Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic

Mahdi Balali-Mood, Kobra Naseri, Zoya Tahergorabi, Mohammad Reza Khazdair, Mahmood Sadeghi, Mahdi Balali-Mood, Kobra Naseri, Zoya Tahergorabi, Mohammad Reza Khazdair, Mahmood Sadeghi

Abstract

The industrial activities of the last century have caused massive increases in human exposure to heavy metals. Mercury, lead, chromium, cadmium, and arsenic have been the most common heavy metals that induced human poisonings. Here, we reviewed the mechanistic action of these heavy metals according to the available animal and human studies. Acute or chronic poisonings may occur following exposure through water, air, and food. Bioaccumulation of these heavy metals leads to a diversity of toxic effects on a variety of body tissues and organs. Heavy metals disrupt cellular events including growth, proliferation, differentiation, damage-repairing processes, and apoptosis. Comparison of the mechanisms of action reveals similar pathways for these metals to induce toxicity including ROS generation, weakening of the antioxidant defense, enzyme inactivation, and oxidative stress. On the other hand, some of them have selective binding to specific macromolecules. The interaction of lead with aminolevulinic acid dehydratase and ferrochelatase is within this context. Reactions of other heavy metals with certain proteins were discussed as well. Some toxic metals including chromium, cadmium, and arsenic cause genomic instability. Defects in DNA repair following the induction of oxidative stress and DNA damage by the three metals have been considered as the cause of their carcinogenicity. Even with the current knowledge of hazards of heavy metals, the incidence of poisoning remains considerable and requires preventive and effective treatment. The application of chelation therapy for the management of metal poisoning could be another aspect of heavy metals to be reviewed in the future.

Keywords: ROS; acute poisoning; chronic poisoning; heavy metals; mechanistic action; oxidative stress.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Balali-Mood, Naseri, Tahergorabi, Khazdair and Sadeghi.

Figures

FIGURE 1
FIGURE 1
Schematic of Pb-induced anemia via the inhibition of δ-aminolevulinic acid dehydratase and ferrochelatase enzymes in heme biosynthesis.
FIGURE 2
FIGURE 2
Oxidative stress and organ toxicity following exposure to heavy metals.
FIGURE 3
FIGURE 3
Simplified schematic presentation of the reaction of Cd metal ion with the thiol functional group; the two sulfhydryl groups are shown in cream color.
FIGURE 4
FIGURE 4
Me-Hg induces PLD activation. Increased PLD activity can lead to many diseases and cancers. Adapted from Brown et al. (2017) .

References

    1. Abdou H. M., Hassan M. A. (2014). Protective role of omega-3 polyunsaturated fatty acid against lead acetate-induced toxicity in liver and kidney of female rats. Biomed. Res. Int. 2014, 435857. 10.1155/2014/435857
    1. Abirami N., Raju V. S., Rajathi K. (2007). Effect of Semecarpus anacardium against lead induced toxicity in rats. Anc. Sci. Life 27 (2), 24–27.
    1. Achmad R. T., Budiawan B., Ibrahim Auerkari E. (2017). Effects of chromium on human body. Annu. Res. Rev. 13, 1–8. 10.9734/arrb/2017/33462
    1. Aggarwal V., Tuli H., Varol A., Thakral F., Yerer M., Sak K., et al. (2019). Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules 9 (11), 735. 10.3390/biom9110735
    1. Akgül N., Altunkaynak B. Z., Altunkaynak M. E., Deniz Ö. G., Ünal D., Akgül H. M. (2016). Inhalation of mercury vapor can cause the toxic effects on rat kidney. Ren. Fail. 38 (3), 465–473. 10.3109/0886022x.2016.1138832
    1. Aragão W. A. B., Teixeira F. B., Fagundes N. C. F., Fernandes R. M., Fernandes L. M. P., Da Silva M. C. F., et al. (2018). Hippocampal dysfunction provoked by mercury chloride exposure: evaluation of cognitive impairment, oxidative stress, tissue injury and nature of cell death. Oxid. Med. Cell. Longev. 2018, 7878050. 10.1155/2018/7878050
    1. Argyropoulos C. P., Chen S. S., Ng Y.-H., Roumelioti M.-E., Shaffi K., Singh P. P., et al. (2017). Rediscovering beta-2 microglobulin as a biomarker across the spectrum of kidney diseases. Front. Med. 4, 73. 10.3389/fmed.2017.00073
    1. Ataei N., Aghaei M., Panjehpour M. (2019). Evidences for involvement of estrogen receptor induced ERK1/2 activation in ovarian cancer cell proliferation by cadmium chloride. Toxicol. In Vitro 56, 184–193. 10.1016/j.tiv.2019.01.015
    1. Bailey K. A., Wu M. C., Ward W. O., Smeester L., Rager J. E., García-Vargas G., et al. (2013). Arsenic and the epigenome: interindividual differences in arsenic metabolism related to distinct patterns of DNA methylation. J. Biochem. Mol. Toxicol. 27 (2), 106–115. 10.1002/jbt.21462
    1. Batáriová A., Spěváčková V., Beneš B., Čejchanová M., Šmíd J., Černá M. (2006). Blood and urine levels of Pb, Cd and Hg in the general population of the Czech Republic and proposed reference values. Int. J. Hyg. Environ. Health 209 (4), 359–366. 10.1016/j.ijheh.2006.02.005
    1. Bernhoft R. A. (2012). Mercury toxicity and treatment: a review of the literature. J. Environ. Public Health 2012, 460508. 10.1155/2012/460508
    1. Bodaghi-Namileh V., Sepand M. R., Omidi A., Aghsami M., Seyednejad S. A., Kasirzadeh S., et al. (2018). Acetyl- l -carnitine attenuates arsenic-induced liver injury by abrogation of mitochondrial dysfunction, inflammation, and apoptosis in rats. Environ. Toxicol. Pharmacol. 58, 11–20. 10.1016/j.etap.2017.12.005
    1. Bokare A. D., Choi W. (2011). Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle. Environ. Sci. Technol. 45 (21), 9332–9338. 10.1021/es2021704
    1. Borowska S., Brzóska M., Gałażyn-Sidorczuk M., Rogalska J. (2017). Effect of an extract from aronia melanocarpa L. berries on the body status of zinc and copper under chronic exposure to cadmium: an in vivo experimental study. Nutrients 9 (12), 1374. 10.3390/nu9121374
    1. Boskabady M. H., Tabatabai S. A., Farkhondeh T. (2016). Inhaled lead affects lung pathology and inflammation in sensitized and control Guinea pigs. Environ. Toxicol. 31 (4), 452–460. 10.1002/tox.22058
    1. Bottino C., Vázquez M., Devesa V., Laforenza U. (2016). Impaired aquaporins expression in the gastrointestinal tract of rat after mercury exposure. J. Appl. Toxicol. 36 (1), 113–120. 10.1002/jat.3151
    1. Bridges C. C., Zalups R. K. (2017). Mechanisms involved in the transport of mercuric ions in target tissues. Arch. Toxicol. 91 (1), 63–81. 10.1007/s00204-016-1803-y
    1. Brown H. A., Thomas P. G., Lindsley C. W. (2017). Targeting phospholipase D in cancer, infection and neurodegenerative disorders. Nat. Rev. Drug Discov. 16 (5), 351. 10.1038/nrd.2016.252
    1. Burford N., Eelman M., Groom K. (2005). Identification of complexes containing glutathione with As(III), Sb(III), Cd(II), Hg(II), Tl(I), Pb(II) or Bi(III) by electrospray ionization mass spectrometry. J. Inorg. Biochem. 99 (10), 1992–1997. 10.1016/j.jinorgbio.2005.06.019
    1. Burki T. K. (2012). Nigeria’s lead poisoning crisis could leave a long legacy. Lancet 379 (9818), 792. 10.1016/s0140-6736(12)60332-8
    1. Cancer (1993). Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. Working Group views and expert opinions, Lyon, 9-16 February 1993. IARC Monogr. Eval. Carcinog Risks Hum., 58, 1.
