Cognitive Dysfunction in Patients Treated with Androgen Deprivation Therapy: A Multimodality Functional Imaging Study to Evaluate Neuroinflammation

Azeem Saleem, Syed Imran Ali Shah, Stephen A Mangar, Christopher Coello, Matthew B Wall, Gaia Rizzo, Terry Jones, Patricia M Price, Azeem Saleem, Syed Imran Ali Shah, Stephen A Mangar, Christopher Coello, Matthew B Wall, Gaia Rizzo, Terry Jones, Patricia M Price

Abstract

Background: Androgen deprivation therapy (ADT) for prostate cancer is implicated as a possible cause of cognitive impairment (CI). CI in dementia and Alzheimer's disease is associated with neuroinflammation. In this study, we investigated a potential role of neuroinflammation in ADT-related CI.

Methods: Patients with prostate cancer on ADT for ≥3 months were categorized as having ADT-emergent CI or normal cognition (NC) based on self-report at interview. Neuroinflammation was evaluated using positron emission tomography (PET) with the translocator protein (TSPO) radioligand [11C]-PBR28. [11C]-PBR28 uptake in various brain regions was quantified as standardized uptake value (SUVR, normalized to cerebellum) and related to blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) choice-reaction time task (CRT) activation maps.

Results: Eleven patients underwent PET: four with reported CI (rCI), six with reported NC (rNC), and one status unrecorded. PET did not reveal any between-group differences in SUVR regionally or globally. There was no difference between groups on brain activation to the CRT. Regardless of the reported cognitive status, there was strong correlation between PET-TSPO signal and CRT activation in the hippocampus, amygdala, and medial cortex.

Conclusions: We found no difference in neuroinflammation measured by PET-TSPO between patients with rCI and rNC. However, we speculate that the strong correlation between TSPO uptake and BOLD-fMRI activation in brain regions involved in memory and known to have high androgen-receptor expression mediating plasticity (hippocampus and amygdala) might reflect inflammatory effects of ADT with compensatory upregulated/increased synaptic functions. Further studies of this imaging readout are warranted to investigate ADT-related CI.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Copyright © 2023 Azeem Saleem et al.

Figures

Figure 1
Figure 1
Orthogonal cross sections of coregistered PET and MR images from two representative patients (003 and 101). PET images are shown as SUV summed from 0–90 minutes. Images show regional heterogeneity consistent with the expected distribution of TSPO.
Figure 2
Figure 2
Time–activity curves expressed as SUV for a set of cortical (frontal, occipital, temporal, parietal lobe and cerebellum) and subcortical regions (striatum, thalamus, hippocampus and amygdala), averaged across the rCI and rNC groups. Top and bottom rows report cortical and subcortical regions, respectively. (a) and (b) report rCI and rNC groups, respectively.
Figure 3
Figure 3
SUVR values in a subset of regions of interest, comparing rCI and rNC in temporal lobe, hippocampus, and striatum. In the bottom right panel rCI, rNC and unknown cognitive status patients SUVR values are compared in a large cortical region, to accommodate for the different spatial preprocessing of the PET images of the patient with unknown cognitive status.
Figure 4
Figure 4
Analysis of SUVR values vs BOLD signal change in a CRT task in the regions showing significant correlation (p < 0.05). Red circles indicate rCI patients, white circles indicate rNC patients.

