Lactic Acidosis Related to Pharmacotherapy and Human Diseases

Christian Zanza, Valentina Facelli, Tastiana Romenskaya, Maria Bottinelli, Giorgia Caputo, Andrea Piccioni, Francesco Franceschi, Angela Saviano, Veronica Ojetti, Gabriele Savioli, Yaroslava Longhitano, Christian Zanza, Valentina Facelli, Tastiana Romenskaya, Maria Bottinelli, Giorgia Caputo, Andrea Piccioni, Francesco Franceschi, Angela Saviano, Veronica Ojetti, Gabriele Savioli, Yaroslava Longhitano

Abstract

Lactic acidosis represents one of the most common conditions that can compromise the health of intensive care unit (ICU) patients, increasing the mortality of patients with high levels of Lactate who do not receive a proper treatment within the first 6 h of hospitalization. There are two enantiomers of lactic acid: L-lactic acid (when the concentration increases, it can lead to a state of severe acidemia risking cardiovascular collapse, causing an increase in mortality in ICU patients) and D lactic acid (produced in the human organism by microbiota and its production increases during some pathological status). Generally, increased levels of serum lactic acid could be due to numerous factors, including hypoxia (caused for example by septic/cardiogenic/hypovolemic or obstructive shock), specific pathologies (e.g., liver disease), use of some drugs (e.g., metformin), presence of toxins, and trauma. Since the underlying cause could be fatal for the ICU patient, it is important to understand the root of this clinical status with a view to correct it and prevent the risk of a poor clinical outcome. Prevention and early treatment are the keys to control the negative clinical consequences. The aim of this review is to revise the scientific literature for further confirmation about the importance of early identification of acidotic statuses and to underline how an early diagnosis can prevent the worst clinical outcome, especially for ICU patients who are more fragile compared to the general population.

Keywords: acid-base and liver pathology; acid-base equilibrium; d-lactic acid metabolite; disease; drugs; hyperlactatemia; illness; l-lactic acidosis; l-lactic acidosis and disease; l-lactic acidosis and medications; lactic acidosis; medications.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart.
Figure 2
Figure 2
Lactate biochemical pathway. Legend: PGAL: 3-phosphoglyceraldehyde; ADP: Adenosine diphosphate; ATP: Adenosine triphosphate; NAD+: Nicotinamide adenine dinucleotide (oxidized form); NADH: Nicotinamide adenine dinucleotide (reduced form); CO2: carbon dioxide.

References

    1. Gharipour A., Razavi R., Gharipour M., Modarres R., Nezafati P., Mirkheshti N. The incidence and outcome of severe hyperlactatemia in critically ill patients. Intern. Emerg. Med. 2021;16:115–123. doi: 10.1007/s11739-020-02337-9.
    1. Piccioni A., Saviano A., Cicchinelli S., Valletta F., Santoro M.C., de Cunzo T., Zanza C., Longhitano Y., Tullo G., Tilli P., et al. Proadrenomedullin in Sepsis and Septic Shock: A Role in the Emergency Department. Medicina. 2021;57:920. doi: 10.3390/medicina57090920.
    1. Gunnerson K.J., Saul M., He S., Kellum J.A. Lactate versus non-lactate metabolic acidosis: A retrospective outcome evaluation of critically ill patients. Crit. Care. 2006;10:1–9. doi: 10.1186/cc3987.
    1. Pohanka M. D-Lactic Acid as a Metabolite: Toxicology, Diagnosis, and Detection. Biomed Res. Int. 2020;2020:3419034. doi: 10.1155/2020/3419034.
    1. Evans O.B., Stacpoole P.W. Prolonged hypolactatemia and increased total pyruvate dehydrogenase activity by dichloroacetate. Biochem. Pharmacol. 1982;31:1295–1300. doi: 10.1016/0006-2952(82)90019-3.
    1. Merrells R.J., Cripps A.J., Chivers PTFournier P.A. Role of lactic acidosis as a mediator of sprint-mediated nausea. Physiol. Rep. 2019;7:e14283. doi: 10.14814/phy2.14283.
    1. Theobald J., Schneider J., Cheema N., DesLauriers C. Time to development of metformin-associated lactic acidosis. Clin. Toxicol. 2020;58:758–762. doi: 10.1080/15563650.2019.1686514.
