Moving towards clinical trials for mitochondrial diseases

Robert D S Pitceathly, Nandaki Keshavan, Joyeeta Rahman, Shamima Rahman, Robert D S Pitceathly, Nandaki Keshavan, Joyeeta Rahman, Shamima Rahman

Abstract

Primary mitochondrial diseases represent some of the most common and severe inherited metabolic disorders, affecting ~1 in 4,300 live births. The clinical and molecular diversity typified by mitochondrial diseases has contributed to the lack of licensed disease-modifying therapies available. Management for the majority of patients is primarily supportive. The failure of clinical trials in mitochondrial diseases partly relates to the inefficacy of the compounds studied. However, it is also likely to be a consequence of the significant challenges faced by clinicians and researchers when designing trials for these disorders, which have historically been hampered by a lack of natural history data, biomarkers and outcome measures to detect a treatment effect. Encouragingly, over the past decade there have been significant advances in therapy development for mitochondrial diseases, with many small molecules now transitioning from preclinical to early phase human interventional studies. In this review, we present the treatments and management strategies currently available to people with mitochondrial disease. We evaluate the challenges and potential solutions to trial design and highlight the emerging pharmacological and genetic strategies that are moving from the laboratory to clinical trials for this group of disorders.

Keywords: antioxidants; clinical trial; gene therapy; mitochondrial biogenesis; mitophagy; nucleosides; primary mitochondrial disease; treatment.

© 2020 The Authors. Journal of Inherited Metabolic Disease published by John Wiley & Sons Ltd on behalf of SSIEM.

Figures

FIGURE 1
FIGURE 1
Translational pipeline. Candidate drugs are first investigated in vitro for example, in patient cell lines before in vivo toxicity and efficacy studies in appropriate animal models of disease are undertaken. Clinical trials include phase I studies, in which the candidate therapy is administered to patients or healthy volunteers to assess safety and tolerability, as well as drug pharmacokinetics. Phase II studies assess safety and efficacy of the drug in a small number of patients. Phase III studies assess safety and efficacy of the drug in a larger number of patients with defined outcome measures
FIGURE 2
FIGURE 2
Mechanisms of action of emerging therapies. Drugs affecting mitochondrial biogenesis act on the PGC1α pathway. PGC1α is a master transcriptional coactivator of several transcription factors including PPARα,δ,γ, NRF1,2, ERR and TFAM. PGC1α is activated by phosphorylation by AMPK and deacetylation by NAD+‐dependent sirtuin, and is also controlled by mTOR. Drugs acting on these pathways include AICAR which activates AMPK, resveratrol which activates sirtuin, NAD+ modulators and PARP1 inhibitors which increase NAD+ levels, rapamycin and ABI009 which act on mTORC1, bezafibrate which activates PPARα, REN001 which activates PPARδ, glitazones which activate PPARγ and omaveloxolone which activates NRF2. Gene therapy vectors for example, AAVs transduce target cells by first being endocytosed at the plasma membrane. The viral genome is released in the nucleus where it forms an episome and is transcribed by target cell transcriptional machinery. mRNAs are translated in the cytosol. The nascent protein contains a mitochondrial targeting sequence which enables entry into mitochondria by interacting with the TOM22/TIM23 complex. Nucleoside based trial drugs are currently only applicable to one subtype of MDDS, namely thymidine kinase 2 deficiency. Several candidate therapies act on pathways related to the production of ROS, such as superoxide and hydrogen peroxide. Their intermediates have important cellular signalling functions, but also contribute to disease pathophysiology and cell death in mitochondrial disease. Levels of ROS are controlled by the glutathione and peroxidoredoxin/thioredoxin pathways. EPI743 and idebenone are both CoQ analogues which are thought to affect glutathione levels and Sonlicromanol acts on the peroxidoredoxin/thioredoxin pathway. Key: AAV, adeno‐associated virus; cytc, cytochrome c; CoQ, coenzyme Q; AMPK, AMP activated protein kinase; GSH, glutathione (reduced); GSSG, glutathione (oxidised); ERR, oestrogen related receptor; MDDS, mitochondrial DNA depletion syndrome; mRNA, messenger RNA; mTORC1, mechanistic target of rapamycin complex 1; NAD, nicotinamide adenine dinucleotide; NRF, nuclear respiratory factor; PARP1, poly(ADP‐ribose) polymerase 1; PGC1α, peroxisome proliferator‐activated receptor gamma coactivator 1‐alpha; PPAR, peroxisome proliferator‐activated receptor; POLG, polymerase gamma; Prx, peroxiredoxin; ROS, reactive oxygen species; TCA, tricarboxylic acid; TFAM, transcription factor A, mitochondrial; TIM, translocase of inner membrane; TOM, translocase of outer membrane; Trx, thioredoxin
FIGURE 3
FIGURE 3
Progress in clinical trial development for mitochondrial disorders including trials that have been completed and those that are currently recruiting

