Calcium Modification Therapies in Contemporary Percutaneous Coronary Intervention

Mohammad Zaidan, Mohammad Alkhalil, Khaldoon Alaswad, Mohammad Zaidan, Mohammad Alkhalil, Khaldoon Alaswad

Abstract

Coronary Artery Calcification (CAC) has been known to be associated with worse Percutaneous Coronary Intervention (PCI) short- and long-term outcomes. Nowadays, with the increased prevalence of the risk factors leading to CAC in the population and also more PCI procedures done in older patients and with the growing number of higher-risk cases of Chronic Total Occlusion (CTO) PCI and PCI after Coronary Artery Bypass Grafting (CABG), severe cases of CAC are now encountered on a daily basis in the catheterization lab and remain a big challenge to the interventional community, making it crucial to identify cases of severe CAC and plan a CAC PCI modification strategy upfront. Improved CAC detection with intravascular imaging helped identify more of these severe CAC cases and predict response to therapy and stent expansion based on CAC distribution in the vessel. Multiple available therapies for CAC modification have evolved over the years. Familiarity with the specifics and special considerations and limitations of each of these tools are essential in the choice and application of these therapies when used in severe CAC treatment. In this review, we discuss CAC pathophysiology, modes of detection, and different available therapies for CAC modification.

Keywords: Calcification; atherectomy; intervascular lithotripsy; intravascular ultrasound; optical coherence tomography; orbital atherectomy; percutaneous intervention; rotational atherectomy; stent.

Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.

Figures

Fig. (1)
Fig. (1)
Example of Severe Coronary Artery Calcification on Coronary Angiography. Example of severe CAC as assessed by angiography before (A) and after (B) contrast injection, with the presence of CAC on both sides of the coronary artery (arrows).
Fig. (2)
Fig. (2)
Intravascular ultrasound image of CAC, visualized as superficial hyperechois tissue with acoustic shadowing, arc of calcium marked by arrow.
Fig. (3)
Fig. (3)
Optical Coherence Tomography (OCT) showing CAC as signal-poor heterogenous region with sharply delineated borders (arrow).

References

    1. Vliegenthart R., Oudkerk M., Hofman A., et al. Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation. 2005;112(4):572–577. doi: 10.1161/CIRCULATIONAHA.104.488916.
    1. Bourantas C.V., Zhang Y.J., Garg S., Mack M., Dawkins K.D., Kappetein A.P., Mohr F.W., Colombo A., Holmes D.R., Ståhle E., Feldman T., Morice M.C., de Vries T., Morel M.A., Serruys P.W. Prognostic implications of severe coronary calcification in patients undergoing coronary artery bypass surgery: An analysis of the SYNTAX study. Catheter. Cardiovasc. Interv. 2015;85(2):199–206. doi: 10.1002/ccd.25545.
    1. Wang L., Jerosch-Herold M., Jacobs D.R., Jr, Shahar E., Detrano R., Folsom A.R., MESA Study Investigators Coronary artery calcification and myocardial perfusion in asymptomatic adults: The MESA (Multi-ethnic study of atherosclerosis). J. Am. Coll. Cardiol. 2006;48(5):1018–1026. doi: 10.1016/j.jacc.2006.04.089.
    1. Kalra S.S., Shanahan C.M. Vascular calcification and hypertension: Cause and effect. Ann. Med. 2012;44(Suppl. 1):S85–S92. doi: 10.3109/07853890.2012.660498.
    1. Généreux P., Madhavan M.V., Mintz G.S., Maehara A., Palmerini T., Lasalle L., Xu K., McAndrew T., Kirtane A., Lansky A.J., Brener S.J., Mehran R., Stone G.W. Ischemic outcomes after coronary intervention of calcified vessels in acute coronary syndromes. Pooled analysis from the HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) and ACUITY (acute catheterization and urgent intervention triage strategy) TRIALS. J. Am. Coll. Cardiol. 2014;63(18):1845–1854. doi: 10.1016/j.jacc.2014.01.034.
    1. Demer L.L., Tintut Y. Vascular calcification: Pathobiology of a multifaceted disease. Circulation. 2008;117(22):2938–2948. doi: 10.1161/CIRCULATIONAHA.107.743161.