References

    1. Cerulla Torrente N., Navarro Pastor J. B., de la Osa Chaparro N. Systematic review of cognitive sequelae of non-central nervous system cancer and cancer therapy. J Cancer Surviv. . 2020;14(4):464–482. doi: 10.1007/s11764-020-00870-2.
    1. McGinty H. L., Phillips K. M., Jim H. S., et al. Cognitive functioning in men receiving androgen deprivation therapy for prostate cancer: a systematic review and meta-analysis. Supportive Care in Cancer . 2014;22(8):2271–2280. doi: 10.1007/s00520-014-2285-1.
    1. McHugh D. J., Root J. C., Nelson C. J., Morris M. J. Androgen-deprivation therapy, dementia, and cognitive dysfunction in men with prostate cancer: how much smoke and how much fire? Cancer . 2018;124(7):1326–1334. doi: 10.1002/cncr.31153.
    1. Ryan C., Wefel J. S., Morgans A. K. A review of prostate cancer treatment impact on the CNS and cognitive function. Prostate Cancer and Prostatic Diseases . 2020;23(2):207–219. doi: 10.1038/s41391-019-0195-5.
    1. Treanor C. J., Li J., Donnelly M. Cognitive impairment among prostate cancer patients: an overview of reviews. European Journal of Cancer Care . 2017;26(6) doi: 10.1111/ecc.12642.e12642
    1. Reiss A. B., Saeedullah U., Grossfeld D. J., Glass A. D., Pinkhasov A., Katz A. E. Prostate cancer treatment and the relationship of androgen deprivation therapy to cognitive function. Clinical and Translational Oncology . 2021;24(5):733–741. doi: 10.1007/s12094-021-02727-1.
    1. Gonzalez B. D., Jim H. S., Booth-Jones M., et al. Course and predictors of cognitive function in patients with prostate cancer receiving androgen-deprivation therapy: a controlled comparison. Journal of Clinical Oncology . 2015;33(18):2021–2027. doi: 10.1200/jco.2014.60.1963.
    1. Cherrier M. M., Higano C. S. Impact of androgen deprivation therapy on mood, cognition, and risk for AD. Urologic Oncology: Seminars and Original Investigations . 2020;38(2):53–61. doi: 10.1016/j.urolonc.2019.01.021.
    1. Kluger J., Roy A., Chao H. H. Androgen deprivation therapy and cognitive function in prostate cancer. Current Oncology Reports . 2020;22(3):p. 24. doi: 10.1007/s11912-020-0884-1.
    1. Jhan J. H., Yang Y. H., Chang Y. H., Guu S. J., Tsai C. C. Hormone therapy for prostate cancer increases the risk of Alzheimer’s disease: a nationwide 4-year longitudinal cohort study. The Aging Male . 2017;20(1):33–38. doi: 10.1080/13685538.2016.1271782.
    1. Khosrow-Khavar F., Rej S., Yin H., Aprikian A., Azoulay L. Androgen deprivation therapy and the risk of dementia in patients with prostate cancer. Journal of Clinical Oncology . 2017;35(2):201–207. doi: 10.1200/jco.2016.69.6203.
    1. Nead K. T., Sinha S., Nguyen P. L. Androgen deprivation therapy for prostate cancer and dementia risk: a systematic review and meta-analysis. Prostate Cancer and Prostatic Diseases . 2017;20(3):259–264. doi: 10.1038/pcan.2017.10.
    1. Araujo N., Costa A., Lopes C., et al. Prevalence of cognitive impairment before prostate cancer treatment. Cancers . 2022;14(5):p. 1355. doi: 10.3390/cancers14051355.
    1. Risacher S. L., Saykin A. J. Neuroimaging in aging and neurologic diseases. Handbook of Clinical Neurology . 2019;167:191–227. doi: 10.1016/B978-0-12-804766-8.00012-1.
    1. Bradburn S., Murgatroyd C., Ray N. Neuroinflammation in mild cognitive impairment and Alzheimer’s disease: a meta-analysis. Ageing Research Reviews . 2019;50:1–8. doi: 10.1016/j.arr.2019.01.002.
    1. Knezevic D., Mizrahi R. Molecular imaging of neuroinflammation in Alzheimer’s disease and mild cognitive impairment. Progress in Neuro-Psychopharmacology and Biological Psychiatry . 2018;80(Pt B):123–131. doi: 10.1016/j.pnpbp.2017.05.007.
    1. Calsolaro V., Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimer’s and Dementia . 2016;12(6):719–732. doi: 10.1016/j.jalz.2016.02.010.
    1. Barletta V. T., Herranz E., Treaba C. A., et al. Evidence of diffuse cerebellar neuroinflammation in multiple sclerosis by (11)C-PBR28 MR-PET. Multiple Sclerosis . 2019;26(6):668–678. doi: 10.1177/1352458519843048.
    1. Kreisl W. C., Mbeo G., Fujita M., et al. Stroke incidentally identified using improved positron emission tomography for microglial activation. Archives of Neurology . 2009;66(10):1288–1289. doi: 10.1001/archneurol.2009.208.