    1. Zanza C., Thangathurai J., Audo A., Muir H.A., Candelli M., Pignataro G., Thangathurai D., Cicchinelli S., Racca F., Longhitano Y., et al. Oxidative stress in critical care and vitamins supplement therapy: “a beneficial care enhancing”. Eur. Rev. Med. Pharm. Sci. 2019;23:7703–7712. doi: 10.26355/eurrev_201909_18894.
    1. Petersen C. D-lactic acidosis. Nutr. Clin. Pract. 2017;20:634–645. doi: 10.1177/0115426505020006634.
    1. Fabian E., Kramer L., Siebert F., Högenauer C., Raggam R.B., Wenzl H., Krejs G.J. D-Lactic acidosis-case report and review of the literature. Z. Für. Gastroenterol. 2017;55:75–82. doi: 10.1055/s-0042-117647.
    1. Alarcon P., Hidalgo A.I., Manosalva C., Cristi R., Teuber S., Hidalgo M.A., Burgos R.A. Metabolic disturbances in synovial fluid are involved in the onset of synovitis in heifers with acute ruminal acidosis. Sci. Rep. 2019;9:1–12. doi: 10.1038/s41598-019-42007-1.
    1. Naik P., Singh S., Dave V.P., Ali M.H., Kumar A., Joseph J. Vitreous d-lactate levels as a biomarker in the diagnosis of presumed infectious culture negative endophthalmitis. Curr. Eye Res. 2020;45:184–189. doi: 10.1080/02713683.2019.1662057.
    1. Terpstra M.L., Sinnige M., Hugenholtz F., Peters-Sengers H., Remmerswaal E.B.M., Geerlings S.E., Bemelman F.J. Butyrate production in patients with end-stage renal disease. Int. J. Nephrol. Renov. Dis. 2019;12:87–101. doi: 10.2147/IJNRD.S200297.
    1. Jorgensen V.L., Reiter N., Perner A. Luminal concentrations of L- and D-lactate in the rectum may relate to severity of disease and outcome in septic patients. Crit. Care. 2006;10:R163. doi: 10.1186/cc5102.
    1. Huang Y.S., Li Y.C., Tsai P.Y., Lin C.-E., Chen C.-M., Chen S.-M., Lee J. Accumulation of methylglyoxal andd-lactate in Pb-induced nephrotoxicity in rats. Biomed. Chromatogr. 2017;31:e3869. doi: 10.1002/bmc.3869.
    1. Geissler A.J., Behr J., von Kamp K., Vogel R.F. Metabolic strategies of beer spoilage lactic acid bacteria in beer. Int. J. Food Microbiol. 2016;216:60–68. doi: 10.1016/j.ijfoodmicro.2015.08.016.
    1. Andersen L.W., Mackenhauer J., Roberts J.C., Berg K.M., Cocchi M.N., Donnino M.W. Etiology and therapeutic approach to elevated lactate levels. Mayo Clin. Proc. 2013;88:1127–1140. doi: 10.1016/j.mayocp.2013.06.012.
    1. Liu Z., Meng Z., Li Y., Zhao J., Wu S., Gou S., Wu H. Prognostic accuracy of the serum lactate level, the SOFA score and the qSOFA score for mortality among adults with Sepsis. Scand. J. Trauma Resusc. Emerg. Med. 2019;27:51. doi: 10.1186/s13049-019-0609-3.
    1. Van Beest P.A., Brander L., Jansen S.P., Rommes J.H., Kuiper M.A., Spronk P.E. Cumulative lactate and hospital mortality in ICU patients. Ann. Intensive Care. 2013;3:6. doi: 10.1186/2110-5820-3-6.
    1. Pro C.I., Yealy D.M., Kellum J.A., Huang D.T., Barnato A.E., Weissfeld L.A., Pike F., Terndrup T., Wang H.E., Hou P.C., et al. A randomized trial of protocol-based care for early septic shock. N. Engl. J. Med. 2014;370:1683–1693.
    1. Kliegel A., Losert H., Sterz F., Holzer M., Zeiner A., Havel C., Laggner A.N. Serial lactate determinations for prediction of outcome after cardiac arrest. Medicine. 2004;83:274–279. doi: 10.1097/01.md.0000141098.46118.4c.
    1. Mitchell J.H., Wildenthal K., Johnson R.L., Jr. The effects of acid-base disturbances on cardiovascular and pulmonary function. Kidney Int. 1972;1:375–389. doi: 10.1038/ki.1972.48.
    1. Davies A.O. Rapid desensitization and uncoupling of human betaadrenergic receptors in an in vitro model of lactic acidosis. J Clin. Endocrinol. Metab. 1984;59:398–405. doi: 10.1210/jcem-59-3-398.