    1. Abedin M., Tintut Y., Demer L.L. Vascular calcification: Mechanisms and clinical ramifications. Arterioscler. Thromb. Vasc. Biol. 2004;24(7):1161–1170. doi: 10.1161/01.ATV.0000133194.94939.42.
    1. Johnson R.C., Leopold J.A., Loscalzo J. Vascular calcification: Pathobiological mechanisms and clinical implications. Circ. Res. 2006;99(10):1044–1059. doi: 10.1161/01.RES.0000249379.55535.21.
    1. van Setten J., Isgum I., Smolonska J., Ripke S., de Jong P.A., Oudkerk M., de Koning H., Lammers J.W., Zanen P., Groen H.J., Boezen H.M., Postma D.S., Wijmenga C., Viergever M.A., Mali W.P., de Bakker P.I. Genome-wide association study of coronary and aortic calcification implicates risk loci for coronary artery disease and myocardial infarction. Atherosclerosis. 2013;228(2):400–405. doi: 10.1016/j.atherosclerosis.2013.02.039.
    1. Hofmann Bowman M.A., McNally E.M. Genetic pathways of vascular calcification. Trends Cardiovasc. Med. 2012;22(4):93–98. doi: 10.1016/j.tcm.2012.07.002.
    1. O’Donnell C.J., Kavousi M., Smith A.V., Kardia S.L., Feitosa M.F., Hwang S.J., Sun Y.V., Province M.A., Aspelund T., Dehghan A., Hoffmann U., Bielak L.F., Zhang Q., Eiriksdottir G., van Duijn C.M., Fox C.S., de Andrade M., Kraja A.T., Sigurdsson S., Elias-Smale S.E., Murabito J.M., Launer L.J., van der Lugt A., Kathiresan S., Krestin G.P., Herrington D.M., Howard T.D., Liu Y., Post W., Mitchell B.D., O’Connell J.R., Shen H., Shuldiner A.R., Altshuler D., Elosua R., Salomaa V., Schwartz S.M., Siscovick D.S., Voight B.F., Bis J.C., Glazer N.L., Psaty B.M., Boerwinkle E., Heiss G., Blankenberg S., Zeller T., Wild P.S., Schnabel R.B., Schillert A., Ziegler A., Münzel T.F., White C.C., Rotter J.I., Nalls M., Oudkerk M., Johnson A.D., Newman A.B., Uitterlinden A.G., Massaro J.M., Cunningham J., Harris T.B., Hofman A., Peyser P.A., Borecki I.B., Cupples L.A., Gudnason V., Witteman J.C., CARDIoGRAM Consortium Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation. 2011;124(25):2855–2864. doi: 10.1161/CIRCULATIONAHA.110.974899.
    1. Sangiorgi G., Rumberger J.A., Severson A., Edwards W.D., Gregoire J., Fitzpatrick L.A., Schwartz R.S. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: A histologic study of 723 coronary artery segments using nondecalcifying methodology. J. Am. Coll. Cardiol. 1998;31(1):126–133. doi: 10.1016/S0735-1097(97)00443-9.
    1. Kelly-Arnold A., Maldonado N., Laudier D., Aikawa E., Cardoso L., Weinbaum S. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc. Natl. Acad. Sci. USA. 2013;110(26):10741–10746. doi: 10.1073/pnas.1308814110.
    1. Wong N.D., Kouwabunpat D., Vo A.N., Detrano R.C., Eisenberg H., Goel M., Tobis J.M. Coronary calcium and atherosclerosis by ultrafast computed tomography in asymptomatic men and women: Relation to age and risk factors. Am. Heart J. 1994;127(2):422–430. doi: 10.1016/0002-8703(94)90133-3.
    1. Yamamoto H., Imazu M., Hattori Y., Tadehara F., Yamakido M., Nakanishi T., Ito K. Predicting angiographic narrowing > or = 50% in diameter in each of the three major arteries by amounts of calcium detected by electron beam computed tomographic scanning in patients with chest pain. Am. J. Cardiol. 1998;81(6):778–780. doi: 10.1016/S0002-9149(97)01011-4.
    1. Greenland P., LaBree L., Azen S.P., Doherty T.M., Detrano R.C. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA. 2004;291(2):210–215. doi: 10.1001/jama.291.2.210.
