. 1997;25:332–340. doi: 10.1097/00005176-199709000-00017.
    1. Kalac P., Krausová P. A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chem. 2005;90:219–230. doi: 10.1016/j.foodchem.2004.03.044.
    1. Larqué E., Sabater-Molina M., Zamora S. Biological significance of dietary polyamines. Nutrition. 2007;23:87–95. doi: 10.1016/j.nut.2006.09.006.
    1. LoÈser C. Polyamines in human and animal milk. Br. J. Nutr. 2000;84:55–58. doi: 10.1017/S0007114500002257.
    1. Motyl T., Płoszaj T., Wojtasik A., Kukulska W., Podgurniak M. Polyamines in cow’s and sow’s milk. Comp. Biochem. Physiol. Part. B Biochem. Mol. Biol. 1995;111:427–433. doi: 10.1016/0305-0491(95)00010-6.
    1. Romo M., Jes M. Mice exposed to infant formula enriched with polyamines: Impact on host transcriptome and microbiome. Food Funct. 2017;8:1622–1626.
    1. Pingarrón C., Duque A., López A.I., Ferragud J. Evaluation of oral supplementation with a casein hydrolysate-based formula to favor the clearance of HR-HPV infections and their derived lesions. Preprints. 2019 doi: 10.20944/preprints201912.0029.v1.
    1. Trabulsi J., Capeding R., Lebumfacil J., Ramanujam K., Feng P., McSweeney S., Harris B., DeRusso P. Effect of an α-lactalbumin-enriched infant formula with lower protein on growth. Eur. J. Clin. Nutr. 2011;65:167–174. doi: 10.1038/ejcn.2010.236.
    1. Zavaleta N., Figueroa D., Rivera J., Sánchez J., Alfaro S., Lönnerdal B. Efficacy of rice-based oral rehydration solution containing recombinant human lactoferrin and lysozyme in Peruvian children with acute diarrhea. J. Pediatr. Gastroenterol. Nutr. 2007;44:258–264. doi: 10.1097/MPG.0b013e31802c41b7.
    1. Cheng W.D., Wold K.J., Bollinger L.B., Ordiz M.I., Shulman R.J., Maleta K.M., Manary M.J., Trehan I. Supplementation with lactoferrin and lysozyme ameliorates environmental enteric dysfunction: A double-blind, randomized, placebo-controlled trial. Am. J. Gastroenterol. 2019;114:671–678. doi: 10.14309/ajg.0000000000000170.
    1. Lönnerdal B., Kvistgaard A.S., Peerson J.M., Donovan S.M., Peng Y. Growth, nutrition, and cytokine response of breast-fed infants and infants fed formula with added bovine osteopontin. J. Pediatr. Gastroenterol. Nutr. 2016;62:650–657. doi: 10.1097/MPG.0000000000001005.
    1. Moe-Byrne T., Brown J.V.E., McGuire W. Glutamine supplementation to prevent morbidity and mortality in preterm infants. Cochrane Database Syst. Rev. 2016 doi: 10.1002/14651858.CD001457.pub6.
    1. Chang C.-J., Chao J.C.-J. Effect of human milk and epidermal growth factor on growth of human intestinal Caco-2 cells. J. Pediatr. Gastroenterol. Nutr. 2002;34:394–401. doi: 10.1097/00005176-200204000-00015.
    1. Knoop K.A., Coughlin P.E., Floyd A.N., Ndao I.M., Hall-Moore C., Shaikh N., Gasparrini A.J., Rusconi B., Escobedo M., Good M. Maternal activation of the EGFR prevents translocation of gut-residing pathogenic Escherichia coli in a model of late-onset neonatal sepsis. Proc. Natl. Acad. Sci. USA. 2020;117:7941–7949. doi: 10.1073/pnas.1912022117.
    1. Boesmans W., Gomes P., Janssens J., Tack J., Berghe P. Vanden Brain-derived neurotrophic factor amplifies neurotransmitter responses and promotes synaptic communication in the enteric nervous system. Gut. 2008;57:314–322. doi: 10.1136/gut.2007.131839.
    1. Juul A. Serum levels of insulin-like growth factor I and its binding proteins in health and disease. Growth Horm. Igf Res. Off. J. Growth Horm. Res. Soc. Int. Igf Res. Soc. 2003;13:113–170. doi: 10.1016/S1096-6374(03)00038-8.
