Gait variability across neurodegenerative and cognitive disorders: Results from the Canadian Consortium of Neurodegeneration in Aging (CCNA) and the Gait and Brain Study

Frederico Pieruccini-Faria, Sandra E Black, Mario Masellis, Eric E Smith, Quincy J Almeida, Karen Z H Li, Louis Bherer, Richard Camicioli, Manuel Montero-Odasso, Frederico Pieruccini-Faria, Sandra E Black, Mario Masellis, Eric E Smith, Quincy J Almeida, Karen Z H Li, Louis Bherer, Richard Camicioli, Manuel Montero-Odasso

Abstract

Introduction: Gait impairment is common in neurodegenerative disorders. Specifically, gait variability-the stride-to-stride fluctuations in distance and time-has been associated with neurodegeneration and cognitive impairment. However, quantitative comparisons of gait impairments across the cognitive spectrum of dementias have not been systematically investigated.

Methods: Older adults (N = 500) with subjective cognitive impairment, Parkinson disease (PD), mild cognitive impairment (MCI), PD-MCI, Alzheimer's disease (AD), PD-dementia, Lewy body dementia, and frontotemporal dementia, as well cognitive normal controls, who were assessed for their gait and cognitive performance.

Results: Factor analyses grouped 11 quantitative gait parameters and identified four independent gait domains: rhythm, pace, variability, and postural control, for group comparisons and classification analysis. Among these domains, only high gait variability was associated with lower cognitive performance and accurately discriminated AD from other neurodegenerative and cognitive conditions.

Discussion: Our findings indicate that high gait variability is a marker of cognitive-cortical dysfunction, which can help to identify Alzheimer's disease dementia.

Keywords: biomarker; cognition; dementia; gait variability; neurodegenerative diseases.

Conflict of interest statement

The authors have declared no conflict of interest.

© 2021 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.

Figures

FIGURE 1
FIGURE 1
Gait domains performance as factors scores (Z‐scores) for each clinical group adjusted for covariates. Circles represent means and error bars represent 95% confidence interval. Positive scores for variability relate to high gait variability or worse variability performance. Negative values for other domains relate to worse gait performance
FIGURE 2
FIGURE 2
Compared with rhythm and postural control domains, gait variability accurately classified individuals with Alzheimer's disease (AD) from other clinical groups in both receiver‐operating characteristic (ROC) curves. Covariates (ie, age, sex, years of education, number of co‐morbidities, and gait speed) were used to adjust ROCs (graph on the right). ROC curves representing the true positive fraction (sensitivity) and false positive fraction (1‐specificity) of gait domains that were significantly different between all clinical groups (see Table 2). Black straight diagonal line (reference line) indicates area under the curves (AUCs) = .50, the point where variables are nonvalid/non‐accurate as classifiers. The higher the AUC, the better is the gait parameter to classify a neurodegenerative condition