    1. Bourantas C.V., Zhang Y.J., Garg S., Iqbal J., Valgimigli M., Windecker S., Mohr F.W., Silber S., Vries Td., Onuma Y., Garcia-Garcia H.M., Morel M.A., Serruys P.W. Prognostic implications of coronary calcification in patients with obstructive coronary artery disease treated by percutaneous coronary intervention: A patient-level pooled analysis of 7 contemporary stent trials. Heart. 2014;100(15):1158–1164. doi: 10.1136/heartjnl-2013-305180.
    1. Mintz G.S., Popma J.J., Pichard A.D., Kent K.M., Satler L.F., Chuang Y.C., Ditrano C.J., Leon M.B. Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation. 1995;91(7):1959–1965. doi: 10.1161/01.CIR.91.7.1959.
    1. Tanenbaum S.R., Kondos G.T., Veselik K.E., Prendergast M.R., Brundage B.H., Chomka E.V. Detection of calcific deposits in coronary arteries by ultrafast computed tomography and correlation with angiography. Am. J. Cardiol. 1989;63(12):870–872. doi: 10.1016/0002-9149(89)90060-X.
    1. Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, Yeoh SE, Wallace W, Salter D, Fletcher AM, van Beek EJ, Flapan AD, Uren NG, Behan MW, Cruden NL, Mills NL, Fox KA, Rudd JH, Dweck MR, Newby DE. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: A prospective clinical trial. Lancet. 2014;383(9918):705–713. doi: 10.1016/S0140-6736(13)61754-7.
    1. Kwiecinski J., Tzolos E., Adamson P.D., Cadet S., Moss A.J., Joshi N., Williams M.C., van Beek E.J.R., Dey D., Berman D.S., Newby D.E., Slomka P.J., Dweck M.R. Coronary 18F-sodium fluoride uptake predicts outcomes in patients with coronary artery disease. J. Am. Coll. Cardiol. 2020;75(24):3061–3074. doi: 10.1016/j.jacc.2020.04.046.
    1. Puchner S.B., Liu T., Mayrhofer T., Truong Q.A., Lee H., Fleg J.L., Nagurney J.T., Udelson J.E., Hoffmann U., Ferencik M. High-risk plaque detected on coronary CT angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain: Results from the ROMICAT-II trial. J. Am. Coll. Cardiol. 2014;64(7):684–692. doi: 10.1016/j.jacc.2014.05.039.
    1. Topol E.J., Nissen S.E. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation. 1995;92(8):2333–2342. doi: 10.1161/01.CIR.92.8.2333.
    1. Friedrich G.J., Moes N.Y., Mühlberger V.A., Gabl C., Mikuz G., Hausmann D., Fitzgerald P.J., Yock P.G. Detection of intralesional calcium by intracoronary ultrasound depends on the histologic pattern. Am. Heart J. 1994;128(3):435–441. doi: 10.1016/0002-8703(94)90614-9.
    1. Kawasaki M., Bouma B.E., Bressner J., Houser S.L., Nadkarni S.K., MacNeill B.D., Jang I.K., Fujiwara H., Tearney G.J. Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques. J. Am. Coll. Cardiol. 2006;48(1):81–88. doi: 10.1016/j.jacc.2006.02.062.
    1. Kwon T.G., Seo Y.H., Lee C.S., Yang D.J., Song I.G., Park H.W., Kim K.H., Kim W.H., Bae J.H. Discrepancy of calcium detection between gray scale intravascular ultrasound and spectral analysis of radiofrequency data. Int. J. Cardiol. 2013;167(6):2611–2616. doi: 10.1016/j.ijcard.2012.06.123.
    1. Kume T., Okura H., Kawamoto T., Yamada R., Miyamoto Y., Hayashida A., Watanabe N., Neishi Y., Sadahira Y., Akasaka T., Yoshida K. Assessment of the coronary calcification by optical coherence tomography. EuroIntervention. 2011;6(6):768–772. doi: 10.4244/EIJV6I6A130.
    1. Fujino A., Mintz G.S., Lee T., Hoshino M., Usui E., Kanaji Y., Murai T., Yonetsu T., Matsumura M., Ali Z.A., Jeremias A., Moses J.W., Shlofmitz R.A., Kakuta T., Maehara A. Predictors of calcium fracture derived from balloon angioplasty and its effect on stent expansion assessed by optical coherence tomography. JACC Cardiovasc. Interv. 2018;11(10):1015–1017. doi: 10.1016/j.jcin.2018.02.004.