    1. Cao Z. R., Cui S. M., Lu X. X., Chen X. M., Yang X., Cui J. P., et al. (2018). [Effects of occupational cadmium exposure on workers’ cardiovascular system]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 36(6), 474–477. 10.3760/cma.j.issn.1001-9391.2018.06.025
    1. Cefalu W. T., Hu F. B. (2004). Role of chromium in human health and in diabetes. Diabetes Care 27 (11), 2741–2751. 10.2337/diacare.27.11.2741
    1. Chen L., Jin T., Huang B., Chang X., Lei L., Nordberg G. F., et al. (2006). Plasma metallothionein antibody and cadmium-induced renal dysfunction in an occupational population in China. Toxicol. Sci. 91 (1), 104–112. 10.1093/toxsci/kfj053
    1. Chen J., Fok K. L., Chen H., Zhang X. H., Xu W. M., Chan H. C. (2012). Cryptorchidism-induced CFTR down-regulation results in disruption of testicular tight junctions through up-regulation of NF- B/COX-2/PGE2. Hum. Reprod. 27 (9), 2585–2597. 10.1093/humrep/des254
    1. Chen C.-Y., Zhang S.-l., Liu Z.-Y., Tian Y., Sun Q. (2015). Cadmium toxicity induces ER stress and apoptosis via impairing energy homoeostasis in cardiomyocytes. Biosci. Rep. 35 (3), e00214. 10.1042/bsr20140170
    1. Chen R., Xu Y., Xu C., Shu Y., Ma S., Lu C., et al. (2019). Associations between mercury exposure and the risk of nonalcoholic fatty liver disease (NAFLD) in US adolescents. Environ. Sci. Pollut. Res. 26 (30), 31384–31391. 10.1007/s11356-019-06224-5
    1. Chen X., Wang Z., Zhu G., Nordberg G. F., Jin T., Ding X. (2019). The association between cumulative cadmium intake and osteoporosis and risk of fracture in a Chinese population. J. Expo. Sci. Environ. Epidemiol. 29 (3), 435–443. 10.1038/s41370-018-0057-6
    1. Chen J., Ye Y., Ran M., Li Q., Ruan Z., Jin N. (2020). Inhibition of tyrosinase by mercury chloride: spectroscopic and docking studies. Front. Pharmacol. 11, 81. 10.3389/fphar.2020.00081
    1. Cheng J. P., Wang W. H., Jia J. P., Zheng M., Shi W., Lin X. Y. (2006). Expression of c-fos in rat brain as a prelude marker of central nervous system injury in response to methylmercury-stimulation. Biomed. Environ. Sci. 19 (1), 67–72.
    1. Cheng T.-F., Choudhuri S., Muldoon-Jacobs K. (2012). Epigenetic targets of some toxicologically relevant metals: a review of the literature. J. Appl. Toxicol. 32 (9), 643–653. 10.1002/jat.2717
    1. Choi J., Bae S., Lim H., Lim J.-A., Lee Y.-H., Ha M., et al. (2017). Mercury exposure in association with decrease of liver function in adults: a longitudinal study. J. Prev. Med. Public Health 50 (6), 377. 10.3961/jpmph.17.099
    1. Choong G., Liu Y., Templeton D. M. (2014). Interplay of calcium and cadmium in mediating cadmium toxicity. Chem. Biol. Interact. 211, 54–65. 10.1016/j.cbi.2014.01.007
    1. Chunhabundit R. (2016). Cadmium exposure and potential health risk from foods in contaminated area, Thailand. Toxicol. Res. 32 (1), 65–72. 10.5487/tr.2016.32.1.065
    1. Clancy H. A., Sun H., Passantino L., Kluz T., Muñoz A., Zavadil J., et al. (2012). Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer. Metallomics 4 (8), 784–793. 10.1039/c2mt20074k
    1. Cobbina S. J., Chen Y., Zhou Z., Wu X., Zhao T., Zhang Z., et al. (2015). Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. J. Hazard. Mater. 294, 109–120. 10.1016/j.jhazmat.2015.03.057
    1. Coogan T. P., Motz J., Snyder C. A., Squibb K. S., Costa M. (1991). Differential DNA-protein crosslinking in lymphocytes and liver following chronic drinking water exposure of rats to potassium chromate. Toxicol. Appl. Pharmacol. 109 (1), 60–72. 10.1016/0041-008x(91)90191-g
    1. Costa M. (2019). Review of arsenic toxicity, speciation and polyadenylation of canonical histones. Toxicol. Appl. Pharmacol. 375, 1–4. 10.1016/j.taap.2019.05.006
    1. Dadpour B., Afshari R., Mousavi S. R., Kianoush S., Keramati M. R., Moradi V. A., et al. (2016). Clinical and laboratory findings of lead hepatotoxicity in the workers of a car battery manufacturing factory. Iranian J. Toxicol. 10 (2), 1–6.