References

    1. Allan LM, Ballard CG, Burn DJ, Kenny RA. Prevalence and severity of gait disorders in Alzheimer's and non‐Alzheimer's dementias. J Am Geriatr Soc. 2005.
    1. Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ, Buschke H. Abnormality of gait as a predictor of non‐Alzheimer's dementia. N Engl J Med. 2002;347(22):1761‐1768.
    1. Kueper JK, Speechley M, Lingum NR, Montero‐Odasso M. Motor function and incident dementia: a systematic review and meta‐analysis. Age Ageing. 2017.
    1. Verghese J, Annweiler C, Ayers E, et al. Motoric cognitive risk syndrome: multicountry prevalence and dementia risk. Neurology. 2014;83(8):718‐726.
    1. Savica R, Wennberg AM V, Hagen C, et al. Comparison of gait parameters for predicting cognitive decline: the mayo clinic study of aging. J Alzheimers Dis. 2017:55(2):559‐567.
    1. Montero‐Odasso M, Pieruccini‐Faria F, Ismail Z, et al. CCCDTD5 recommendations on early non cognitive markers of dementia: a Canadian consensus. Alzheimer's DementiaTranslational Res Clin Interv. 2020;1(1):e12068.
    1. Montero‐Odasso MM, Sarquis‐Adamson Y, Speechley M, et al. Association of dual‐task gait with incident dementia in mild cognitive impairment: results from the gait and brain study. JAMA Neurol. 2017;74(7):857‐865.
    1. Hausdorff JM. Gait variability: methods, modeling and meaning. J Neuroengeneering Rehabil. 2005;2:19.
    1. Montero‐Odasso M, Verghese J, Beauchet O, Hausdorff JM. Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc. 2012;60(11):2127‐2136.
    1. Moon Y, Sung JH, An R, Hernandez ME, Sosnoff JJ. Gait variability in people with neurological disorders: a systematic review and meta‐analysis. Hum Mov Sci. 2016;47:197‐208.
    1. Tian Q, Chastan N, Bair WN, Resnick SM, Ferrucci L, Studenski SA. The brain map of gait variability in aging, cognitive impairment and dementia—A systematic review. Neurosci Biobehav Rev. 2017;74:149‐162.
    1. Pieruccini‐Faria F, Montero‐Odasso M, Hausdorff JM, Gait variability and fall risk in older adults: the role of cognitive function. In Montero‐Odasso M, Camicioli R, eds. Falls and Cognition in Older Persons: Fundamentals, Assessment and Therapeutic Options. Cham: Springer International Publishing; 2020:107‐138.
    1. Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community‐living older adults: a 1‐year prospective study. Arch Phys Med Rehabil. 2001;82(8):1050‐1056.
    1. Darweesh SKL, Licher S, Wolters FJ, Koudstaal PJ, Ikram MK, Ikram MA. Quantitative gait, cognitive decline, and incident dementia: the Rotterdam Study. Alzheimer's Dement. 2019;15(10):1264‐1273.
    1. Ceïde ME, Ayers EI, Lipton R, Verghese J. Walking while talking and risk of incident dementia. Am J Geriatr Psychiatry. 2018;26(5):580‐588.
    1. Montero‐Odasso M, Verghese J, Beauchet O, Hausdorff JM. Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc. 2012;60(11):2127‐2136.
    1. Montero‐Odasso M, Oteng‐Amoako A, Speechley M, et al. The motor signature of mild cognitive impairment: results from the gait and brain study. J Gerontol A Biol Sci Med Sci. 2014;69(11):1415‐1421.
    1. Montero‐Odasso M, Muir SW, Speechley M. Dual‐task complexity affects gait in people with mild cognitive impairment: the interplay between gait variability, dual tasking, and risk of falls. Arch Phys Med Rehabil. 2012;93(2):293‐299.
    1. Nakamura T, Meguro K, Sasaki H. Relationship between falls and stride length variability in senile dementia of the alzheimer type. Gerontology. 1996;42(2):108‐113.
    1. Allali G, Annweiler C, Blumen HM, et al. Gait phenotype from mild cognitive impairment to moderate dementia: results from the GOOD initiative. Eur J Neurol. 2016;23(3):527‐541.
    1. Mc Ardle R, Galna B, Donaghy P, Thomas A, Rochester L. Do Alzheimer's and Lewy body disease have discrete pathological signatures of gait? Alzheimer's Dement. 2019;15(10):1367‐1377.