    1. Galante L., Pundir S., Lagström H., Rautava S., Reynolds C.M., Milan A.M., Cameron-Smith D., Vickers M.H. Growth Factor Concentrations in Human Milk Are Associated With Infant Weight and BMI From Birth to 5 Years. Front. Nutr. 2020;7:110. doi: 10.3389/fnut.2020.00110.
    1. Bafico A., Aaronson S.A. In: Classification of Growth Factors and Their Receptors. Holland-Frei Cancer Medicine. 6th ed. Kufe D.W., Pollock R.E., Weichselbaum R.R., Bast R.C. Jr., Gansler T.S., Holland J.F., Frei E. III, editors. BC Decker; New York, NY, USA: 2003.
    1. Ogawa J., Sasahara A., Yoshida T., Sira M.M., Futatani T., Kanegane H., Miyawaki T. Role of transforming growth factor-β in breast milk for initiation of IgA production in newborn infants. Early Hum. Dev. 2004;77:67–75. doi: 10.1016/j.earlhumdev.2004.01.005.
    1. Verhasselt V., Milcent V., Cazareth J., Kanda A., Fleury S., Dombrowicz D., Glaichenhaus N., Julia V. Breast milk–mediated transfer of an antigen induces tolerance and protection from allergic asthma. Nat. Med. 2008;14:170–175. doi: 10.1038/nm1718.
    1. Rautava S., Lu L., Nanthakumar N.N., Dubert-Ferrandon A., Walker W.A. TGF-β2 induces maturation of immature human intestinal epithelial cells and inhibits inflammatory cytokine responses induced via the NF-κB pathway. J. Pediatr. Gastroenterol. Nutr. 2012;54:630. doi: 10.1097/MPG.0b013e31823e7c29.
    1. Oddy W.H., Rosales F. A systematic review of the importance of milk TGF-β on immunological outcomes in the infant and young child. Pediatr. Allergy Immunol. 2010;21:47–59. doi: 10.1111/j.1399-3038.2009.00913.x.
    1. Day A.S., Whitten K.E., Lemberg D.A., Clarkson C., Vitug-Sales M., Jackson R., Bohane T.D. Exclusive enteral feeding as primary therapy for Crohn’s disease in Australian children and adolescents: A feasible and effective approach. J. Gastroenterol. Hepatol. 2006;21:1609–1614. doi: 10.1111/j.1440-1746.2006.04294.x.
    1. Soo J., Malik B.A., Turner J.M., Persad R., Wine E., Siminoski K., Huynh H.Q. Use of exclusive enteral nutrition is just as effective as corticosteroids in newly diagnosed pediatric Crohn’s disease. Dig. Dis. Sci. 2013;58:3584–3591. doi: 10.1007/s10620-013-2855-y.
    1. Khaleva E., Gridneva Z., Geddes D.T., Oddy W.H., Colicino S., Blyuss O., Boyle R.J., Warner J.O., Munblit D. Transforming growth factor beta in human milk and allergic outcomes in children: A systematic review. Clin. Exp. Allergy. 2019;49:1201–1213. doi: 10.1111/cea.13409.
    1. Fell J.M.E. Control of systemic and local inflammation with transforming growth factor β containing formulas. J. Parenter. Enter. Nutr. 2005;29:S126–S133. doi: 10.1177/01486071050290S4S126.
    1. Oz H.S., Ray M., Chen T.S., McClain C.J. Efficacy of a transforming growth factor β2 containing nutritional support formula in a murine model of inflammatory bowel disease. J. Am. Coll. Nutr. 2004;23:220–226. doi: 10.1080/07315724.2004.10719364.
    1. Ferreira T.M.R., Albuquerque A., Cancela Penna F.G., Macedo Rosa R., Correia M.I.T.D., Barbosa A.J.A., Salles Cunha A., de Ferrari M.L.A. Effect of Oral Nutrition Supplements and TGF-β2 on Nutrition and Inflammatory Patterns in Patients With Active Crohn’s Disease. Nutr. Clin. Pr. 2020;35:885–893. doi: 10.1002/ncp.10448.
    1. Levine A., Wine E., Assa A., Boneh R.S., Shaoul R., Kori M., Cohen S., Peleg S., Shamaly H., On A. Crohn’s disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterology. 2019;157:440–450. doi: 10.1053/j.gastro.2019.04.021.