    1. De Flora S., D’Agostini F., Balansky R., Micale R., Baluce B., Izzotti A. (2008). Lack of genotoxic effects in hematopoietic and gastrointestinal cells of mice receiving chromium (VI) with the drinking water. Mutat. Res. 659 (1-2), 60–67. 10.1016/j.mrrev.2007.11.005
    1. Del Razo L. M. D., García-Vargas G. G., Albores A., Vargas H., Gonsebatt M. E., Montero R., et al. (1997). Altered profile of urinary arsenic metabolites in adults with chronic arsenicism. Arch. Toxicol. 71 (4), 211–217. 10.1007/s002040050378
    1. DeLoughery Z., Luczak M. W., Zhitkovich A. (2014). Monitoring Cr intermediates and reactive oxygen species with fluorescent probes during chromate reduction. Chem. Res. Toxicol. 27 (5), 843–851. 10.1021/tx500028x
    1. Deng Y., Wang M., Tian T., Lin S., Xu P., Zhou L., et al. (2019). The effect of hexavalent chromium on the incidence and mortality of human cancers: a meta-analysis based on published epidemiological cohort studies. Front. Oncol. 9, 24. 10.3389/fonc.2019.00024
    1. Ding W., Liu W., Cooper K. L., Qin X.-J., de Souza Bergo P. L., Hudson L. G., et al. (2009). Inhibition of poly(ADP-ribose) polymerase-1 by arsenite interferes with repair of oxidative DNA damage. J. Biol. Chem. 284 (11), 6809–6817. 10.1074/jbc.m805566200
    1. Djordjevic V. R., Wallace D. R., Schweitzer A., Boricic N., Knezevic D., Matic S., et al. (2019). Environmental cadmium exposure and pancreatic cancer: evidence from case control, animal and in vitro studies. Environ. Int. 128, 353–361. 10.1016/j.envint.2019.04.048
    1. Dongre N. N., Suryakar A. N., Patil A. J., Ambekar J. G., Rathi D. B. (2011). Biochemical effects of lead exposure on systolic & diastolic blood pressure, heme biosynthesis and hematological parameters in automobile workers of north Karnataka (India). Ind. J. Clin. Biochem. 26 (4), 400–406. 10.1007/s12291-011-0159-6
    1. Dos Santos A. A., Chang L. W., Liejun Guo G., Aschner M. (2018). “Chapter 35 - fetal Minamata disease: a human episode of congenital methylmercury poisoning,” in Handbook of developmental neurotoxicology. Editors Slikker W., Paule M. G., Wang C. 2nd Edn (Cambridge, MA: Academic Press; ), 399–406.
    1. Dutta K., Prasad P., Sinha D. (2015). Chronic low level arsenic exposure evokes inflammatory responses andDNA damage. Int. J. Hyg. Environ. Health 218 (6), 564–574. 10.1016/j.ijheh.2015.06.003
    1. El-Sokkary G. H., Abdel-Rahman G. H., Kamel E. S. (2005). Melatonin protects against lead-induced hepatic and renal toxicity in male rats. Toxicol. 213 (1-2), 25–33. 10.1016/j.tox.2005.05.003
    1. Fang Z., Zhao M., Zhen H., Chen L., Shi P., Huang Z. (2014). Genotoxicity of tri-and hexavalent chromium compounds in vivo and their modes of action on DNA damage in vitro . PloS One 9 (8), e103194. 10.1371/journal.pone.0103194
    1. Farkhondeh T., Boskabady M. H., Kohi M. K., Sadeghi-Hashjin G., Moin M. (2014). Lead exposure affects inflammatory mediators, total and differential white blood cells in sensitized guinea pigs during and after sensitization. Drug Chem. Toxicol. 37 (3), 329–335. 10.3109/01480545.2013.866133
    1. Fay M. J., Alt L. A. C, Ryba D., Salamah R., Peach R., Papaeliou A., et al. (2018). Cadmium nephrotoxicity is associated with altered microRNA expression in the rat renal cortex. Toxics 6 (1), 16. 10.3390/toxics6010016
    1. Fernandes Azevedo B., Barros Furieri L., Peçanha F. M., Wiggers G. A., Frizera Vassallo P., Ronacher Simões M., et al. (2012). Toxic effects of mercury on the cardiovascular and central nervous systems. Biomed. Res. Int. 2012, 949048. 10.1109/latincloud.2012.6508156
    1. Ferreira L. M. R., Cunha-Oliveira T., Sobral M. C., Abreu P. L., Alpoim M. C., Urbano A. M. (2019). Impact of carcinogenic chromium on the cellular response to proteotoxic stress. Int. J. Mol. Sci. 20 (19), 4901. 10.3390/ijms20194901
    1. Gazwi H. S. S., Yassien E. E., Hassan H. M. (2020). Mitigation of lead neurotoxicity by the ethanolic extract of Laurus leaf in rats. Ecotoxicol. Environ. Safe 192, 110297. 10.1016/j.ecoenv.2020.110297
    1. Ghorani-Azam A., Riahi-Zanjani B., Balali-Mood M. (2016). Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci., 21, 65. 10.4103/1735-1995.189646
    1. Gorini F., Muratori F., Morales M. A. (2014). The role of heavy metal pollution in neurobehavioral disorders: a focus on autism. Rev. J. Autism Dev. Disord. 1 (4), 354–372. 10.1007/s40489-014-0028-3
    1. Gupta D. K., Tiwari S., Razafindrabe B., Chatterjee S. (2017). “Arsenic contamination from historical aspects to the present,” in Arsenic Contamination in the Environment. Berlin, Germany: Springer, 1–12. 10.1007/978-3-319-54356-7_1
    1. Gurer-Orhan H., Sabır H. U., Özgüneş H. (2004). Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead-exposed workers. Toxicol. 195 (2-3), 147–154. 10.1016/j.tox.2003.09.009
    1. Hazelhoff M. H., Torres A. M. (2018). Gender differences in mercury-induced hepatotoxicity: potential mechanisms. Chemosphere 202, 330–338. 10.1016/j.chemosphere.2018.03.106
    1. Hopenhayn C., Ferreccio C., Browning S. R., Huang B., Peralta C., Gibb H., et al. (2003). Arsenic exposure from drinking water and birth weight. Epidemiology 14, 593–602. 10.1097/01.ede.0000072104.65240.69
    1. Hu G., Li P., Li Y., Wang T., Gao X., Zhang W., et al. (2016). Methylation levels of P16 and TP53 that are involved in DNA strand breakage of 16HBE cells treated by hexavalent chromium. Toxicol. Lett. 249, 15–21. 10.1016/j.toxlet.2016.03.003