    1. Fritz NE, Kegelmeyer DA, Kloos AD, et al. Motor performance differentiates individuals with Lewy body dementia, Parkinson's and Alzheimer's disease. Gait Posture. 2016;50:1‐7.
    1. Allali G, Dubois B, Assal F, et al. Frontotemporal dementia: pathology of gait? Mov Disord. 2010;25(6):731‐737.
    1. Galna B, Lord S, Burn DJ, Rochester L. Progression of gait dysfunction in incident Parkinson's disease: impact of medication and phenotype. Mov Disord. 2015;30(3):359‐367.
    1. Morris R, Lord S, Lawson RA, et al. Gait rather than cognition predicts decline in specific cognitive domains in early Parkinson's disease. Journals Gerontol ‐ Ser A Biol Sci Med Sci. 2017;72(12):1656‐1662.
    1. Montero‐Odasso M. Gait as a biomarker of cognitive impairment and dementia syndromes. Quo Vadis? Eur J Neurol. 2016;23(3):527‐541.
    1. Chertkow H, Borrie M, Whitehead V, et al. The comprehensive assessment of neurodegeneration and dementia: Canadian cohort study. Can J Neurol Sci. 2019;46(5):499‐511.
    1. Annweiler C, Beauchet O, Bartha R, Montero‐Odasso M. Knowledge WT‐W group A‐L for. Slow gait in MCI is associated with ventricular enlargement: results from the gait and brain study. J Neural Transm. 2013;120(7):1083‐1092.
    1. Nasreddine ZS, Phillips N, Chertkow H. Normative data for the montreal cognitive assessment (MoCA) in a population‐based sample. Neurology. 2012;78(10):765‐766.author reply 766.
    1. Van Der Elst WIM, Van Boxtel MP, Van Breukelen GJ, Jolles J. Rey's verbal learning test: normative data for 1855 healthy participants aged 24–81 years and the influence of age, sex, education, and mode of presentation. J Int Neuropsychol Soc. 2005;11(3):290‐302.
    1. Lawton MP, Brody EM. Assessment of older people: self‐maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179‐186.
    1. Yesavage JA. Geriatric Depression Scale. Psychopharmacol Bull. 1988;24(4):709‐711.
    1. Jessen F, Amariglio RE, Van Boxtel M, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. 2014;. 10(6):844‐852.
    1. Morris JC, Ernesto C, Schafer K, et al. Clinical dementia rating training and reliability in multicenter studies: the Alzheimer's Disease Cooperative Study experience. Neurology. 1997;48(6):1508‐1510.
    1. Mormino EC, Kluth JT, Madison CM, et al. Episodic memory loss is related to hippocampal‐mediated β‐amyloid deposition in elderly subjects. Brain. 2009;132(Pt 5):1310‐1323.
    1. Beeri MS, Schmeidler J, Sano M, et al. Age, gender, and education norms on the CERAD neuropsychological battery in the oldest old. Neurology. 2006;67(6):1006‐1010.
    1. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. 2011;7(3):270‐279.
    1. Postuma RB, Poewe W, Litvan I, et al. Validation of the MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2018;33(10):1601‐1608.
    1. Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society‐sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS‐UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129‐2170.
    1. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement. 2011;7(3):263‐269.
    1. Litvan I, Goldman JG, Tröster AI, et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: movement Disorder Society Task Force guidelines. Mov Disord. 2012;27(3):349‐356.
    1. Emre M, Aarsland D, Brown R, et al. Clinical diagnostic criteria for dementia associated with Parkinson's disease. 2007;22(12):1689‐1707.
    1. Dubois B, Burn D, Goetz C, et al. Diagnostic procedures for Parkinson's disease dementia: recommendations from the Movement Disorder Society Task Force. Mov Disord. 2007;22(16):2314‐2324.
    1. Schwab RS & England, AC. Projection techniques for evaluating surgery in Parkinson's Disease. IN: Third Symposium on Parkinson's Disease, Royal College of Surgeons in Edinburgh, May 20‐22, 1968. E.& S. Livingstone Ltd. 1969. (Table 1, page 153). 2010;152–157.