    1. van Hall G. Lactate kinetics in human tissues at rest and during exercise. Acta Physiol. 2010;199:499–508. doi: 10.1111/j.1748-1716.2010.02122.x.
    1. Connor H., Woods H.F. Quantitative aspects of L(þ)-lactate metabolism in human beings. Ciba Found. Symp. 1982;87:214–234.
    1. Jansson P.A., Smith U., Lonnroth P. Evidence for lactate production by human adipose tissue in vivo. Diabetologia. 1990;33:253–256. doi: 10.1007/BF00404805.
    1. Wilson T.H. The role of lactic acid production in glucose absorption from the intestine. J. Biol. Chem. 1956;222:751–763. doi: 10.1016/S0021-9258(20)89933-5.
    1. Bellomo R. Bench-to-bedside review: Lactate and the kidney. Crit. Care. 2002;6:322–326. doi: 10.1186/cc1518.
    1. Connor H., Woods H.F., Ledingham J.G., Murray J.D. A model of L(þ)- lactate metabolism in normal man. Ann. Nutr. Metab. 1982;26:254–263. doi: 10.1159/000176571.
    1. Kamel SKamel Man SOh Mitchell L. Halperin, L-lactic acidosis: Pathophysiology, classification, and causes; emphasis on biochemical and metabolic basis. Kidney Int. 2020;97:75–88. ISSN 0085-2538.
    1. Ritter J.M., Doktor H.S., Benjamin N. Paradoxical effect of bicarbonate on cytoplasmic pH. Lancet. 1990;335:1243–1246. doi: 10.1016/0140-6736(90)91305-T.
    1. Halperin M.L., Cheema-Dhadli S., Halperin F.A., Kamel K.S. Rationale for the use of sodium bicarbonate in a patient with lactic acidosis due to a poor cardiac output. Nephron. 1994;66:258–261. doi: 10.1159/000187819.
    1. Cerda J., Tolwani A.J., Warnock D.G. Critical care nephrology:management of acid-base disorders with CRRT. Kidney Int. 2012;82:9–18. doi: 10.1038/ki.2011.243.
    1. De Corte W., Vuylsteke S., De Waele J.J., Dhondt A.W., Decruyenaere J., Vanholder R., Hoste E.A.J. Severe lactic acidosis incritically ill patients with acute kidney injury treated with renal replacement therapy. J. Crit. Care. 2014;29:650–655. doi: 10.1016/j.jcrc.2014.02.019.
    1. Gowrishankar M., Kamel K.S., Halperin M.L. A brain protein centered view of Hþ buffering. J. Am. Soc. Nephrol. 2007;18:2278–2280. doi: 10.1681/ASN.2006121416.
    1. Lieberman J.A., Weiskopf R.B., Kelley S.D., Feiner J., Noorani M., Leung J., Toy P., Viele M. Critical oxygen delivery in conscious humans is less than 7.3 ml O2 × kg−1 × min−1. Anesthesiology. 2000;92:407–413. doi: 10.1097/00000542-200002000-00022.
    1. Van Woerkens E.C., Trouwborst A., van Lanschot J.J. Profound hemodilution: What is the critical level of hemodilution at which oxygen delivery-dependent oxygen consumption starts in an anesthetized human? Anesth. Analg. 1992;75:818–821. doi: 10.1213/00000539-199211000-00029.
    1. Zhang H., Vincent J.L. Oxygen extraction is altered by endotoxin during tamponade-induced stagnant hypoxia in the dog. Circ. Shock. 1993;40:168–176.
    1. Nathan A.T., Singer M. The oxygen trail: Tissue oxygenation. Br. Med. Bull. 1999;55:96–108. doi: 10.1258/0007142991902312.
    1. Chiolero R.L., Revelly J.P., Leverve X., Gersbach P., Cayeux M., Berger M.M., Tappy L. Effects of cardiogenic shock on lactate and glucose metabolism after heart surgery. Crit. Care Med. 2000;28:3784–3791. doi: 10.1097/00003246-200012000-00002.
    1. Akkose S., Ozgurer A., Bulut M., Koksal O., Ozdemír F., Ozguç H. Relationships between markers of inflammation, severity of injury, and clinical outcomes in hemorrhagic shock. Adv. Ther. 2007;24:955–962. doi: 10.1007/BF02877699.
    1. Friedman G., De Backer D., Shahla M., Vincent J.L. Oxygen supply dependency can characterize septic shock. Intensive Care Med. 1998;24:118–123. doi: 10.1007/s001340050531.