    1. Jacobs D. E., Wilson J., Dixon S. L., Smith J., Evens A. (2009). The relationship of housing and population health: a 30-year retrospective analysis. Environ. Health Perspect. 117 (4), 597–604. 10.1289/ehp.0800086
    1. Jadhav S. H., Sarkar S. N., Patil R. D., Tripathi H. C. (2007). Effects of subchronic exposure via drinking water to a mixture of eight water-contaminating metals: a biochemical and histopathological study in male rats. Arch. Environ. Contam. Toxicol. 53 (4), 667–677. 10.1007/s00244-007-0031-0
    1. Jiang J. H., Ge G., Gao K., Pang Y., Chai R. C., Jia X. H., et al. (2015). Calcium signaling involvement in cadmium-induced astrocyte cytotoxicity and cell death through activation of MAPK and PI3K/Akt signaling pathways. Neurochem. Res. 40 (9), 1929–1944. 10.1007/s11064-015-1686-y
    1. Jolliffe D. M., Budd A. J., Gwilt D. J. (1991). Massive acute arsenic poisoning. Anaesthesia 46 (4), 288–290. 10.1111/j.1365-2044.1991.tb11500.x
    1. Joseph C. L. M., Havstad S., Ownby D. R., Peterson E. L., Maliarik M., McCabe M. J., et al. (2005). Blood lead level and risk of asthma. Environ. Health Perspect. 113 (7), 900–904. 10.1289/ehp.7453
    1. Kasperczyk S., Birkner E., Kasperczyk A., Kasperczyk J. (2005). Lipids, lipid peroxidation and 7-ketocholesterol in workers exposed to lead. Hum. Exp. Toxicol. 24 (6), 287–295. 10.1191/0960327105ht528oa
    1. Khazdair M. R., Boskabady M. H., Afshari R., Dadpour B., Behforouz A., Javidi M., et al. (2012). Respiratory symptoms and pulmonary function testes in lead exposed workers. Iran. Red Crescent Med. J. 14 (11), 737. 10.5812/ircmj.4134
    1. Kianoush S., Balali-Mood M., Mousavi S. R., Moradi V., Sadeghi M., Dadpour B., et al. (2012). Comparison of therapeutic effects of garlic and d-penicillamine in patients with chronic occupational lead poisoning. Basic Clin. Pharmacol. Toxicol. 110 (5), 476–481. 10.1111/j.1742-7843.2011.00841.x
    1. Kianoush S., Balali-Mood M., Mousavi S. R., Shakeri M. T., Dadpour B., Moradi V., et al. (2013). Clinical, toxicological, biochemical, and hematologic parameters in lead exposed workers of a car battery industry. Iran J. Med. Sci. 38 (1), 30.
    1. Kianoush S., Sadeghi M., Balali-Mood M. (2015). Recent advances in the clinical management of lead poisoning. Acta Med. Iran 53, 327–336.
    1. Kim C.-Y., Watanabe C., Kasanuma Y., Satoh H. (1995). Inhibition of γ-glutamyltranspeptidase decreases renal deposition of mercury after mercury vapor exposure. Arch. Toxicol. 69 (10), 722–724. 10.1007/s002040050239
    1. Kim H. S., Kim Y. J., Seo Y. R. (2015). An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. J. Cancer Prev. 20 (4), 232. 10.15430/jcp.2015.20.4.232
    1. Kim T. H., Kim J. H., Le Kim M. D., Suh W. D., Kim J. E., Yeon H. J., et al. (2020). Exposure assessment and safe intake guidelines for heavy metals in consumed fishery products in the Republic of Korea. Environ. Sci. Pollut. Res. Int., 27, 33042–33051. 10.1007/s11356-020-09624-0
    1. Koedrith P., Kim H., Weon J.-I., Seo Y. R. (2013). Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int. J. Hyg. Environ. Health 216 (5), 587–598. 10.1016/j.ijheh.2013.02.010
    1. Kuivenhoven M., Mason K. (2019). Arsenic (arsine) toxicity. Treasure Island, FL: StatPearls Publishing.
    1. Kungolos A., Aoyama I., Muramoto S. (1999). Toxicity of organic and inorganic mercury to Saccharomyces cerevisiae . Ecotoxicol. Environ. Saf. 43 (2), 149–155. 10.1006/eesa.1999.1767
    1. Lech T., Sadlik J. K. (2017). Cadmium concentration in human autopsy tissues. Biol. Trace Elem. Res. 179 (2), 172–177. 10.1007/s12011-017-0959-5
    1. Lee C.-H., Chen J.-S., Sun Y.-L., Liao W.-T., Zheng Y.-W., Chai C.-Z., et al. (2006). Defective beta1-integrins expression in arsenical keratosis and arsenic-treated cultured human keratinocytes. J. Cutan. Pathol. 33 (2), 129–138. 10.1111/j.0303-6987.2006.00361.x
    1. Lee J.-K., Choi Y.-L., Kwon M., Park P. J. (2016). Mechanisms and consequences of cancer genome instability: lessons from genome sequencing studies. Annu. Rev. Pathol. 11, 283–312. 10.1146/annurev-pathol-012615-044446
    1. Lee M.-R., Lim Y.-H., Lee B.-E., Hong Y.-C. (2017). Blood mercury concentrations are associated with decline in liver function in an elderly population: a panel study. Environ. Health 16 (1), 17. 10.1186/s12940-017-0228-2
    1. Li L., Chen F. (2016). Oxidative stress, epigenetics, and cancer stem cells in arsenic carcinogenesis and prevention. Curr. Pharmacol. Rep. 2 (2), 57–63. 10.1007/s40495-016-0049-y
    1. Li Y., Zhang B., Yang L., Li H. (2013). Blood mercury concentration among residents of a historic mercury mine and possible effects on renal function: a cross-sectional study in southwestern China. Environ. Monit. Assess. 185 (4), 3049–3055. 10.1007/s10661-012-2772-0
    1. Lie P., Du B., Chan H. M., Feng X. (2015). Human inorganic mercury exposure, renal effects and possible pathways in Wanshan mercury mining area, China. Environ. Res. 140, 198–204. 10.1016/j.envres.2015.03.033
    1. Li L., Jiang B., Lai J., Dai W. R., Li X., Liu W. F., et al. (2017). [Change in peripheral nervous conduction velocity in patients with occupational chronic mercury poisoning and related influencing factors]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 35 (8), 598–602. 10.3760/cma.j.issn.1001-9391.2017.08.011
    1. Li R., Wu H., Ding J., Fu W., Gan L., Li Y. (2017). Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants. Sci. Rep. 7, 46545. 10.1038/srep46545