    1. Gallier S., Vocking K., Post J.A., Van De Heijning B., Acton D., Van Der Beek E.M., Van Baalen T. A novel infant milk formula concept: Mimicking the human milk fat globule structure. Colloids Surf. B Biointerfaces. 2015;136:329–339. doi: 10.1016/j.colsurfb.2015.09.024.
    1. Galley J.D., Besner G.E. The therapeutic potential of breast milk-derived extracellular vesicles. Nutrients. 2020;12:745. doi: 10.3390/nu12030745.
    1. Kosaka N., Izumi H., Sekine K., Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence. 2010;1:7. doi: 10.1186/1758-907X-1-7.
    1. Liao Y., Du X., Li J., Lönnerdal B. Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Mol. Nutr. Food Res. 2017;61:1700082. doi: 10.1002/mnfr.201700082.
    1. Lonnerdal B., Du X., Liao Y., Li J. Human milk exosomes resist digestion in vitro and are internalized by human intestinal cells. FASEB J. 2015;29:121–123.
    1. Zempleni J., Aguilar-Lozano A., Sadri M., Sukreet S., Manca S., Wu D., Zhou F., Mutai E. Biological activities of extracellular vesicles and their cargos from bovine and human milk in humans and implications for infants. J. Nutr. 2017;147:3–10. doi: 10.3945/jn.116.238949.
    1. Kim K.-U., Kim W.-H., Jeong C.H., Yi D.Y., Min H. More than Nutrition: Therapeutic Potential of Breast Milk-Derived Exosomes in Cancer. Int. J. Mol. Sci. 2020;21:7327. doi: 10.3390/ijms21197327.
    1. Ortega-Anaya J., Jiménez-Flores R. Symposium review: The relevance of bovine milk phospholipids in human nutrition—Evidence of the effect on infant gut and brain development. J. Dairy Sci. 2019;102:2738–2748. doi: 10.3168/jds.2018-15342.
    1. Admyre C., Johansson S.M., Qazi K.R., Filén J.-J., Lahesmaa R., Norman M., Neve E.P.A., Scheynius A., Gabrielsson S. Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 2007;179:1969–1978. doi: 10.4049/jimmunol.179.3.1969.
    1. Munagala R., Aqil F., Jeyabalan J., Gupta R.C. Bovine milk-derived exosomes for drug delivery. Cancer Lett. 2016;371:48–61. doi: 10.1016/j.canlet.2015.10.020.
    1. Arntz O.J., Pieters B.C.H., Oliveira M.C., Broeren M.G.A., Bennink M.B., de Vries M., van Lent P.L.E.M., Koenders M.I., van den Berg W.B., van der Kraan P.M. Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models. Mol. Nutr. Food Res. 2015;59:1701–1712. doi: 10.1002/mnfr.201500222.
    1. Betker J.L., Angle B.M., Graner M.W., Anchordoquy T.J. The potential of exosomes from cow milk for oral delivery. J. Pharm. Sci. 2019;108:1496–1505. doi: 10.1016/j.xphs.2018.11.022.
    1. Carobolante G., Mantaj J., Ferrari E., Vllasaliu D. Cow Milk and intestinal epithelial cell-derived extracellular vesicles as systems for enhancing oral drug delivery. Pharmaceutics. 2020;12:226. doi: 10.3390/pharmaceutics12030226.
    1. Das M., Musetti S., Huang L. RNA interference-based cancer drugs: The roadblocks, and the “delivery” of the promise. Nucleic Acid. 2019;29:61–66. doi: 10.1089/nat.2018.0762.
    1. Chen P.-W., Lin Y.-L., Huang M.-S. Profiles of commensal and opportunistic bacteria in human milk from healthy donors in Taiwan. J. Food Drug Anal. 2018;26:1235–1244. doi: 10.1016/j.jfda.2018.03.004.
    1. Le Doare K., Holder B., Bassett A., Pannaraj P.S. Mother’s milk: A purposeful contribution to the development of the infant microbiota and immunity. Front. Immunol. 2018;9:361. doi: 10.3389/fimmu.2018.00361.
    1. Fitzstevens J.L., Smith K.C., Hagadorn J.I., Caimano M.J., Matson A.P., Brownell E.A. Systematic review of the human milk microbiota. Nutr. Clin. Pr. 2017;32:354–364. doi: 10.1177/0884533616670150.