References

    1. Gorman GS, Schaefer AM, Ng Y, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77(5):753‐759.
    1. Rahman J, Rahman S. Mitochondrial medicine in the omics era. Lancet. 2018;391(10139):2560‐2574.
    1. Rahman S. Mitochondrial disease in children. J Intern Med. 2020;287:609‐633.
    1. Dogan Sukru A, Pujol C, Maiti P, et al. Tissue‐specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart. Cell Metab. 2014;19(3):458‐469.
    1. Kauppila JHK, Baines HL, Bratic A, et al. A phenotype‐driven approach to generate mouse models with pathogenic mtDNA mutations causing mitochondrial disease. Cell Rep. 2016;16(11):2980‐2990.
    1. Kruse SE, Watt WC, Marcinek DJ, Kapur RP, Schenkman KA, Palmiter RD. Mice with mitochondrial complex I deficiency develop a fatal Encephalomyopathy. Cell Metab. 2008;7(4):312‐320.
    1. Nikkanen J, Forsström S, Euro L, et al. Mitochondrial DNA replication defects disturb cellular dNTP pools and remodel one‐carbon metabolism. Cell Metab. 2016;23(4):635‐648.
    1. Tiranti V, Viscomi C, Hildebrandt T, et al. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med. 2009;15(2):200‐205.
    1. Garcia‐Corzo L, Luna‐Sanchez M, Doerrier C, et al. Dysfunctional Coq9 protein causes predominant encephalomyopathy associated with CoQ deficiency. Hum Mol Genet. 2013;22(6):1233‐1248.
    1. Fassone E, Wedatilake Y, DeVile CJ, Chong WK, Carr LJ, Rahman S. Treatable Leigh‐like encephalopathy presenting in adolescence. BMJ Case Rep. 2013;2013:200838.
    1. Balasubramaniam S, Christodoulou J, Rahman S. Disorders of riboflavin metabolism. J Inherit Metab Dis. 2019;42(4):608‐619.
    1. Olsen RKJ, Konarikova E, Giancaspero TA, et al. Riboflavin‐responsive and ‐non‐responsive mutations in FAD synthase cause multiple acyl‐CoA dehydrogenase and combined respiratory‐chain deficiency. Am J Hum Genet. 2016;98(6):1130‐1145.
    1. O'Callaghan B, Bosch AM, Houlden H. An update on the genetics, clinical presentation, and pathomechanisms of human riboflavin transporter deficiency. J Inherit Metab Dis. 2019;42(4):598‐607.
    1. Spagnoli C, Pitt MC, Rahman S, de Sousa C. Brown‐Vialetto‐van Laere syndrome: a riboflavin responsive neuronopathy of infancy with singular features. Eur J Paediatr Neurol. 2014;18(2):231‐234.
    1. Alcazar‐Fabra M, Trevisson E, Brea‐Calvo G. Clinical syndromes associated with coenzyme Q10 deficiency. Essays Biochem. 2018;62(3):377‐398.
    1. Montini G, Malaventura C, Salviati L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med. 2008;358(26):2849‐2850.
    1. Ashraf S, Gee HY, Woerner S, et al. ADCK4 mutations promote steroid‐resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest. 2013;123(12):5179‐5189.
    1. Brea‐Calvo G, Haack TB, Karall D, et al. COQ4 mutations cause a broad spectrum of mitochondrial disorders associated with CoQ10 deficiency. Am J Hum Genet. 2015;96(2):309‐317.
    1. Duncan AJ, Bitner‐Glindzicz M, Meunier B, et al. A nonsense mutation in COQ9 causes autosomal‐recessive neonatal‐onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am J Hum Genet. 2009;84(5):558‐566.
    1. Awad AM, Bradley MC, Fernandez‐Del‐Rio L, Nag A, Tsui HS, Clarke CF. Coenzyme Q10 deficiencies: pathways in yeast and humans. Essays Biochem. 2018;62(3):361‐376.
    1. Pfeffer G, Majamaa K, Turnbull DM, Thorburn D, Chinnery PF. Treatment for mitochondrial disorders. Cochrane Database Syst Rev. 2012;(4):CD004426.
    1. Parikh S, Karaa A, Goldstein A, et al. Solid organ transplantation in primary mitochondrial disease: proceed with caution. Mol Genet Metab. 2016;118(3):178‐184.
    1. Keshavan N, Rahman S. Natural history of mitochondrial disorders: a systematic review. Essays Biochem. 2018;62(3):423‐442.
    1. Sofou K, De Coo IF, Isohanni P, et al. A multicenter study on Leigh syndrome: disease course and predictors of survival. Orphanet J Rare Dis. 2014;9:52.