    1. Li H., Fagerberg B., Sallsten G., Borné Y., Hedblad B., Engström G., et al. (2019). Smoking-induced risk of future cardiovascular disease is partly mediated by cadmium in tobacco: Malmö Diet and Cancer Cohort Study. Environ. Health 18 (1), 56. 10.1186/s12940-019-0495-1
    1. Liaw J., Marshall G., Yuan Y., Ferreccio C., Steinmaus C., Smith A. H. (2008). Increased childhood liver cancer mortality and arsenic in drinking water in northern Chile. Cancer Epidemiol. Biomarkers Prev. 17 (8), 1982–1987. 10.1158/1055-9965.epi-07-2816
    1. Lin X., Peng L., Xu X., Chen Y., Zhang Y., Huo X. (2018). Connecting gastrointestinal cancer risk to cadmium and lead exposure in the Chaoshan population of Southeast China. Environ. Sci. Pollut. Res. Int. 25 (18), 17611–17619. 10.1007/s11356-018-1914-5
    1. Linos A., Petralias A., Christophi C. A., Christoforidou E., Kouroutou P., Stoltidis M., et al. (2011). Oral ingestion of hexavalent chromium through drinking water and cancer mortality in an industrial area of Greece-an ecological study. Environ. Health 10 (1), 50. 10.1186/1476-069x-10-50
    1. Liu J., Qu W., Kadiiska M. B. (2009). Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol. Appl. Pharmacol. 238 (3), 209–214. 10.1016/j.taap.2009.01.029
    1. Liu C.-M., Ma J.-Q., Sun Y.-Z. (2012). Puerarin protects rat kidney from lead-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Toxicol. Appl. Pharmacol. 258 (3), 330–342. 10.1016/j.taap.2011.11.015
    1. Ljubojevic M., Herak-Kramberger C. M., Hagos Y., Bahn A., Endou H., Burckhardt G., et al. (2004). Rat renal cortical OAT1 and OAT3 exhibit gender differences determined by both androgen stimulation and estrogen inhibition. Am. J. Physiol. Renal. Physiol. 287 (1), F124–F138. 10.1152/ajprenal.00029.2004
    1. Loomis D., Guha N., Hall A. L., Straif K. (2018). Identifying occupational carcinogens: an update from the IARC monographs. Occup. Environ. Med. 75 (8), 593–603. 10.1136/oemed-2017-104944
    1. Lu T., Liu J., LeCluyse E. L., Zhou Y.-S., Cheng M.-L., Waalkes M. P. (2001). Application of cDNA microarray to the study of arsenic-induced liver diseases in the population of Guizhou, China. Toxicol. Sci. 59 (1), 185–192. 10.1093/toxsci/59.1.185
    1. Luo J.-h., Qiu Z.-q., Zhang L., Shu W.-q. (2012). Arsenite exposure altered the expression of NMDA receptor and postsynaptic signaling proteins in rat hippocampus. Toxicol. Lett. 211 (1), 39–44. 10.1016/j.toxlet.2012.02.021
    1. Luo L., Wang B., Jiang J., Huang Q., Yu Z., Li H., et al. (2020). Heavy metal contaminations in herbal medicines: determination. comprehensive risk assessments. Front. Pharmacol. 11, 595335. 10.3389/fphar.2020.595335
    1. Lv Y., Wang P., Huang R., Liang X., Wang P., Tan J., et al. (2017). Cadmium exposure and osteoporosis: a population-based study and benchmark dose estimation in southern China. J. Bone Miner Res. 32 (10), 1990–2000. 10.1002/jbmr.3151
    1. Ma L., Li J., Zhan Z., Chen L., Li D., Bai Q., et al. (2016). Specific histone modification responds to arsenic-induced oxidative stress. Toxicol. Appl. Pharmacol. 302, 52–61. 10.1016/j.taap.2016.03.015
    1. Macfie A., Hagan E., Zhitkovich A. (2010). Mechanism of DNA−Protein cross-linking by chromium. Chem. Res. Toxicol. 23 (2), 341–347. 10.1021/tx9003402
    1. Mazumdar M., Bellinger D. C., Gregas M., Abanilla K., Bacic J., Needleman H. L. (2011). Low-level environmental lead exposure in childhood and adult intellectual function: a follow-up study. Environ. Health 10 (1), 24. 10.1186/1476-069x-10-24
    1. Mense S. M., Zhang L. (2006). Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res. 16 (8), 681–692. 10.1038/sj.cr.7310086
    1. Messner B., Türkcan A., Ploner C., Laufer G., Bernhard D. (2016). Cadmium overkill: autophagy, apoptosis and necrosis signalling in endothelial cells exposed to cadmium. Cell. Mol. Life Sci. 73 (8), 1699–1713. 10.1007/s00018-015-2094-9
    1. Mishra K. P., Singh V. K., Rani R., Yadav V. S., Chandran V., Srivastava S. P., et al. (2003). Effect of lead exposure on the immune response of some occupationally exposed individuals. Toxicology 188 (2-3), 251–259. 10.1016/s0300-483x(03)00091-x
    1. Mishra K. P. (2009). Lead exposure and its impact on immune system: a review. Toxicol. In Vitro 23 (6), 969–972. 10.1016/j.tiv.2009.06.014
    1. Mochizuki H. (2019). Arsenic neurotoxicity in humans. Int. J. Mol. Sci. 20 (14), 3418. 10.3390/ijms20143418
    1. Moitra S., Blanc P. D., Sahu S. (2013). Adverse respiratory effects associated with cadmium exposure in small-scale jewellery workshops in India. Thorax 68 (6), 565–570. 10.1136/thoraxjnl-2012-203029
    1. Møller-Madsen B. (1992). Localization of mercury in CNS of the rat. Arch. Toxicol. 66 (2), 79–89. 10.1007/BF02342499
    1. Moriarity R. J., Liberda E. N., Tsuji L. J. S. (2020). Subsistence fishing in the Eeyou Istchee (James Bay, Quebec, Canada): a regional investigation of fish consumption as a route of exposure to methylmercury. Chemosphere 258, 127413. 10.1016/j.chemosphere.2020.127413
    1. Mousavi S. R., Balali-Mood M., Riahi-Zanjani B., Yousefzadeh H., Sadeghi M. (2013). Concentrations of mercury, lead, chromium, cadmium, arsenic and aluminum in irrigation water wells and wastewaters used for agriculture in Mashhad, northeastern Iran. Int. J. Occup. Environ. Med. 4 (2 April), 80–86.
    1. Mugahi M. N., Heidari Z., Sagheb H. M., Barbarestani M. (2003). Effects of chronic lead acetate intoxication on blood indices of male adult rat. DARU J. Pharm. Sci. 11 (4), 147–141.