    1. Singel D.J., Stamler J.S. Chemical physiology of blood flow regulation by red blood cells: The role of nitric oxide and S-nitrosohemoglobin. Annu. Rev. Physiol. 2005;67:99–145. doi: 10.1146/annurev.physiol.67.060603.090918.
    1. Revelly J.P., Ayuse T., Brienza N., Fessler H.E., Robotham J.L. Endotoxic shock alters distribution of blood flow within the intestinal wall. Crit. Care Med. 1996;24:1345–1351. doi: 10.1097/00003246-199608000-00013.
    1. Cerwinka W.H., Cooper D., Krieglstein C.F., Ross C.R., McCord J.M., Granger D.N. Superoxide mediates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules. Am. J. Physiol. Heart Circ. Physiol. 2003;284:H535–H541. doi: 10.1152/ajpheart.00311.2002.
    1. Fink M.P. Intestinal epithelial hyperpermeability: Update on the pathogenesis of gut mucosal barrier dysfunction in critical illness. Curr Opin Crit. Care. 2003;9:143–151. doi: 10.1097/00075198-200304000-00011.
    1. Taylor D.J., Faragher E.B., Evanson J.M. Inflammatory cytokines stimulate glucose uptake and glycolysis but reduce glucose oxidation in human dermal fibroblasts in vitro. Circ. Shock. 1992;37:105–110.
    1. Kraut J.A., Madias N.E. Lactic acidosis: Current treatments and future directions. Am. J. Kidney Dis. 2016;68:473–482. doi: 10.1053/j.ajkd.2016.04.020.
    1. Fulop M., Bock J., Ben-Ezra J., Antony M., Danzig J., Gage J.S. Plasma lactate and 3-hydroxybutyrate levels in patients with acute ethanol intoxication. Am. J. Med. 1986;80:191–194. doi: 10.1016/0002-9343(86)90008-2.
    1. MacDonald L., Kruse J.A., Levy D.B., Marulendra S., Sweeny P.J. Lactic acidosis and acute ethanol intoxication. Am. J. Emerg. Med. 1994;12:32–35. doi: 10.1016/0735-6757(94)90193-7.
    1. Donnino M.W., Vega J., Miller J., Walsh M. Myths and misconceptions of Wernicke’s encephalopathy: What every emergency physician should know. Ann. Emerg. Med. 2007;50:715–721. doi: 10.1016/j.annemergmed.2007.02.007.
    1. Shull P.D., Rapoport J. Life-threatening reversible acidosis caused by alcohol abuse. Nat. Rev. Nephrol. 2010;6:555–559. doi: 10.1038/nrneph.2010.99.
    1. Klein M., Weksler N., Gurman G.M. Fatal metabolic acidosis caused by thiamine deficiency. J. Emerg. Med. 2004;26:301–303. doi: 10.1016/j.jemermed.2003.11.014.
    1. Neale B.W., Mesler E.L., Young M., Rebuck J.A., Weise W.J. Propylene glycol-induced lactic acidosis in a patient with normal renal function: A proposed mechanism and monitoring recommendations. Ann. Pharm. 2005;39:1732–1736. doi: 10.1345/aph.1G083.
    1. Kelner M.J., Bailey D.N. Propylene glycol as a cause of lactic acidosis. J. Anal. Toxicol. 1985;9:40–42. doi: 10.1093/jat/9.1.40.
    1. Arbour R., Esparis B. Osmolar gap metabolic acidosis in a 60-year-old man treated for hypoxemic respiratory failure. Chest. 2000;118:545–546. doi: 10.1378/chest.118.2.545.
    1. Duriseti P., Moreno Vanegas Y., Jaber B.L., Balakrishnan V.S., Madias N.E. Malignancy-induced lactic acidosis in adult lymphoma. Clin. Nephrol. 2021;95:1–21. doi: 10.5414/CN110116.
    1. Yang R., Wang Z., Jia Y., Li H., Mou Y. Comparison of Clinical Efficacy of Sodium Nitroprusside and Urapidil in the Treatment of Acute Hypertensive Cerebral Hemorrhage. J. Healthc. Eng. 2022;2022:2209070. doi: 10.1155/2022/2209070.
    1. Tinker J.H., Michenfelder J.D. Sodium nitroprusside: Pharmacology, toxicology and therapeutics. Anesthesiology. 1976;45:340–354. doi: 10.1097/00000542-197609000-00016.