    1. Toppala S., Ekblad L. L., Tuisku J., et al. Association of early beta-amyloid accumulation and neuroinflammation measured with [(11)C]PBR28 in elderly individuals without dementia. Neurology . 2021;96(12):e1608–e1619. doi: 10.1212/wnl.0000000000011612.
    1. Wright P., Veronese M., Mazibuko N., et al. Patterns of mitochondrial TSPO binding in cerebral small vessel disease: an in vivo PET study with neuropathological comparison. Frontiers in Neurology . 2020;11 doi: 10.3389/fneur.2020.541377.541377
    1. Owen D. R., Guo Q., Kalk N. J., et al. Determination of [(11)C]PBR28 binding potential in vivo: a first human TSPO blocking study. Journal of Cerebral Blood Flow and Metabolism . 2014;34(7):1256–1994. doi: 10.1038/jcbfm.2014.84.
    1. Smith S. M., Jenkinson M., Woolrich M. W., et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage . 2004;23(Suppl 1):S208–S219. doi: 10.1016/j.neuroimage.2004.07.051.
    1. Grabner G., Janke A. L., Budge M. M., Smith D., Pruessner J., Collins D. L. Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Med Image Comput Comput Assist Interv. . 2006;9(Pt 2):58–66. doi: 10.1007/11866763_8.
    1. Tziortzi A. C., Searle G. E., Tzimopoulou S., et al. Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy. NeuroImage . 2011;54(1):264–277. doi: 10.1016/j.neuroimage.2010.06.044.
    1. Lyoo C. H., Ikawa M., Liow J. S., et al. Cerebellum can serve as a pseudo-reference region in alzheimer disease to detect neuroinflammation measured with PET radioligand binding to translocator protein. Journal of Nuclear Medicine . 2015;56(5):701–706. doi: 10.2967/jnumed.114.146027.
    1. Varnäs K., Cselényi Z., Jucaite A., et al. PET imaging of [(11)C]PBR28 in Parkinson’s disease patients does not indicate increased binding to TSPO despite reduced dopamine transporter binding. European Journal of Nuclear Medicine and Molecular Imaging . 2019;46(2):367–375. doi: 10.1007/s00259-018-4161-6.
    1. Kreisl W. C., Lyoo C. H., McGwier M., et al. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain . 2013;136(7):2228–2238.
    1. Hannaway N., Lao-Kaim N. P., Martin-Bastida A., et al. Longitudinal changes in movement-related functional MRI activity in Parkinson’s disease patients. Parkinsonism & Related Disorders . 2021;87:61–69. doi: 10.1016/j.parkreldis.2021.04.025.
    1. Lenzi D., Serra L., Perri R., et al. Single domain amnestic MCI: a multiple cognitive domains fMRI investigation. Neurobiology of Aging . 2011;32(9):1542–1557. doi: 10.1016/j.neurobiolaging.2009.09.006.
    1. Papadopoulos V. On the role of the translocator protein (18-kDa) TSPO in steroid hormone biosynthesis. Endocrinology . 2014;155(1):15–20.
    1. Cavallaro S., Korneyev A., Guidotti A., Costa E. Diazepam-binding inhibitor (DBI)-processing products, acting at the mitochondrial DBI receptor, mediate adrenocorticotropic hormone-induced steroidogenesis in rat adrenal gland. Proceedings of the National Academy of Sciences of the U S A . 1992;89(22):10598–10602. doi: 10.1073/pnas.89.22.10598.
    1. Chung J. Y., Chen H., Midzak A., Burnett A. L., Papadopoulos V., Zirkin B. R. Drug ligand-induced activation of translocator protein (TSPO) stimulates steroid production by aged brown Norway rat Leydig cells. Endocrinology . 2013;154(6):2156–2165. doi: 10.1210/en.2012-2226.
    1. Vera J. H., Guo Q., Cole J. H., et al. Neuroinflammation in treated HIV-positive individuals: a TSPO PET study. Neurology . 2016;86(15):1425–1432. doi: 10.1212/wnl.0000000000002485.
    1. Gouilly D., Saint-Aubert L., Ribeiro M. J., et al. Neuroinflammation PET imaging of the translocator protein (TSPO) in Alzheimer’s disease: an update. European Journal of Neuroscience . 2022;55(5):1322–1343. doi: 10.1111/ejn.15613.
    1. Yagi S., Galea L. A. M. Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology . 2019;44(1):200–213. doi: 10.1038/s41386-018-0208-4.
    1. Kuwahara N., Nicholson K., Isaacs L., MacLusky N. J. Androgen effects on neural plasticity. Androgens: Clinical Research and Therapeutics . 2021;2(1):216–230. doi: 10.1089/andro.2021.0022.
    1. Rodriguez de Dios N., Counago F., Murcia-Mejia M., et al. Randomized phase III trial of prophylactic cranial irradiation with or without hippocampal avoidance for small-cell lung cancer (premer): a GICOR-GOECP-SEOR study. Journal of Clinical Oncology . 2021;39(28):3118–3127. doi: 10.1200/jco.21.00639.
    1. Beauchet O. Testosterone and cognitive function: current clinical evidence of a relationship. European Journal of Endocrinology . 2006;155(6):773–781. doi: 10.1530/eje.1.02306.