    1. Namgung U., Xia Z. (2001). Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol. Appl. Pharmacol. 174 (2), 130–138. 10.1006/taap.2001.9200
    1. Neal A. P., Guilarte T. R. (2010). Molecular neurobiology of lead (Pb2+): effects on synaptic function. Mol. Neurobiol. 42 (3), 151–160. 10.1007/s12035-010-8146-0
    1. Ngalame N. N. O., Tokar E. J., Person R. J., Xu Y., Waalkes M. P. (2014). Aberrant microRNA expression likely controls RAS oncogene activation during malignant transformation of human prostate epithelial and stem cells by arsenic. Toxicol. Sci. 138 (2), 268–277. 10.1093/toxsci/kfu002
    1. Nickens K. P., Patierno S. R., Ceryak S. (2010). Chromium genotoxicity: a double-edged sword. Chem. Biol. Interact. 188 (2), 276–288. 10.1016/j.cbi.2010.04.018
    1. Nishijo M., Nakagawa H., Suwazono Y., Nogawa K., Kido T. (2017). Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: a nested case–control analysis of a follow-up study in Japan. BMJ. Open 7 (7), e015694. 10.1136/bmjopen-2016-015694
    1. O'Brien T. J., Witcher P., Brooks B., Patierno S. R. (2009). DNA polymerase zeta is essential for hexavalent chromium-induced mutagenesis. Mutat. Res. 663 (1-2), 77–83. 10.1016/j.mrfmmm.2009.01.012
    1. Ohta H., Ohba K. (2020). Involvement of metal transporters in the intestinal uptake of cadmium. J. Toxicol. Sci. 45 (9), 539–548. 10.2131/jts.45.539
    1. Omobowale T. O., Oyagbemi A. A., Akinrinde A. S., Saba A. B., Daramola O. T., Ogunpolu B. S., et al. (2014). Failure of recovery from lead induced hepatoxicity and disruption of erythrocyte antioxidant defence system in Wistar rats. Environ. Toxicol. Pharmacol. 37(3), 1202–1211. 10.1016/j.etap.2014.03.002
    1. Pan C., Liu H.-D., Gong Z., Yu X., Hou X.-B., Xie D.-D., et al. (2013). Cadmium is a potent inhibitor of PPM phosphatases and targets the M1 binding site. Sci. Rep. 3, 2333. 10.1038/srep02333
    1. Park S. J., Lee J. R., Jo M. J., Park S. M., Ku S. K., Kim S. C. (2013). Protective effects of Korean red ginseng extract on cadmium-induced hepatic toxicity in rats. J. Ginseng Res. 37 (1), 37. 10.5142/jgr.2013.37.37
    1. Patlolla A., Tchounwou P. (2005). Serum acetyl cholinesterase as a biomarker of arsenic induced neurotoxicity in sprague-dawley rats. Int. J. Environ. Res. Public Health 2 (1), 80–83. 10.3390/ijerph2005010080
    1. Patlolla A. K., Barnes C., Yedjou C., Velma V. R., Tchounwou P. B. (2009). Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague-Dawley rats. Environ. Toxicol. 24 (1), 66–73. 10.1002/tox.20395
    1. Patra R. C., Swarup D., Dwivedi S. K. (2001). Antioxidant effects of α tocopherol, ascorbic acid and l-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicol. 162 (2), 81–88. 10.1016/s0300-483x(01)00345-6
    1. Pavesi T., Moreira J. C. (2020). Mechanisms and individuality in chromium toxicity in humans. J. Appl. Toxicol. 40, 1183–1197. 10.1002/jat.3965
    1. Perello G., Martí-Cid R., Llobet J. M., Domingo J. L. (2008). Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. J. Agric. Food Chem. 56 (23), 11262–11269. 10.1021/jf802411q
    1. Pesch B., Haerting J., Ranft U., Klimpel A., Oelschlägel B., Schill W. (2000). Occupational risk factors for renal cell carcinoma: agent-specific results from a case-control study in Germany. Int. J. Epidemiol. 29 (6), 1014–1024. 10.1093/ije/29.6.1014
    1. Pham T. N. D., Marion M., Denizeau F., Jumarie C. (2006). Cadmium-induced apoptosis in rat hepatocytes does not necessarily involve caspase-dependent pathways. Toxicol. In Vitro 20 (8), 1331–1342. 10.1016/j.tiv.2006.05.005
    1. Pi H., Xu S., Reiter R. J., Guo P., Zhang L., Li Y., et al. (2015). SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy 11 (7), 1037–1051. 10.1080/15548627.2015.1052208
    1. Pritchard D. E., Ceryak S., Ramsey K. E., O'brien T. J., Ha L., Fornsaglio J. L., et al. (2005). Resistance to apoptosis, increased growth potential, and altered gene expression in cells that survived genotoxic hexavalent chromium [Cr (VI)] exposure. Mol. Cell. Biochem. 279 (1-2), 169–181. 10.1007/s11010-005-8292-2
    1. Proshad R., Zhang D., Uddin M., Wu Y. (2020). Presence of cadmium and lead in tobacco and soil with ecological and human health risks in Sichuan province, China. Environ. Sci. Pollut. Res. Int. 27, 18355–18370. 10.1007/s11356-020-08160-1
    1. Qu W., Ke H., Pi J., Broderick D., French J. E., Webber M. M., et al. (2007). Acquisition of apoptotic resistance in cadmium-transformed human prostate epithelial cells: Bcl-2 overexpression blocks the activation of JNK signal transduction pathway. Environ. Health Perspect. 115 (7), 1094–1100. 10.1289/ehp.10075
    1. Quershi I. Z., Mahmood T. (2010). Prospective role of ascorbic acid (vitamin C) in attenuating hexavalent chromium-induced functional and cellular damage in rat thyroid. Toxicol. Ind. Health 26 (6), 349–359. 10.1177/0748233710371109
    1. Rahman A., Persson L.-Å., Nermell B., Arifeen S. E., Ekström E.-C., Smith A. H., et al. (2010). Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality. Epidemiology 21, 797–804. 10.1097/EDE.0b013e3181f56a0d
    1. Rani A., Kumar A., Lal A., Pant M. (2014). Cellular mechanisms of cadmium-induced toxicity: a review. Int. J. Environ. Health Res. 24 (4), 378–399. 10.1080/09603123.2013.835032
    1. Ratnaike R. N. (2003). Acute and chronic arsenic toxicity. Postgrad. Med. J. 79 (933), 391–396. 10.1136/pmj.79.933.391
    1. Richter P., Faroon O., Pappas R. S. (2017). Cadmium and cadmium/zinc ratios and tobacco-related morbidities. Int. J. Environ. Res. Public Health 14 (10), 1154. 10.3390/ijerph14101154