    1. Borron S.W., Baud F.J. Antidotes for acute cyanide poisoning. Curr. Pharm. Biotechnol. 2012;13:1940–1948. doi: 10.2174/138920112802273182.
    1. Bulathsinghala M., Keefer K., Van de Louw A. Trimethoprim/sulfamethoxazole-induced severe lactic acidosis: A case report and review of the literature. Medicine. 2016;95:e3478. doi: 10.1097/MD.0000000000003478.
    1. Schramm C., Wanitschke R., Galle P.R. Thiamine for the treatment of nucleoside analogue-induced severe lactic acidosis. Eur. J. Anaesthesiol. 1999;16:733–735. doi: 10.1046/j.1365-2346.1999.00586.x.
    1. Luzzati R., Del Bravo P., Di Perri G., Luzzani A., Concia E. Riboflavine and severe lactic acidosis. Lancet. 1999;353:901–902. doi: 10.1016/S0140-6736(99)00523-1.
    1. Garrabou G., Soriano A., Lopez S., Guallar J.P., Giralt M., Villarroya F., Martiínez J.A., Casademont J., Cardellach F., Mensa J., et al. Reversible inhibition of mitochondrial protein synthesis during linezolid-related. Antimicrob. Agents Chemother. 2007;51:962–967. doi: 10.1128/AAC.01190-06.
    1. Soriano A., Miro O., Mensa J. Mitochondrial toxicity associated with linezolid. N. Engl. J. Med. 2005;353:2305–2306. doi: 10.1056/NEJM200511243532123.
    1. Wolf A., Weir P., Segar P., Stone J., Shield J. Impaired fatty acid oxidation in propofol infusion syndrome. Lancet. 2001;357:606–607. doi: 10.1016/S0140-6736(00)04064-2.
    1. Inzucchi S.E., Bergenstal R.M., Buse J.B., Diamant M., Ferrannini E., Nauck M., Peters A.L., Tsapas A., Wender R., Matthews D.R., et al. Management of hyperglycemia in type 2 diabetes: A patient-centered approach: Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetes Care. 2012;35:1364–1379. doi: 10.2337/dc12-0413.
    1. Misbin R.I. The phantom of lactic acidosis due to metformin in patients with diabetes. Diabetes Care. 2004;27:1791–1793. doi: 10.2337/diacare.27.7.1791.
    1. Laforest C., Saint-Marcoux F., Amiel J.B., Pichon N., Merle L. Monitoring of metformininduced lactic acidosis in a diabetic patient with acute kidney failure and effect of hemodialysis. Int. J. Clin. Pharm. Ther. 2013;51:147–151. doi: 10.5414/CP201728.
    1. Gabow P.A., Anderson R.J., Potts D.E., Schrier R.W. Acid-base disturbances in the salicylate-intoxicated adult. Arch. Intern. Med. 1978;138:1481–1484. doi: 10.1001/archinte.1978.03630350019008.
    1. Jorgensen T.G., Weis-Fogh U.S., Nielsen H.H., Olesen H.P. Salicylate- and aspirin-induced uncoupling of oxidative phosphorylation in mitochondria isolated from the mucosal membrane of the stomach. Scand. J. Clin. Lab. Investig. 1976;36:649–654. doi: 10.1080/00365517609054490.
    1. Silvestre J., Carvalho S., Mendes V., Coelho L., Tapadinhas C., Ferreira P., Povoa P., Ceia F. Metformin-induced lactic acidosis: A case series. J. Med. Case Rep. 2007;1:126. doi: 10.1186/1752-1947-1-126.
    1. Heinig R.E., Clarke E.F., Waterhouse C. Lactic acidosis and liver disease. Arch. Intern. Med. 1979;139:1229–1232. doi: 10.1001/archinte.1979.03630480019010.
    1. Smith Z.R., Horng M., Rech M.A. Medication-Induced Hyperlactatemia and Lactic Acidosis: A Systematic Review of the Literature. Pharmacotherapy. 2019;39:946–963. doi: 10.1002/phar.2316.
    1. Link M.S., Berkow L.C., Kudenchuk P.J., Halperin H.R., Hess E.P., Moitra V.K., Neumar R.W., O’Neil B.J., Paxton J.H., Silvers S.M., et al. Part 7: Adult advanced cardiovascular life support: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015;132((Suppl. 2)):S444–S464. doi: 10.1161/CIR.0000000000000261.
    1. Severs D., Hoorn E.J., Rookmaaker M.B. A critical appraisal of intravenous fluids: From the physiological basis to clinical evidence. Nephrol. Dial. Transpl. 2014;30:178–187. doi: 10.1093/ndt/gfu005.