    1. Zimmermann P., Curtis N. Breast milk microbiota: A review of the factors that influence composition. J. Infect. 2020;81:17–47. doi: 10.1016/j.jinf.2020.01.023.
    1. Browne P.D., Aparicio M., Alba C., Hechler C., Beijers R., Rodríguez J.M., Fernández L., de Weerth C. Human milk microbiome and maternal postnatal psychosocial distress. Front. Microbiol. 2019;10:2333. doi: 10.3389/fmicb.2019.02333.
    1. Cabrera-Rubio R., Collado M.C., Laitinen K., Salminen S., Isolauri E., Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 2012;96:544–551. doi: 10.3945/ajcn.112.037382.
    1. Moossavi S., Azad M.B. Origins of human milk microbiota: New evidence and arising questions. Gut Microbes. 2020;12:1667722. doi: 10.1080/19490976.2019.1667722.
    1. Rodríguez J.M. The origin of human milk bacteria: Is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv. Nutr. 2014;5:779–784. doi: 10.3945/an.114.007229.
    1. Heikkilä M.P., Saris P.E.J. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J. Appl. Microbiol. 2003;95:471–478. doi: 10.1046/j.1365-2672.2003.02002.x.
    1. Pannaraj P.S., Li F., Cerini C., Bender J.M., Yang S., Rollie A., Adisetiyo H., Zabih S., Lincez P.J., Bittinger K. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. Jama Pediatr. 2017;171:647–654. doi: 10.1001/jamapediatrics.2017.0378.
    1. Murphy K., Curley D., O’Callaghan T.F., O’Shea C.-A., Dempsey E.M., O’Toole P.W., Ross R.P., Ryan C.A., Stanton C. The composition of human milk and infant faecal microbiota over the first three months of life: A pilot study. Sci. Rep. 2017;7:1–10. doi: 10.1038/srep40597.
    1. Asnicar F., Manara S., Zolfo M., Truong D.T., Scholz M., Armanini F., Ferretti P., Gorfer V., Pedrotti A., Tett A. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. MSystems. 2017;2 doi: 10.1128/mSystems.00164-16.
    1. Biagi E., Quercia S., Aceti A., Beghetti I., Rampelli S., Turroni S., Faldella G., Candela M., Brigidi P., Corvaglia L. The bacterial ecosystem of mother’s milk and infant’s mouth and gut. Front. Microbiol. 2017;8:1214. doi: 10.3389/fmicb.2017.01214.
    1. Jost T., Lacroix C., Braegger C.P., Chassard C. New insights in gut microbiota establishment in healthy breast fed neonates. PLoS ONE. 2012;7:e44595. doi: 10.1371/journal.pone.0044595.
    1. Zimmermann P., Curtis N. Factors influencing the intestinal microbiome during the first year of life. Pediatr. Infect. Dis. J. 2018;37:e315–e335. doi: 10.1097/INF.0000000000002103.
    1. Singh A., Mittal M. Neonatal microbiome–a brief review. J. Matern. Neonatal Med. 2020;33:3841–3848. doi: 10.1080/14767058.2019.1583738.
    1. Biesbroek G., Bosch A.A.T.M., Wang X., Keijser B.J.F., Veenhoven R.H., Sanders E.A.M., Bogaert D. The impact of breastfeeding on nasopharyngeal microbial communities in infants. Am. J. Respir. Crit. Care Med. 2014;190:298–308. doi: 10.1164/rccm.201401-0073OC.
    1. Aakko J., Kumar H., Rautava S., Wise A., Autran C., Bode L., Isolauri E., Salminen S. Human milk oligosaccharide categories define the microbiota composition in human colostrum. Benef. Microbes. 2017;8:563–567. doi: 10.3920/BM2016.0185.
    1. Van den Elsen L.W.J., Garssen J., Burcelin R., Verhasselt V. Shaping the gut microbiota by breastfeeding: The gateway to allergy prevention? Front. Pediatr. 2019;7:47. doi: 10.3389/fped.2019.00047.
    1. Lyons K.E., Ryan C.A., Dempsey E.M., Ross R.P., Stanton C. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients. 2020;12:1039. doi: 10.3390/nu12041039.
    1. World Health Organization . WHO Recommendations on Postnatal Care of The Mother and Newborn. World Health Organization; Geneva, Switzerland: 2014.