    1. Kini A.S., Vengrenyuk Y., Pena J., Motoyama S., Feig J.E., Meelu O.A., Rajamanickam A., Bhat A.M., Panwar S., Baber U., Sharma S.K. Optical coherence tomography assessment of the mechanistic effects of rotational and orbital atherectomy in severely calcified coronary lesions. Catheter. Cardiovasc. Interv. 2015;86(6):1024–1032. doi: 10.1002/ccd.26000.
    1. Savage M.P., Goldberg S., Hirshfeld J.W., Bass T.A., MacDonald R.G., Margolis J.R., Taussig A.S., Vetrovec G., Whitworth H.B., Zalewski A. Clinical and angiographic determinants of primary coronary angioplasty success. J. Am. Coll. Cardiol. 1991;17(1):22–28. doi: 10.1016/0735-1097(91)90700-J.
    1. Tan K., Sulke N., Taub N., Sowton E. Clinical and lesion morphologic determinants of coronary angioplasty success and complications: current experience. J. Am. Coll. Cardiol. 1995;25(4):855–865. doi: 10.1016/0735-1097(94)00462-Y.
    1. Detre K.M., Holmes D.R., Jr, Holubkov R., Cowley M.J., Bourassa M.G., Faxon D.P., Dorros G.R., Bentivoglio L.G., Kent K.M., Myler R.K. Incidence and consequences of periprocedural occlusion. The 1985-1986 national heart, lung, and blood institute percutaneous transluminal coronary angioplasty registry. Circulation. 1990;82(3):739–750. doi: 10.1161/01.CIR.82.3.739.
    1. Nobuyoshi M., Kimura T., Ohishi H., Horiuchi H., Nosaka H., Hamasaki N., Yokoi H., Kim K. Restenosis after percutaneous transluminal coronary angioplasty: Pathologic observations in 20 patients. J. Am. Coll. Cardiol. 1991;17(2):433–439. doi: 10.1016/S0735-1097(10)80111-1.
    1. Abdel-Wahab M., Richardt G., Joachim Büttner H., Toelg R., Geist V., Meinertz T., Schofer J., King L., Neumann F.J., Khattab A.A. High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: The randomized ROTAXUS (Rotational Atherectomy Prior to taxus stent treatment for complex native Coronary Artery Disease) trial. JACC Cardiovasc. Interv. 2013;6(1):10–19. doi: 10.1016/j.jcin.2012.07.017.
    1. Mosseri M., Satler L.F., Pichard A.D., Waksman R. Impact of vessel calcification on outcomes after coronary stenting. Cardiovasc. Revasc. Med. 2005;6(4):147–153. doi: 10.1016/j.carrev.2005.08.008.
    1. Barbato E, Shlofmitz E, Milkas A, Shlofmitz R, Azzalini L, Colombo A. State of the art: Evolving concepts in the treatment of heavily calcified and undilatable coronary stenoses - from debulking to plaque modification, a 40-year-long journey. EuroIntervention. 2017;13(6):696–705. doi: 10.4244/EIJ-D-17-00473.
    1. Okura H, Hayase M, Shimodozono S, Kobayashi T, Sano K, Matsushita T, Kondo T, Kijima M, Nishikawa H, Kurogane H, Aizawa T, Hosokawa H, Suzuki T, Yamaguchi T, Bonneau HN, Yock PG, Fitzgerald PJ. Restenosis reduction by cutting balloon evaluation. mechanisms of acute lumen gain following cutting balloon angioplasty in calcified and noncalcified lesions: An intravascular ultrasound study. Catheter Cardiovasc Interv. 2002;57(4):429–436. doi: 10.1002/ccd.10344.
    1. Mauri L, Bonan R, Weiner BH, Legrand V, Bassand JP, Popma JJ, Niemyski P, Prpic R, Ho KK, Chauhan MS, Cutlip DE, Bertrand OF, Kuntz RE. Cutting balloon angioplasty for the prevention of restenosis: Results of the cutting balloon global randomized trial. Am J Cardiol. 2002;90(10):1079–1083. doi: 10.1016/S0002-9149(02)02773-X.
