3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

Teresa Sollfrank, Daniel Hart, Rachel Goodsell, Jonathan Foster, Tele Tan, Teresa Sollfrank, Daniel Hart, Rachel Goodsell, Jonathan Foster, Tele Tan

Abstract

A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation.

Keywords: 3-dimensional visualization; EEG; brain-computer interfaces; motor cortex activation.

Figures

Figure 1
Figure 1
Visualization of five different limb movements: wrist movement, elbow rotation, arm flexion, knee and ankle rotation. All movements were shown for the left and right limb, except the ankle rotation which showed both feet rotating simultaneously. All videos were displayed randomized in 2D and 3D.
Figure 2
Figure 2
ERD/ERS patterns averaged over all end-users for the five motor imagery (MI) tasks (averaged across left and right limb movements) for 2D and 3D visualization modality (VM) in the upper alpha frequency band (10–12 Hz). Note: ERD is indicated in blue and ERS is indicated in red. The black dots represent the electrode positions (EPs).
Figure 3
Figure 3
Mean ERD/ERS values (i.e., mean and standard deviation) obtained for the left (left panel) and right (right panel) limb MI side of the 10–12 Hz upper alpha frequency band for all subjects with the two visualization conditions (2D, light grey bar; 3D, dark grey bar) on EP C3 and C4. Significant differences between the visualization modalities are indicated (*p < 0.01).