    1. Arrieta M.-C., Stiemsma L.T., Amenyogbe N., Brown E.M., Finlay B. The intestinal microbiome in early life: Health and disease. Front. Immunol. 2014;5:427. doi: 10.3389/fimmu.2014.00427.
    1. Cox L.M., Yamanishi S., Sohn J., Alekseyenko A.V., Leung J.M., Cho I., Kim S.G., Li H., Gao Z., Mahana D. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–721. doi: 10.1016/j.cell.2014.05.052.
    1. Houghteling P.D., Walker W.A. Why is initial bacterial colonization of the intestine important to the infant’s and child’s health? J. Pediatr. Gastroenterol. Nutr. 2015;60:294. doi: 10.1097/MPG.0000000000000597.
    1. Stewart C.J., Ajami N.J., O’Brien J.L., Hutchinson D.S., Smith D.P., Wong M.C., Ross M.C., Lloyd R.E., Doddapaneni H., Metcalf G.A. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562:583–588. doi: 10.1038/s41586-018-0617-x.
    1. Ding T., Schloss P.D. Dynamics and associations of microbial community types across the human body. Nature. 2014;509:357–360. doi: 10.1038/nature13178.
    1. Plaza-Diaz J., Ruiz-Ojeda F.J., Gil-Campos M., Gil A. Mechanisms of action of probiotics. Adv. Nutr. 2019;10:S49–S66. doi: 10.1093/advances/nmy063.
    1. Arboleya S., Ruas-Madiedo P., Margolles A., Solís G., Salminen S., Clara G., Gueimonde M. Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. Int. J. Food Microbiol. 2011;149:28–36. doi: 10.1016/j.ijfoodmicro.2010.10.036.
    1. Jamyuang C., Phoonlapdacha P., Chongviriyaphan N., Chanput W., Nitisinprasert S., Nakphaichit M. Characterization and probiotic properties of Lactobacilli from human breast milk. 3 Biotech. 2019;9:398. doi: 10.1007/s13205-019-1926-y.
    1. Jiang M., Zhang F., Wan C., Xiong Y., Shah N.P., Wei H., Tao X. Evaluation of probiotic properties of Lactobacillus plantarum WLPL04 isolated from human breast milk. J. Dairy Sci. 2016;99:1736–1746. doi: 10.3168/jds.2015-10434.
    1. Kozak K., Charbonneau D., Sanozky-Dawes R., Klaenhammer T. Characterization of bacterial isolates from the microbiota of mothers’ breast milk and their infants. Gut Microbes. 2015;6:341–351. doi: 10.1080/19490976.2015.1103425.
    1. Mu Q., Tavella V.J., Luo X.M. Role of Lactobacillus reuteri in human health and diseases. Front. Microbiol. 2018;9:757. doi: 10.3389/fmicb.2018.00757.
    1. Reis N.A., Saraiva M.A.F., Duarte E.A.A., de Carvalho E.A., Vieira B.B., Evangelista-Barreto N.S. Probiotic properties of lactic acid bacteria isolated from human milk. J. Appl. Microbiol. 2016;121:811–820. doi: 10.1111/jam.13173.
    1. Lamas A., Sanjulian L., Cepeda A., Fente C., Regal P. Milk microbiota: A source of antimicrobial-producing bacteria with potential application in food science. Proceedings. 2020;70:7720. doi: 10.3390/foods_2020-07720.
    1. Kumar H., Collado M.C., Wopereis H., Salminen S., Knol J., Roeselers G. The Bifidogenic Effect Revisited—Ecology and Health Perspectives of Bifidobacterial Colonization in Early Life. Microorganisms. 2020;8:1855. doi: 10.3390/microorganisms8121855.
    1. Nagpal R., Wang S., Ahmadi S., Hayes J., Gagliano J., Subashchandrabose S., Kitzman D.W., Becton T., Read R., Yadav H. Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Sci. Rep. 2018;8:1–15. doi: 10.1038/s41598-018-30114-4.
    1. Oddi S., Binetti A., Burns P., Cuatrin A., Reinheimer J., Salminen S., Vinderola G. Occurrence of bacteria with technological and probiotic potential in Argentinian human breast-milk. Benef. Microbes. 2020;11:685–702. doi: 10.3920/BM2020.0054.