    1. Vaquerizo B., Serra A., Miranda F., Triano J.L., Sierra G., Delgado G., Puentes A., Mojal S., Brugera J. Aggressive plaque modification with rotational atherectomy and/or cutting balloon before drug-eluting stent implantation for the treatment of calcified coronary lesions. J. Interv. Cardiol. 2010;23(3):240–248. doi: 10.1111/j.1540-8183.2010.00547.x.
    1. de Ribamar Costa J, Jr., Mintz GS, Carlier SG, Mehran R, Teirstein P, Sano K, Liu X, Lui J, Na Y, Castellanos C, Biro S, Dani L, Rinker J, Moussa I, Dangas G, Lansky AJ, Kreps EM, Collins M, Stone GW, Moses JW, Leon MB. Nonrandomized comparison of coronary stenting under intravascular ultrasound guidance of direct stenting without predilation versus conventional predilation with a semi-compliant balloon versus predilation with a new scoring balloon. Am J Cardiol. 2007;100(5):812–817. doi: 10.1016/j.amjcard.2007.03.100.
    1. Abdel-Wahab M., Toelg R., Byrne R.A., Geist V., El-Mawardy M., Allali A., Rheude T., Robinson D.R., Abdelghani M., Sulimov D.S., Kastrati A., Richardt G. High-speed rotational atherectomy versus modified balloons prior to drug-eluting stent implantation in severely calcified coronary lesions. Circ. Cardiovasc. Interv. 2018;11(10):e007415. doi: 10.1161/CIRCINTERVENTIONS.118.007415.
    1. Amemiya K., Yamamoto M.H., Maehara A., Oyama Y., Igawa W., Ono M., Kido T., Ebara S., Okabe T., Yamashita K., Hoshimoto K., Saito S., Yakushiji T., Isomura N., Araki H., Mintz G.S., Ochiai M. Effect of cutting balloon after rotational atherectomy in severely calcified coronary artery lesions as assessed by optical coherence tomography. Catheter. Cardiovasc. Interv. 2019;94(7):936–944. doi: 10.1002/ccd.28278.
    1. Matsukawa R, Kozai T, Tokutome M, Nakashima R, Nishimura R, Matsumoto S, Katsuki M, Masuda S, Meno H. Plaque modification using a cutting balloon is more effective for stenting of heavily calcified lesion than other scoring balloons. Cardiovasc Interv Ther. 2019;34(4):325–334. doi: 10.1007/s12928-019-00578-w.
    1. Giugliano G.R., Cox N., Popma J. Cutting balloon entrapment during treatment of in-stent restenosis: An unusual complication and its management. J. Invasive Cardiol. 2005;17(3):168–170.
    1. Vemula P, Kalavakunta JK, Abela GS, Karve M. A rare and serious unforeseen complication of cutting balloon angioplasty. Case Rep Cardiol. 2014;2014:246784. doi: 10.1155/2014/246784.
    1. Secco GG, Ghione M, Mattesini A, Dall'Ara G, Ghilencea L, Kilickesmez K, De Luca G, Fattori R, Parisi R, Marino PN, Lupi A, Foin N, Di Mario C. Very high-pressure dilatation for undilatable coronary lesions: Indications and results with a new dedicated balloon. EuroIntervention. 2016;12(3):359–365. doi: 10.4244/EIJY15M06_04.
    1. Zimarino M., Corcos T., Bramucci E., Tamburino C. Rotational atherectomy: A “survivor” in the drug-eluting stent era. Cardiovasc. Revasc. Med. 2012;13(3):185–192. doi: 10.1016/j.carrev.2012.03.002.
    1. Warth D.C., Leon M.B., O’Neill W., Zacca N., Polissar N.L., Buchbinder M. Rotational atherectomy multicenter registry: Acute results, complications and 6-month angiographic follow-up in 709 patients. J. Am. Coll. Cardiol. 1994;24(3):641–648. doi: 10.1016/0735-1097(94)90009-4.
    1. Whitlow PL, Bass TA, Kipperman RM, Sharaf BL, Ho KK, Cutlip DE, Zhang Y, Kuntz RE, Williams DO, Lasorda DM, Moses JW, Cowley MJ, Eccleston DS, Horrigan MC, Bersin RM, Ramee SR, Feldman T. Results of the study to determine rotablator and transluminal angioplasty strategy (STRATAS). Am J Cardiol. 2001;87(6):699–705. doi: 10.1016/S0002-9149(00)01486-7.