    1. O’Dell E., Tibby S.M., Durward A., Murdoch I.A. Hyperchloremia is the dominant cause of metabolic acidosis in the postresuscitation phase of pediatric meningococcal sepsis. Crit. Care Med. 2007;35:2390–2394. doi: 10.1097/01.CCM.0000284588.17760.99.
    1. Cooper D.J., Walley K.R., Wiggs B.R., Russell J.A. Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis: A prospective, controlled clinical study. Ann. Intern. Med. 1990;112:492–498. doi: 10.7326/0003-4819-112-7-492.
    1. Myburgh J.A., Mythen M.G. Resuscitation fluids. N. Engl. J. Med. 2013;369:1243–1251. doi: 10.1056/NEJMra1208627.
    1. Yunos N.M., Bellomo R., Hegarty C., Story D., Ho L., Bailey M. Association between a chloride-liberal vs chloriderestrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308:1566–1572. doi: 10.1001/jama.2012.13356.
    1. Kraut J.A., Madias N.E. Lactic acidosis. N. Engl. J. Med. 2014;371:2309–2319. doi: 10.1056/NEJMra1309483.
    1. Vincent J.L., De Backer D. Circulatory shock. N. Engl. J. Med. 2013;369:1726–1734. doi: 10.1056/NEJMra1208943.
    1. Kraut J.A., Madias N.E. Treatment of acute metabolic acidosis: A pathophysiologic approach. Nat. Rev. Nephrol. 2012;8:589–601. doi: 10.1038/nrneph.2012.186.
    1. De Backer D., Creteur J., Dubois M.J., Sakr Y., Koch M., Verdant C., Vincent J. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit. Care Med. 2006;34:403–408. doi: 10.1097/01.CCM.0000198107.61493.5A.
    1. Jung B., Rimmele T., Le Goff C., Chanques G., Corne P., Jonquet O., Muller L., Lefrant J.-Y., Guervilly C., Papazian L., et al. Severe metabolic or mixed acidemia on intensive care unit admission: Incidence, prognosis and administration of buffer therapy: A prospective, multiple-center study. Crit. Care. 2011;15:R238. doi: 10.1186/cc10487.
    1. Bjerneroth G. Tribonat--a comprehensive summary of its properties. Crit. Care Med. 1999;27:1009–1013. doi: 10.1097/00003246-199905000-00047.
    1. Hood V.L., Tannen R.L. Protection of acid–base balance by pH regulation of acid production. N. Engl. J. Med. 1998;339:819–826. doi: 10.1056/NEJM199809173391207.
    1. Okorie O.N., Dellinger P. Lactate: Biomarker and potential therapeutic target. Crit. Care Clin. 2011;27:299–326. doi: 10.1016/j.ccc.2010.12.013.
    1. Kruse O., Grunnet N., Barfod C. Blood lactate as a predictor for in-hospital mortality in patients admitted acutely to hospital: A systematic review. Scand. J. Trauma Resusc. Emerg. Med. 2011;19:74. doi: 10.1186/1757-7241-19-74.
    1. Lee S.W., Hong Y.S., Park D.W., Choi S., Moon S., Park J., Kim J., Baek K. Lactic acidosis not hyperlactatemia as a predictor of in hospital mortality in septic emergency patients. Emerg. Med. J. 2008;25:659–665. doi: 10.1136/emj.2007.055558.
    1. Jansen T.C., van Bommel J., Schoonderbeek F.J., Visser S.J.S., van der Klooster J.M., Lima A.P., Willemsen S.P., Bakke J. Early lactate-guided therapy in intensive care unit patients: A multicenter, open-label, randomized controlled trial. Am. J. Respir. Crit. Care Med. 2010;182:752–761. doi: 10.1164/rccm.200912-1918OC.
    1. Longhitano Y., Zanza C., Thangathurai D., Taurone S., Kozel D., Racca F., Audo A., Ravera E., Migneco A., Piccioni A., et al. Gut Alterations in Septic Patients: A Biochemical Literature Review. Rev. Recent Clin. Trials. 2020;15:289–297. doi: 10.2174/18761038MTA5BMDIr2.
    1. Piccioni A., Valletta F., Zanza C., Esperide A., Franceschi F. Novel biomarkers to assess the risk for acute coronary syndrome: Beyond troponins. Intern. Emerg. Med. 2020;15:1193–1199. doi: 10.1007/s11739-020-02422-z.

Source: PubMed

3
Tilaa