    1. Oddi S., Huber P., Duque A.L.R.F., Vinderola G., Sivieri K. Breast-milk derived potential probiotics as strategy for the management of childhood obesity. Food Res. Int. 2020;137:109673. doi: 10.1016/j.foodres.2020.109673.
    1. Simpson M.R., Avershina E., Storrø O., Johnsen R., Rudi K., Øien T. Breastfeeding-associated microbiota in human milk following supplementation with Lactobacillus rhamnosus GG, Lactobacillus acidophilus La-5, and Bifidobacterium animalis ssp. lactis Bb-12. J. Dairy Sci. 2018;101:889–899. doi: 10.3168/jds.2017-13411.
    1. Simpson M.R., Rø A.D.B., Grimstad Ø., Johnsen R., Storrø O., Øien T. Atopic dermatitis prevention in children following maternal probiotic supplementation does not appear to be mediated by breast milk TSLP or TGF-β. Clin. Transl. Allergy. 2016;6:27. doi: 10.1186/s13601-016-0119-6.
    1. Barker M., Adelson P., Peters M.D.J., Steen M. Probiotics and human lactational mastitis: A scoping review. Women Birth. 2020;33:e483–e491. doi: 10.1016/j.wombi.2020.01.001.
    1. Ferretti P., Pasolli E., Tett A., Asnicar F., Gorfer V., Fedi S., Armanini F., Truong D.T., Manara S., Zolfo M. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133–145. doi: 10.1016/j.chom.2018.06.005.
    1. Santacruz A., Collado M.C., Garcia-Valdes L., Segura M.T., Martin-Lagos J.A., Anjos T., Marti-Romero M., Lopez R.M., Florido J., Campoy C. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 2010;104:83–92. doi: 10.1017/S0007114510000176.
    1. Penders J., Thijs C., Vink C., Stelma F.F., Snijders B., Kummeling I., van den Brandt P.A., Stobberingh E.E. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118:511–521. doi: 10.1542/peds.2005-2824.
    1. Van den Akker C., van Goudoever J., Shamir R., Domellöf M., Embleton N., Hojsak I., Lapillonne A., Mihatsch W.A., Canani R.B., Bronsky J. Probiotics and preterm infants: A position paper by the ESPGHAN Committee on Nutrition and the ESPGHAN Working Group for Probiotics and Prebiotics. J. Pediatr Gastroenterol Nutr. 2020;1 doi: 10.1097/MPG.0000000000002655. (In press)
    1. Zacarías M.F., Souza T.C., Zaburlín N., Carmona Cara D., Reinheimer J., Nicoli J., Vinderola G. Influence of Technological Treatments on the Functionality of Bifidobacterium lactis INL1, a Breast Milk-Derived Probiotic. J. Food Sci. 2017;82:2462–2470. doi: 10.1111/1750-3841.13852.
    1. Zhang Q., Xiao Q., Yin H., Xia C., Pu Y., He Z., Hu Q., Wang J., Wang Y. Milk-exosome based pH/light sensitive drug system to enhance anticancer activity against oral squamous cell carcinoma. Rsc Adv. 2020;10:28314–28323. doi: 10.1039/D0RA05630H.
    1. Li D., Yao S., Zhou Z., Shi J., Huang Z., Wu Z. Hyaluronan decoration of milk exosomes directs tumor-specific delivery of doxorubicin. Carbohydr. Res. 2020;493:108032. doi: 10.1016/j.carres.2020.108032.
    1. Tao H., Xu H., Zuo L., Li C., Qiao G., Guo M., Zheng L., Leitgeb M., Lin X. Exosomes-coated bcl-2 siRNA inhibits the growth of digestive system tumors both in vitro and in vivo. Int. J. Biol. Macromol. 2020;161:470–480. doi: 10.1016/j.ijbiomac.2020.06.052.
    1. Agrawal A.K., Aqil F., Jeyabalan J., Spencer W.A., Beck J., Gachuki B.W., Alhakeem S.S., Oben K., Munagala R., Bondada S. Milk-derived exosomes for oral delivery of paclitaxel. Nanomed. Nanotechnol. Biol. Med. 2017;13:1627–1636. doi: 10.1016/j.nano.2017.03.001.