    1. Safian RD, Feldman T, Muller DW, Mason D, Schreiber T, Haik B, Mooney M, O'Neill WW. Coronary angioplasty and rotablator atherectomy trial (CARAT): Immediate and late results of a prospective multicenter randomized trial. Catheter Cardiovasc Interv. 2001;53(2):213–220. doi: 10.1002/ccd.1151.
    1. Reisman M, Shuman BJ, Dillard D, Fei R, Misser KH, Gordon LS, Harms V. Analysis of low-speed rotational atherectomy for the reduction of platelet aggregation. Cathet Cardiovasc Diagn. 1998;45(2):208–214. doi: 10.1002/(SICI)1097-0304(199810)45:2<208::AID-CCD21>;2-F.
    1. Parikh K., Chandra P., Choksi N., Khanna P., Chambers J. Safety and feasibility of orbital atherectomy for the treatment of calcified coronary lesions: The ORBIT I trial. Catheter. Cardiovasc. Interv. 2013;81(7):1134–1139. doi: 10.1002/ccd.24700.
    1. Chambers J.W., Feldman R.L., Himmelstein S.I., Bhatheja R., Villa A.E., Strickman N.E., Shlofmitz R.A., Dulas D.D., Arab D., Khanna P.K., Lee A.C., Ghali M.G., Shah R.R., Davis T.P., Kim C.Y., Tai Z., Patel K.C., Puma J.A., Makam P., Bertolet B.D., Nseir G.Y. Pivotal trial to evaluate the safety and efficacy of the orbital atherectomy system in treating de novo, severely calcified coronary lesions (ORBIT II). JACC Cardiovasc. Interv. 2014;7(5):510–518. doi: 10.1016/j.jcin.2014.01.158.
    1. Baumbach A., Bittl J.A., Fleck E., Geschwind H.J., Sanborn T.A., Tcheng J.E., Karsch K.R. Acute complications of excimer laser coronary angioplasty: A detailed analysis of multicenter results. Coinvestigators of the U.S. and European percutaneous excimer laser coronary angioplasty (PELCA) registries. J. Am. Coll. Cardiol. 1994;23(6):1305–1313. doi: 10.1016/0735-1097(94)90371-9.
    1. Bittl J.A., Sanborn T.A., Tcheng J.E., Siegel R.M., Ellis S.G., The Percutaneous Excimer Laser Coronary Angioplasty Registry Clinical success, complications and restenosis rates with excimer laser coronary angioplasty. Am. J. Cardiol. 1992;70(20):1533–1539. doi: 10.1016/0002-9149(92)90453-6.
    1. Mintz GS, Kovach JA, Javier SP, Pichard AD, Kent KM, Popma JJ, Salter LF, Leon MB. Mechanisms of lumen enlargement after excimer laser coronary angioplasty. An intravascular ultrasound study. Circulation. 1995;92(12):3408–3414. doi: 10.1161/01.CIR.92.12.3408.
    1. Fernandez J.P., Hobson A.R., McKenzie D., Shah N., Sinha M.K., Wells T.A., Levy T.M., Swallow R.A., Talwar S., O’Kane P.D. Beyond the balloon: excimer coronary laser atherectomy used alone or in combination with rotational atherectomy in the treatment of chronic total occlusions, non-crossable and non-expansible coronary lesions. EuroIntervention. 2013;9(2):243–250. doi: 10.4244/EIJV9I2A40.
    1. Lee T, Shlofmitz RA, Song L, et al. The effectiveness of excimer laser angioplasty to treat coronary in-stent restenosis with peri-stent calcium as assessed by optical coherence tomography. EuroIntervention. 2019;2019;15(3):e279–e288. doi: 10.4244/EIJ-D-18-00139.
    1. Veerasamy M., Gamal A.S., Jabbar A., Ahmed J.M., Egred M. Excimer laser with and without contrast for the management of under-expanded stents. J. Invasive Cardiol. 2017;29(11):364–369.
    1. Brinton TJ, Ali ZA, Hill JM, Meredith IT, Maehara A, Illindala U, Lansky A, Götberg M, Van Mieghem NM, Whitbourn R, Fajadet J, Di Mario C. Feasibility of shockwave coronary intravascular lithotripsy for the treatment of calcified coronary stenoses. Circulation. 2019;139(6):834–836. doi: 10.1161/CIRCULATIONAHA.118.036531.