    1. Feng Y., Weijdegard B., Wang T., et al. Spatiotemporal expression of androgen receptors in the female rat brain during the oestrous cycle and the impact of exogenous androgen administration: a comparison with gonadally intact males. Molecular and Cellular Endocrinology . 2010;321(2):161–174. doi: 10.1016/j.mce.2010.02.029.
    1. Janowsky J. S. The role of androgens in cognition and brain aging in men. Neuroscience . 2006;138(3):1015–1020. doi: 10.1016/j.neuroscience.2005.09.007.
    1. Almeida O. P., Waterreus A., Spry N., Flicker L., Martins R. N. One year follow-up study of the association between chemical castration, sex hormones, beta-amyloid, memory and depression in men. Psychoneuroendocrinology . 2004;29(8):1071–1081. doi: 10.1016/j.psyneuen.2003.11.002.
    1. Gandy S., Almeida O. P., Fonte J., et al. Chemical andropause and amyloid-beta peptide. JAMA . 2001;285(17):2195–2196. doi: 10.1001/jama.285.17.2195-a.
    1. Lau C. F., Ho Y. S., Hung C. H., et al. Protective effects of testosterone on presynaptic terminals against oligomeric beta-amyloid peptide in primary culture of hippocampal neurons. BioMed Research International . 2014;2014:12. doi: 10.1155/2014/103906.103906
    1. Lee J. H., Byun M. S., Yi D., et al. Sex-specific association of sex hormones and gonadotropins, with brain amyloid and hippocampal neurodegeneration. Neurobiology of Aging . 2017;58:34–40. doi: 10.1016/j.neurobiolaging.2017.06.005.
    1. Murphy M. P., LeVine H. 3rd Alzheimer’s disease and the amyloid-beta peptide. Journal of Alzheimer’s Disease . 2010;19(1):311–323. doi: 10.3233/jad-2010-1221.
    1. Yang L., Zhou R., Tong Y., et al. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiology of Disease . 2020;140 doi: 10.1016/j.nbd.2020.104814.104814
    1. Bianchi V. E. The anti-inflammatory effects of testosterone. Journal of the Endocrine Society . 2019;3(1):91–107. doi: 10.1210/js.2018-00186.
    1. Lainez N. M., Coss D. Obesity, neuroinflammation, and reproductive function. Endocrinology . 2019;160(11):2719–2736. doi: 10.1210/en.2019-00487.
    1. Białek M., Zaremba P., Borowicz K. K., Czuczwar S. J. Neuroprotective role of testosterone in the nervous system. Polish Journal of Pharmacology . 2004;56(5):509–518.
    1. Cherrier M. M., Borghesani P. R., Shelton A. L., Higano C. S. Changes in neuronal activation patterns in response to androgen deprivation therapy: a pilot study. BMC Cancer . 2010;10:p. 1. doi: 10.1186/1471-2407-10-1.
    1. Chao H. H., Uchio E., Zhang S., et al. Effects of androgen deprivation on brain function in prostate cancer patients- a prospective observational cohort analysis. BMC Cancer . 2012;12(1):p. 371. doi: 10.1186/1471-2407-12-371.
    1. Cherrier M. M., Cross D. J., Higano C. S., Minoshima S. Changes in cerebral metabolic activity in men undergoing androgen deprivation therapy for non-metastatic prostate cancer. Prostate Cancer and Prostatic Diseases . 2018;21(3):394–402. doi: 10.1038/s41391-018-0037-x.
    1. Batarseh A., Papadopoulos V. Regulation of translocator protein 18 kDa (TSPO) expression in health and disease states. Molecular and Cellular Endocrinology . 2010;327(1-2):1–12. doi: 10.1016/j.mce.2010.06.013.
    1. Notter T., Schalbetter S. M., Clifton N. E., et al. Neuronal activity increases translocator protein (TSPO) levels. Molecular Psychiatry . 2021;26(6):2025–2037. doi: 10.1038/s41380-020-0745-1.
    1. Cao T., Thomas T. C., Ziebell J. M., Pauly J. R., Lifshitz J. Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat. Neuroscience . 2012;225:65–75. doi: 10.1016/j.neuroscience.2012.08.058.
    1. Boujrad N., Gaillard J. L., Garnier M., Papadopoulos V. Acute action of choriogonadotropin on Leydig tumor cells: induction of a higher affinity benzodiazepine-binding site related to steroid biosynthesis. Endocrinology . 1994;135(4):1576–1583. doi: 10.1210/endo.135.4.7925120.
    1. Fainanta T., Jaroenporn S., Wititsuwankul P., Malaivijitnond S. Chronological molecular changes in neuronal communication in androgen-deficient rats. Journal of Molecular Neuroscience . 2019;69(1):83–93. doi: 10.1007/s12031-019-01335-7.
    1. Brown P. D., Pugh S., Laack N. N., et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro-Oncology . 2013;15(10):1429–1437. doi: 10.1093/neuonc/not114.

Source: PubMed

3
Tilaa