    1. Corrêa N.B.O., Péret Filho L.A., Penna F.J., Lima F.M.L.S., Nicoli J.R. A randomized formula controlled trial of Bifidobacterium lactis and Streptococcus thermophilus for prevention of antibiotic-associated diarrhea in infants. J. Clin. Gastroenterol. 2005;39:385–389. doi: 10.1097/01.mcg.0000159217.47419.5b.
    1. Radke M., Picaud J.-C., Loui A., Cambonie G., Faas D., Lafeber H.N., de Groot N., Pecquet S.S., Steenhout P.G., Hascoet J.-M. Starter formula enriched in prebiotics and probiotics ensures normal growth of infants and promotes gut health: A randomized clinical trial. Pediatr. Res. 2017;81:622–631. doi: 10.1038/pr.2016.270.
    1. Jacobs S.E., Tobin J.M., Opie G.F., Donath S., Tabrizi S.N., Pirotta M., Morley C.J., Garland S.M. Probiotic effects on late-onset sepsis in very preterm infants: A randomized controlled trial. Pediatrics. 2013;132:1055–1062. doi: 10.1542/peds.2013-1339.
    1. Preidis G.A., Weizman A.V., Kashyap P.C., Morgan R.L. AGA technical review on the role of probiotics in the management of gastrointestinal disorders. Gastroenterology. 2020;159:708–738. doi: 10.1053/j.gastro.2020.05.060.
    1. Maldonado J., Gil-Campos M., Maldonado-Lobón J.A., Benavides M.R., Flores-Rojas K., Jaldo R., Del Barco I.J., Bolívar V., Valero A.D., Prados E. Evaluation of the safety, tolerance and efficacy of 1-year consumption of infant formula supplemented with Lactobacillus fermentum CECT5716 Lc40 or Bifidobacterium breve CECT7263: A randomized controlled trial. BMC Pediatr. 2019;19:1–15. doi: 10.1186/s12887-019-1753-7.
    1. Szajewska H., Kołodziej M., Gieruszczak-Białek D., Skórka A., Ruszczyński M., Shamir R. Systematic review with meta-analysis: Lactobacillus rhamnosus GG for treating acute gastroenteritis in children—A 2019 update. Aliment. Pharm. 2019;49:1376–1384. doi: 10.1111/apt.15267.
    1. Long B., Koyfman A., Gottlieb M. Lactobacillus reuteri for treatment of infant colic. Acad. Emerg. Med. 2020;27:1059–1060. doi: 10.1111/acem.13977.
    1. Patro-Gołąb B., Szajewska H. Systematic review with meta-analysis: Lactobacillus reuteri DSM 17938 for treating acute gastroenteritis in children. An update. Nutrients. 2019;11:2762. doi: 10.3390/nu11112762.
    1. Gutierrez-Castrellon P., Lopez-Velazquez G., Diaz-Garcia L., Jimenez-Gutierrez C., Mancilla-Ramirez J., Estevez-Jimenez J., Parra M. Diarrhea in preschool children and Lactobacillus reuteri: A randomized controlled trial. Pediatrics. 2014;133:e904–e909. doi: 10.1542/peds.2013-0652.
    1. Rodenas C.L.G., Lepage M., Ngom-Bru C., Fotiou A., Papagaroufalis K., Berger B. Effect of formula containing Lactobacillus reuteri DSM 17938 on fecal microbiota of infants born by cesarean-section. J. Pediatr. Gastroenterol. Nutr. 2016;63:681–687. doi: 10.1097/MPG.0000000000001198.
    1. Pastor-Villaescusa B., Hurtado J.A., Gil-Campos M., Uberos J., Maldonado-Lobón J.A., Díaz-Ropero M.P., Bañuelos O., Fonollá J., Olivares M. Effects of Lactobacillus fermentum CECT5716 Lc40 on infant growth and health: A randomised clinical trial in nursing women. Benef. Microbes. 2020;11:235–244. doi: 10.3920/BM2019.0180.
    1. Hurtado J.A., Maldonado-Lobón J.A., Díaz-Ropero M.P., Flores-Rojas K., Uberos J., Leante J.L., Affumicato L., Couce M.L., Garrido J.M., Olivares M. Oral administration to nursing women of Lactobacillus fermentum CECT5716 prevents lactational mastitis development: A randomized controlled trial. Breastfeed. Med. 2017;12:202–209. doi: 10.1089/bfm.2016.0173.

Source: PubMed

3
Tilaa