    1. Serruys P.W., Katagiri Y., Onuma Y. Shaking and breaking calcified plaque: Lithoplasty, a breakthrough in interventional armamentarium? JACC Cardiovasc. Imaging. 2017;10(8):907–911. doi: 10.1016/j.jcmg.2017.05.011.
    1. Ali ZA, Brinton TJ, Hill JM, Maehara A, Matsumura M, Karimi Galougahi K, Illindala U, Götberg M, Whitbourn R, Van Mieghem N, Meredith IT, Di Mario C, Fajadet J. Optical coherence tomography characterization of coronary lithoplasty for treatment of calcified lesions: First description. JACC Cardiovasc Imaging. 2017;10(8):897–906. doi: 10.1016/j.jcmg.2017.05.012.
    1. Ali Z.A., Nef H., Escaned J., Werner N., Banning A.P., Hill J.M., De Bruyne B., Montorfano M., Lefevre T., Stone G.W., Crowley A., Matsumura M., Maehara A., Lansky A.J., Fajadet J., Di Mario C. Safety and effectiveness of coronary intravascular lithotripsy for treatment of severely calcified coronary stenoses: The disrupt CAD II study. Circ. Cardiovasc. Interv. 2019;12(10):e008434. doi: 10.1161/CIRCINTERVENTIONS.119.008434.
    1. Hill J.M., Kereiakes D.J., Shlofmitz R.A., Klein A.J., Riley R.F., Price M.J., Herrmann H.C., Bachinsky W., Waksman R., Stone G.W., Disrupt C.A.D., Disrupt CAD III Investigators Intravascular lithotripsy for treatment of severely calcified coronary artery disease. J. Am. Coll. Cardiol. 2020;76(22):2635–2646. doi: 10.1016/j.jacc.2020.09.603.
    1. McQuillan C, Alkhalil M, Johnston PW. A paced heart without a pacemaker. Eur Heart J. 2019;40(10):819a. doi: 10.1093/eurheartj/ehy749.
    1. Osswald B.R., Blackstone E.H., Tochtermann U., Schweiger P., Thomas G., Vahl C.F., Hagl S. Does the completeness of revascularization affect early survival after coronary artery bypass grafting in elderly patients? Eur. J. Cardiothorac. Surg. 2001;20(1):120–125. doi: 10.1016/S1010-7940(01)00743-6.
    1. Nakayama Y., Sakata R., Ura M., Miyamoto T.A. Coronary artery bypass grafting in dialysis patients. Ann. Thorac. Surg. 1999;68(4):1257–1261. doi: 10.1016/S0003-4975(99)00696-7.
    1. Castagna MT, Mintz GS, Ohlmann P, Kotani J, Maehara A, Gevorkian N, Cheneau E, Stabile E, Ajani AE, Suddath WO, Kent KM, Satler LF, Pichard AD, Weissman NJ. Incidence, location, magnitude, and clinical correlates of saphenous vein graft calcification: An intravascular ultrasound and angiographic study. Circulation. 2005;111(9):1148–1152. doi: 10.1161/01.CIR.0000157160.69812.55.
    1. Hemetsberger R, Gori T, Toelg R, Byrne R, Allali A, El-Mawardy M, Rheude T, Weissner M, Sulimov DS, Robinson DR, Richardt G, Abdel-Wahab M. Optical coherence tomography assessment in patients treated with rotational atherectomy versus modified balloons: PREPARE-CALC OCT. Circ Cardiovasc Interv. 2021;14(3):e009819. doi: 10.1161/CIRCINTERVENTIONS.120.009819.
    1. Kubo T., Shimamura K., Ino Y., Yamaguchi T., Matsuo Y., Shiono Y., Taruya A., Nishiguchi T., Shimokado A., Teraguchi I., Orii M., Yamano T., Tanimoto T., Kitabata H., Hirata K., Tanaka A., Akasaka T. Superficial calcium fracture after PCI as assessed by OCT. JACC Cardiovasc. Imaging. 2015;8(10):1228–1229. doi: 10.1016/j.jcmg.2014.11.012.
    1. Fujino A, Mintz GS, Matsumura M, et al. A new optical coherence tomography-based calcium scoring system to predict stent underexpansion. EuroIntervention. 2018;13(18):e2182–e2189. doi: 10.4244/EIJ-D-17-00962.

Source: PubMed

3
Tilaa