References

    1. Allison B. Z., Wolpaw E. W., Wolpaw J. R. (2007). Brain-computer interface systems: progress and prospects. Expert Rev. Med. Devices 4, 463–474. 10.1586/17434440.4.4.463
    1. Blankertz B., Sannelli C., Halder S., Hammer E. M., Kübler A., Müller K. R., et al. . (2010). Neurophysiological predictor of SMR-based BCI performance. Neuroimage 51, 1303–1309. 10.1016/j.neuroimage.2010.03.022
    1. Broetz D., Braun C., Weber C., Soekadar S. R., Caria A., Birbaumer N. (2010). Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabil. Neural Repair 24, 674–679. 10.1177/1545968310368683
    1. Caria A., Weber C., Brötz D., Ramos A., Ticini L. F., Gharabaghi A., et al. . (2011). Chronic stroke recovery after combined BCI training and physiotherapy: a case report. Psychophysiology 48, 578–582. 10.1111/j.1469-8986.2010.01117.x
    1. Cincotti F., Pichiorri F., Aricò P., Leotta F., de Vico Fallani F., Millán Jdel R., et al. . (2012). EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 4112–4115. 10.1109/EMBC.2012.6346871
    1. Daly J. J., Wolpaw J. R. (2008). Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 7, 1032–1043. 10.1016/S1474-4422(08)70223-0
    1. Decety J., Ingvar D. H. (1990). Brain structures participating in mental simulation of motor behavior: a neuropsychological interpretation. Acta Psychol. (Amst) 73, 13–34. 10.1016/0001-6918(90)90056-L
    1. Friedmann D., Leeb R., Guger C., Steed A., Pfurtscheller G., Slater M. (2007). Navigating virtual reality by thought: what is it like? Presence 16, 100–110. 10.1162/pres.16.1.100
    1. Graimann B., Huggins J. E., Levine S. P., Pfurtscheller G. (2002). Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data. Clin. Neurophysiol. 113, 43–47. 10.1016/s1388-2457(01)00697-6
    1. Grèzes J., Decety J. (2001). Functional anatomy of execution, mental simulation, observation and verb generation of actions: a meta-analysis. Hum. Brain Mapp. 12, 1–19. 10.1002/1097-0193(200101)12:1<1::aid-hbm10>;2-v
    1. Gruzelier J., Inoue A., Smart R., Steed A., Steffert T. (2010). Acting performance and flow state enhanced with sensory-motor rhythm neurofeedback comparing ecologically valid immersive VR and training screen scenarios. Neurosci. Lett. 480, 112–116. 10.1016/j.neulet.2010.06.019
    1. Halder S., Agorastos D., Veit R., Hammer E. M., Lee S., Varkuti B., et al. . (2011). Neural mechanisms of brain-computer interface control. Neuroimage 55, 1779–1790. 10.1016/j.neuroimage.2011.01.021
    1. Hammer E. M., Halder S., Blankertz B., Sannelli C., Dickhaus T., Kleih S., et al. . (2012). Psychological predictors of SMR-BCI performance. Biol. Psychol. 89, 80–86. 10.1016/j.biopsycho.2011.09.006
    1. Hammon P. S., Pineda J. A., de Sa V. R. (2006). “Viewing motion animations during motor imagery: effects on EEG rhythms,” in Proceedings of the 3rd International Brain-Computer Interface Workshop and Training Course 2006, eds Müller-Putz G., Brunner C., Leeb R., Scherer R., Schlögl A., Wriessnegger S., et al. (Graz: University of Technology; ), 62–63.
    1. Hari R., Forss N., Avikainen S., Kirveskari E., Salenius S., Rizzolatti G. (1998). Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc. Natl. Acad. Sci. U S A 95, 15061–15065. 10.1073/pnas.95.25.15061
    1. Hwang H. J., Kiwoon K., Im C. H. (2009). Neurofeedback-based motor imagery training for brain-computer interface (BCI). J. Neurosci. Methods 179, 150–156. 10.1016/j.jneumeth.2009.01.015
    1. Kübler A., Kotchoubey B., Kaiser J., Wolpaw J. R., Birbaumer N. (2001). Brain-computer communication: unlocking the locked in. Psychol. Bull. 127, 358–375. 10.1037/0033-2909.127.3.358
    1. Kuhlman W. N. (1978). Functional topography of the human Mu rhythm. Electroencephalogr. Clin. Neurophysiol. 44, 83–93. 10.1016/0013-4694(78)90107-4
    1. Leeb R., Friedman D., Müller-Putz G. R., Scherer R., Slater M., Pfurtscheller G. (2007). Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. Comput. Intell. Neurosci. 79642. 10.1155/2007/79642
    1. Lopes da Silva F. H. (2006). Event-related neural activities: what about phase? Prog. Brain Res. 159, 3–17. 10.1016/s0079-6123(06)59001-6
    1. Lotte F., Larrue F., Mühl C. (2013). Flaws in current human training protocols for spontaneous brain-computer interfaces: lessons learned from instructional design. Front. Hum. Neurosci. 7:568. 10.3389/fnhum.2013.00568
    1. Lotze M., Montoya P., Erb M., Hülsmann E., Flor H., Klose U., et al. . (1999). Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fmri study. J. Cogn. Neurosci. 11, 491–501. 10.1162/089892999563553
    1. McFarland D. J., McCane L. M., Wolpaw J. R. (1998). EEG-based communication and control: short-term role of feedback. IEEE Trans. Rehabil. Eng. 6, 7–11. 10.1109/86.662615
    1. McFarland D. J., Miner L. A., Vaughan T. M., Wolpaw J. R. (2000). Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 12, 177–186. 10.1023/A:1023437823106
    1. Merrill M. D. (2007). A task-centered instructional strategy. J. Res. Technol. Educ. 40, 5–22. 10.1080/15391523.2007.10782493
    1. Mulder T. (2007). Motor imagery and action observation: cognitive tools for rehabilitation. J. Neural Transm. 114, 1265–1278. 10.1007/s00702-007-0763-z
    1. Muthukumaraswamy S. D., Johnson B. W., McNair N. A. (2004). Mu rhythm modulation during observation of an object-directed grasp. Brain Res. Cogn. Brain Res. 19, 195–201. 10.1016/j.cogbrainres.2003.12.001