    1. Salama A., Hegazy R., Hassan A. (2016). Intranasal chromium induces acute brain and lung injuries in rats: assessment of different potential hazardous effects of environmental and occupational exposure to chromium and introduction of a novel pharmacological and toxicological animal model. PLoS One 11 (12), e0168688. 10.1371/journal.pone.0168688
    1. Salnikow K., Zhitkovich A. (2008). Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem. Res. Toxicol. 21 (1), 28–44. 10.1021/tx700198a
    1. Sanders A., Smeester L., Rojas D., DeBussycher T., Wu M., Wright F., et al. (2014). Cadmium exposure and the epigenome: exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics 9 (2), 212–221. 10.4161/epi.26798
    1. Saper R. B., Phillips R. S., Sehgal A., Khouri N., Davis R. B., Paquin J., et al. (2008). Lead, mercury, and arsenic in US- and Indian-manufactured Ayurvedic medicines sold via the Internet. JAMA 300 (8), 915–923. 10.1001/jama.300.8.915
    1. Sattar A., Xie S., Hafeez M. A., Wang X., Hussain H. I., Iqbal Z., et al. (2016). Metabolism and toxicity of arsenicals in mammals. Environ. Toxicol. Pharmacol. 48, 214–224. 10.1016/j.etap.2016.10.020
    1. Schaefer H. R., Dennis S., Fitzpatrick S. (2020). Cadmium: mitigation strategies to reduce dietary exposure. J. Food Sci. 85 (2), 260–267. 10.1111/1750-3841.14997
    1. Schnekenburger M., Talaska G., Puga A. (2007). Chromium cross-links histone deacetylase 1-DNA methyltransferase 1 complexes to chromatin, inhibiting histone-remodeling marks critical for transcriptional activation. Mol. Cell. Biol. 27 (20), 7089–7101. 10.1128/mcb.00838-07
    1. Schober S. E., Mirel L. B., Graubard B. I., Brody D. J., Flegal K. M. (2006). Blood lead levels and death from all causes, cardiovascular disease, and cancer: results from the NHANES III mortality study. Environ. Health Perspect. 114 (10), 1538–1541. 10.1289/ehp.9123
    1. Schutte R., Nawrot T. S., Richart T., Thijs L., Vanderschueren D., Kuznetsova T., et al. (2008). Bone resorption and environmental exposure to cadmium in women: a population study. Environ. Health Perspect. 116 (6), 777–783. 10.1289/ehp.11167
    1. Shah A. Q., Kazi T. G., Baig J. A., Arain M. B., Afridi H. I., Kandhro G. A., et al. (2010). Determination of inorganic arsenic species (As3+ and As5+) in muscle tissues of fish species by electrothermal atomic absorption spectrometry (ETAAS). Food Chem. 119 (2), 840–844. 10.1016/j.foodchem.2009.08.041
    1. Shalan M. G., Mostafa M. S., Hassouna M. M., El-Nabi S. E. H., El-Refaie A. (2005). Amelioration of lead toxicity on rat liver with vitamin C and silymarin supplements. Toxicology 206 (1), 1–15. 10.1016/j.tox.2004.07.006
    1. Sharma P., Bihari V., Agarwal S. K., Verma V., Kesavachandran C. N., Pangtey B. S., et al. (2012). Groundwater contaminated with hexavalent chromium [Cr (VI)]: a health survey and clinical examination of community inhabitants (Kanpur, India). PLoS One 7 (10), e47877. 10.1371/journal.pone.0047877
    1. Shekhawat K., Chatterjee S., Joshi B. (2015). Chromium toxicity and its health hazards. Int. J. Adv. Res. 3 (7), 167–172.
    1. Shen S., Li X.-F., Cullen W. R., Weinfeld M., Le X. C. (2013). Arsenic binding to proteins. Chem. Rev. 113 (10), 7769–7792. 10.1021/cr300015c
    1. Son Y.-O., Wang L., Poyil P., Budhraja A., Hitron J. A., Zhang Z., et al. (2012). Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling. Toxicol. Appl. Pharmacol. 264 (2), 153–160. 10.1016/j.taap.2012.07.028
    1. Struzynska L., Dąbrowska-Bouta B., Koza K., Sulkowski G. (2007). Inflammation-like glial response in lead-exposed immature rat brain. Toxicol. Sci. 95 (1), 156–162. 10.1093/toxsci/kfl134
    1. Sujatha K., Srilatha C., Anjaneyulu Y., Rao T., Sreenivasulu D., Amaravathi P. (2011). Effect of lead acetate on sperm morphology and testis of wistar albino rats. Indian J. Anim. Reprod. 32 (2), 63–67.
    1. Tchounwou P. B., Yedjou C. G., Patlolla A. K., Sutton D. J. (2012). Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 101, 133–164. 10.1007/978-3-7643-8340-4_6
    1. Thevenod F., Chakraborty P. K. (2010). The role of Wnt/beta-catenin signaling in renal carcinogenesis: lessons from cadmium toxicity studies. Curr. Mol. Med. 10 (4), 387–404. 10.2174/156652410791316986
    1. Thompson C. M., Proctor D. M., Haws L. C., Hébert C. D., Grimes S. D., Shertzer H. G., et al. (2011). Investigation of the mode of action underlying the tumorigenic response induced in B6C3F1 mice exposed orally to hexavalent chromium. Toxicol. Sci. 123 (1), 58–70. 10.1093/toxsci/kfr164
    1. Thompson C. M., Proctor D. M., Suh M., Haws L. C., Kirman C. R., Harris M. A. (2013). Assessment of the mode of action underlying development of rodent small intestinal tumors following oral exposure to hexavalent chromium and relevance to humans. Crit. Rev. Toxicol. 43 (3), 244–274. 10.3109/10408444.2013.768596
    1. Tsai M.-T., Huang S.-Y., Cheng S.-Y. (2017). Lead poisoning can be easily misdiagnosed as acute porphyria and nonspecific abdominal painCase reports in emergency medicine 2017. Case Rep. Emerg Med. 2017 (2), 1–4. 10.3109/10408444.2013.768596
    1. Urbano A. M., Ferreira L. M. R., Alpoim M. C. (2012). Molecular and cellular mechanisms of hexavalent chromium-induced lung cancer: an updated perspective. Curr. Drug. Metab. 13 (3), 284–305. 10.2174/138920012799320464
    1. Vahter M., Åkesson A., Lidén C., Ceccatelli S., Berglund M. (2007). Gender differences in the disposition and toxicity of metals. Environ. Res. 104 (1), 85–95. 10.1016/j.envres.2006.08.003
    1. Valko M., Morris H., Cronin M. (2005). Metals, toxicity and oxidative stress. Curr. Med. Chem. 12 (10), 1161–1208. 10.2174/0929867053764635
    1. Velyka V. A., Pshak V. P., Lopushins’ka I. V. (2014). Activity of antioxidant enzymes of the rat kidneys under mercury dichloride effect. Ukr. Biochem. J. 86 (1), 124–130.