    1. McKeith IG, Boeve BF, DIckson DW, et al. Diagnosis and management of dementia with Lewy bodies. Neurology. 2017;89:88‐100.
    1. Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456‐2477.
    1. Cullen S, Montero‐Odasso M, Bherer L, et al. Guidelines for gait assessments in the Canadian consortium on neurodegeneration in aging (CCNA). Can Geriatr J. 2018;21(2):157‐165.
    1. Vallabhajosula S, Humphrey SK, Cook AJ, Freund JE. Concurrent validity of the zeno walkway for measuring spatiotemporal gait parameters in older adults. J Geriatr Phys Ther. 2019) 42E42–E50.
    1. Lord S, Howe T, Greenland J, Simpson L, Rochester L. Gait variability in older adults: a structured review of testing protocol and clinimetric properties. Gait Posture. 2011;34(4):443‐450.
    1. Gabell A, Nayak USL. The effect of age on variability in gait. J Gerontol. 1984;39(6):662‐666.
    1. Verghese J, Holtzer R, Lipton RB, Wang C. Quantitative gait markers and incident fall risk in older adults. J Gerontol ‐ Ser A Biol Sci Med Sci. 2009);64(8):896–901.
    1. Verghese J, Wang C, Lipton RB, Holtzer R, Xue X. Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry. 2007);78(9):929–935.
    1. Field A. Exploratory factor analysis (Chapter 17). Discovering Statistics using SPSS, 3rd Edition. 2009:627–685.
    1. Kang HG, Dingwell JB. Separating the effects of age and walking speed on gait variability. Gait Posture. 2008;27(4):572‐577.
    1. Jack CR, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9(1):119‐128.
    1. Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr Int J Paediatr. 2007;96(5):644‐647.
    1. Murray JS. Multiple imputation: a review of practical and theoretical findings. Stat Sci. 2018;33(2):142‐159.
    1. Sánchez‐Ferro Á, Matarazzo M, Martínez‐Martín P, et al. Minimal clinically important difference for UPDRS‐III in daily practice. Mov Disord Clin Pract. 2018;5(4):448‐450.
    1. Muir SW, Speechley M, Wells J, Borrie M, Gopaul K, Montero‐Odasso M. Gait assessment in mild cognitive impairment and Alzheimer's disease: the effect of dual‐task challenges across the cognitive spectrum. Gait Posture. 2012;35(1):96‐100.
    1. Pieruccini‐Faria F, Montero‐Odasso M. Obstacle negotiation, gait variability, and risk of falling: results from the “Gait and Brain Study”. J Gerontol ‐ Ser A Biol Sci Med Sci. 2019;74(9):1422‐1428.
    1. Maidan I, Shustak S, Sharon T, et al. Prefrontal cortex activation during obstacle negotiation: what's the effect size and timing? Brain Cogn. 2018;122:45‐51.
    1. De Cock AM, Fransen E, Perkisas S, et al. Comprehensive quantitative spatiotemporal gait analysis identifies gait characteristics for early dementia subtyping in community dwelling older adults. Front Neurol. 2019;10:313.
    1. Pieruccini‐Faria F, Sarquis‐Adamson Y, Anton‐Rodrigo I, et al. Mapping associations between gait decline and fall risk in mild cognitive impairment. J Am Geriatr Soc. 2020;68(3):576‐584.
    1. McArdle R, Morris R, Wilson J, Galna B, Thomas AJ, Rochester L. What can quantitative gait analysis tell us about dementia and its subtypes? A structured review. J Alzheimer's Dis. 2017;60(4):1295‐1312.
    1. Morris R, Lord S, Bunce J, Burn D, Rochester L. Gait and cognition: mapping the global and discrete relationships in ageing and neurodegenerative disease. Neurosci Biobehav Rev. 2016;64:326‐345.
    1. Lo O‐Y, Halko MA, Zhou J, Harrison R, Lipsitz LA, Manor B. Gait speed and gait variability are associated with different functional brain networks. Front Aging Neurosci . 2017;9:390.
    1. Smulders K, Dale ML, Carlson‐Kuhta P, Nutt JG, Horak FB. Pharmacological treatment in Parkinson's disease: effects on gait. Park Relat Disord. 2016;31:3‐13.

Source: PubMed

3
Tilaa