    1. Neuper C., Pfurtscheller G. (2001). Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int. J. Psychophysiol. 43, 41–58. 10.1016/s0167-8760(01)00178-7
    1. Neuper C., Pfurtscheller G. (2010). “Neurofeedback trainingfor BCI control,” in Brain-Computer Interfaces, eds Graimann B., Pfurtscheller, G., Allison B. (London: Springer; ), 65–78.
    1. Neuper C., Scherer R., Reiner M., Pfurtscheller G. (2005). Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res. Cogn. Brain Res. 25, 668–677. 10.1016/j.cogbrainres.2005.08.014
    1. Neuper C., Scherer R., Wriessnegger S., Pfurtscheller G. (2009). Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clin. Neurophysiol. 120, 239–247. 10.1016/j.clinph.2008.11.015
    1. Ono T., Kimura A., Ushiba J. (2013). Daily training with realistic visual feedback improves reproducibility of event-related desynchronisation following hand motor imagery. Clin. Neurophysiol. 124, 1779–1786. 10.1016/j.clinph.2013.03.006
    1. Perdikis S., Leeb R., Ramsay A., Tavella M., Desideri L., Hoogerwerf E. J., et al. . (2014). Clinical evaluation of brain tree, a motor imagery hybrid BCI speller. J. Neural Eng. 11:036003. 10.1088/1741-2560/11/3/036003
    1. Perry A., Bentin S. (2009). Mirror activity in the human brain while observing hand movements: a comparison between EEG desynchronization in the μ-range and previous fMRI results. Brain Res. 1282, 126–132. 10.1016/j.brainres.2009.05.059
    1. Pfurtscheller G., Brunner C., Schlögl A., Lopes da Silva F. H. (2006a). Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31, 153–159. 10.1016/j.neuroimage.2005.12.003
    1. Pfurtscheller G., Leeb R., Keinrath C., Friedman D., Neuper C., Guger C., et al. (2006b). Walking from thought. Brain Res. 1071, 145–152. 10.1016/j.brainres.2005.11.083
    1. Pfurtscheller G., Lopes da Silva F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857. 10.1016/s1388-2457(99)00141-8
    1. Pfurtscheller G., Neuper C. (1997). Motor imagery activates primary sensorimotor area in humans. Neurosci. Lett. 239, 65–68. 10.1016/S0304-3940(97)00889-6
    1. Pfurtscheller G., Neuper C. (2001). Motor imagery and direct brain-computer communication. Proc. IEEE 89, 1123–1134. 10.1109/5.939829
    1. Pfurtscheller G., Scherer R., Leeb R., Keinrath C., Neuper C., Lee F., et al. (2007). Viewing moving objects in virtual reality can change the dynamics of sensorimotor EEG rhythms. Presence 16, 111–118. 10.1162/pres.16.1.111
    1. Pichiorri F., De Vico Fallani F., Cincotti F., Babiloni F., Molinari M., Kleih S. C., et al. . (2011). Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness. J. Neural Eng. 8:025020. 10.1088/1741-2560/8/2/025020
    1. Pineda J. A. (2005). The functional significance of mu rhythms: translating seeing and hearing into doing. Brain Res. Brain Res. Rev. 50, 57–68. 10.1016/j.brainresrev.2005.04.005
    1. Pineda J. A., Silverman D. S., Vankov A., Hestenes J. (2003). Learning to control brain rhythms: making a brain-computer interface possible. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 181–184. 10.1109/tnsre.2003.814445
    1. Randolph A. B. (2012). “Not all created equal: individual-technology fit of brain-computer interfaces,” in 45th Hawaii International Conference on System Science (HICSS) (Maui, HI), 572–578.
    1. Rizzolatti G., Fogassi L., Gallese V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2, 661–670. 10.1038/35090060
    1. Ron-Angevin R., Díaz-Estrella A. (2009). Brain-computer interfaces: changes in performance using virtual reality techniques. Neurosci. Lett. 449, 123–127. 10.1016/j.neulet.2008.10.099
    1. Ryan R. M., Deci E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development and well-being. Am. Psychol. 55, 68–78. 10.1037/0003-066x.55.1.68
    1. Scherer R., Lee F., Schlogl A., Leeb R., Bischof H., Pfurtscheller G. (2008). Toward self-paced brain-computer communication: navigation through virtual worlds. IEEE Trans. Biomed. Eng. 55, 675–682. 10.1109/tbme.2007.903709
    1. Schnitzler A., Salenius S., Salmelin R., Jousmäki V., Hari R. (1997). Involvement of primary motor cortex in motor imagery: a neuromagnetic study. Neuroimage 6, 201–208. 10.1006/nimg.1997.0286
    1. Schreuder M., Blankertz B., Tangermann M. (2010). A new auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue. PLoS One 5:e9813. 10.1371/journal.pone.0009813
    1. Sharbrough F. (1991). American electroencephalographic society guidelines for standard electrode position nomenclature. J. Clin. Neurophysiol. 8, 200–202. 10.1097/00004691-199104000-00007
    1. Slater M., Usoh M., Steed A. (1995). Taking steps: the influence of a walking metaphor on presence in virtual reality. ACM Trans. Comput. Hum. Interact. 2, 201–219. 10.1145/210079.210084
    1. Wolpaw J. R., Birbaumer N., McFarland D. J., Pfurtscheller G., Vaughan T. M. (2002). Brain-computer interfaces for communication and control. J. Clin. Neurophysiol. 113, 767–791. 10.1016/S1388-2457(02)00057-3
    1. Wolpaw J. R., McFarland D. J., Neat G. W., Forneris C. A. (1991). An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78, 252–259. 10.1016/0013-4694(91)90040-b
    1. Zhao Q., Zhang L., Cichocki A. (2009). EEG-based asynchronous BCI control of a car in 3D virtual reality environments. Chin. Sci. Bull. 54, 78–87. 10.1007/s11434-008-0547-3

Source: PubMed

3
Tilaa