    1. Vincent J. B. (2017). New evidence against chromium as an essential trace element. J. Nutr. 147 (12), 2212–2219. 10.3945/jn.117.255901
    1. Vincent J. B. (2019). Effects of chromium supplementation on body composition, human and animal health, and insulin and glucose metabolism. Curr. Opin. Clin. Nutr. Metab. Care 22 (6), 483–489. 10.1097/mco.0000000000000604
    1. Wang X., Mandal A. K., Saito H., Pulliam J. F., Lee E. Y., Ke Z.-J., et al. (2012). Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway. Toxicol. Appl. Pharmacol. 262 (1), 11–21. 10.1016/j.taap.2012.04.014
    1. Wang J., Zhu H., Yang Z., Liu Z. (2013). Antioxidative effects of hesperetin against lead acetate-induced oxidative stress in rats. Indian J. Pharmacol. 45 (4), 395–398. 10.4103/0253-7613.115015
    1. Wang Y., Mandal A. K., Son Y.-O., Pratheeshkumar P., Wise J. T. F., Wang L., et al. (2018). Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sulforaphane. Toxicol. Appl. Pharmacol. 353, 23–30. 10.1016/j.taap.2018.06.003
    1. Wang Z., Wu J., Humphries B., Kondo K., Jiang Y., Shi X., et al. (2018). Upregulation of histone-lysine methyltransferases plays a causal role in hexavalent chromium-induced cancer stem cell-like property and cell transformation. Toxicol. Appl. Pharmacol. 342, 22–30. 10.1016/j.taap.2018.01.022
    1. Wasserman G. A., Liu X., Parvez F., Factor-Litvak P., Ahsan H., Levy D., et al. (2011). Arsenic and manganese exposure and children’s intellectual function. Neurotoxicology 32 (4), 450–457. 10.1016/j.neuro.2011.03.009
    1. Wells E. M., Bonfield T. L., Dearborn D. G., Jackson L. W. (2014). The relationship of blood lead with immunoglobulin E, eosinophils, and asthma among children: NHANES 2005–2006. Int. J. Hyg. Environ. Health 217 (2-3), 196–204. 10.1016/j.ijheh.2013.04.010
    1. Wilhelm T., Said M., Naim V. (2020). DNA replication stress and chromosomal instability: dangerous liaisons. Genes (Basel) 11 (6), 642. 10.3390/genes11060642
    1. Wise S. S., Wise J. P. (2012). Chromium and genomic stability. Mutat. Res. 733 (1-2), 78–82. 10.1016/j.mrfmmm.2011.12.002
    1. Wise S. S., Aboueissa A. E.-M., Martino J., Wise J. P. (2018). Hexavalent chromium-induced chromosome instability drives permanent and heritable numerical and structural changes and a DNA repair-deficient phenotype. Cancer Res. 78 (15), 4203–4214. 10.1158/0008-5472.can-18-0531
    1. Wu X., Cobbina S. J., Mao G., Xu H., Zhang Z., Yang L. (2016). A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. Int. 23 (9), 8244–8259. 10.1007/s11356-016-6333-x
    1. Xiao C., Liu Y., Xie C., Tu W., Xia Y., Costa M., et al. (2015). Cadmium induces histone H3 lysine methylation by inhibiting histone demethylase activity. Toxicol. Sci. 145 (1), 80–89. 10.1093/toxsci/kfv019
    1. Xu S., Pi H., Chen Y., Zhang N., Guo P., Lu Y., et al. (2013). Cadmium induced Drp1-dependent mitochondrial fragmentation by disturbing calcium homeostasis in its hepatotoxicity. Cell Death Dis. 4 (3), e540. 10.1038/cddis.2013.7
    1. Yang H., Shu Y. (2015). Cadmium transporters in the kidney and cadmium-induced nephrotoxicity. Int. J. Mol. Sci. 16 (1), 1484–1494. 10.3390/ijms16011484
    1. Yao H., Guo L., Jiang B.-H., Luo J., Shi X. (2008). Oxidative stress and chromium (VI) carcinogenesis. J. Environ. Pathol. Toxicol. Oncol. 27 (2), 77–82. 10.1615/jenvironpatholtoxicoloncol.v27.i2.10
    1. Yasutake A., Sawada M., Shimada A., Satoh M., Tohyama C. (2004). Mercury accumulation and its distribution to metallothionein in mouse brain after sub-chronic pulse exposure to mercury vapor. Arch. Toxicol. 78 (9), 489–495. 10.1007/s00204-004-0572-1
    1. Yeo B., Langley-Turnbaugh S. (2010). Trace element deposition on Mount Everest. Soil Surv. Horizons 51 (3), 72–78. 10.2136/sh2010.3.0072
    1. Yu H.-S., Liao W.-T., Chai C.-Y. (2006). Arsenic carcinogenesis in the skin. J. Biomed. Sci. 13 (5), 657–666. 10.1007/s11373-006-9092-8
    1. Zhang C., Gan C., Ding L., Xiong M., Zhang A., Li P. (2020). Maternal inorganic mercury exposure and renal effects in the Wanshan mercury mining area, southwest China. Ecotox. Environ. Safe. 189, 109987. 10.1016/j.ecoenv.2019.109987
    1. Zhitkovich A. (2005). Importance of Chromium−DNA adducts in mutagenicity and toxicity of chromium(VI). Chem. Res. Toxicol. 18 (1), 3–11. 10.1021/tx049774+
    1. Zhitkovich A. (2011). Chromium in drinking water: sources, metabolism, and cancer risks. Chem. Res. Toxicol. 24 (10), 1617–1629. 10.1021/tx200251t
    1. Zuo Z., Cai T., Li J., Zhang D., Yu Y., Huang C. (2012). Hexavalent chromium Cr(VI) up-regulates COX-2 expression through an NFκB/c-jun/AP-1-dependent pathway. Environ. Health Perspect. 120 (4), 547–553. 10.1289/ehp.1104179

Source: PubMed

3
Tilaa