    1. Koene S, Rodenburg RJ, van der Knaap MS, et al. Natural disease course and genotype‐phenotype correlations in complex I deficiency caused by nuclear gene defects: what we learned from 130 cases. J Inherit Metab Dis. 2012;35(5):737‐747.
    1. Mancuso M, Orsucci D, Angelini C, et al. Redefining phenotypes associated with mitochondrial DNA single deletion. J Neurol. 2015;262(5):1301‐1309.
    1. Garone C, Tadesse S, Hirano M. Clinical and genetic spectrum of mitochondrial neurogastrointestinal encephalomyopathy. Brain. 2011;134(11):3326‐3332.
    1. Patel KP, O'Brien TW, Subramony SH, Shuster J, Stacpoole PW. The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients. Mol Genet Metab. 2012;105(1):34‐43.
    1. Wedatilake Y, Brown RM, McFarland R, et al. SURF1 deficiency: a multi‐centre natural history study. Orphanet J Rare Dis. 2013;8:96.
    1. Hikmat O, Naess K, Engvall M, et al. Simplifying the clinical classification of polymerase gamma (POLG) disease based on age of onset; studies using a cohort of 155 cases. J Inherit Metab Dis. 2020;43(4):726–736.
    1. Grier J, Hirano M, Karaa A, Shepard E, Thompson JLP. Diagnostic odyssey of patients with mitochondrial disease: results of a survey. Neurol Genet. 2018;4(2):e230.
    1. Kaufmann P, Engelstad K, Wei Y, et al. Natural history of MELAS associated with mitochondrial DNA m.3243A>G genotype. Neurology. 2011;77(22):1965‐1971.
    1. Rajakulendran S, Pitceathly RD, Taanman JW, et al. A clinical, Neuropathological and genetic study of homozygous A467T POLG‐related mitochondrial disease. PLoS ONE. 2016;11(1):e0145500.
    1. Grady JP, Pickett SJ, Ng YS, et al. mtDNA heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease. EMBO Mol Med. 2018;10(6):e8262.
    1. Nesbitt V, Pitceathly RD, Turnbull DM, et al. The UKMRC mitochondrial disease patient cohort study: clinical phenotypes associated with the m.3243A>G mutation‐‐implications for diagnosis and management. J Neurol Neurosurg Psychiatry. 2013;84(8):936‐938.
    1. Mancuso M, Orsucci D, Angelini C, et al. Phenotypic heterogeneity of the 8344A>G mtDNA “MERRF” mutation. Neurology. 2013;80(22):2049‐2054.
    1. Barca E, Long Y, Cooley V, et al. Mitochondrial diseases in North America: an analysis of the NAMDC registry. Neurol Genet. 2020;6(2):e402.
    1. Koene S, van Bon L, Bertini E, et al. Outcome measures for children with mitochondrial disease: consensus recommendations for future studies from a Delphi‐based international workshop. J Inherit Metab Dis. 2018;41(6):1267‐1273.
    1. Mancuso M, McFarland R, Klopstock T, Hirano M. Consortium on trial readiness in mitochondrial M. international workshop:: outcome measures and clinical trial readiness in primary mitochondrial myopathies in children and adults. Consensus recommendations. 16‐18 November 2016, Rome, Italy. Neuromuscul Disord. 2017;27(12):1126‐1137.
    1. Karaa A, Rahman S, Lombes A, et al. Common data elements for clinical research in mitochondrial disease: a National Institute for neurological disorders and stroke project. J Inherit Metab Dis. 2017;40(3):403‐414.
    1. Lehtonen JM, Forsstrom S, Bottani E, et al. FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology. 2016;87(22):2290‐2299.
    1. Boenzi S, Diodato D. Biomarkers for mitochondrial energy metabolism diseases. Essays Biochem. 2018;62(3):443‐454.
    1. Pfeffer G, Horvath R, Klopstock T, et al. New treatments for mitochondrial disease‐no time to drop our standards. Nat Rev Neurol. 2013;9(8):474‐481.
    1. Zolkipli‐Cunningham Z, Xiao R, Stoddart A, et al. Mitochondrial disease patient motivations and barriers to participate in clinical trials. PLoS ONE. 2018;13(5):e0197513.
    1. Guicciardi ME, Gores GJ. Apoptosis: a mechanism of acute and chronic liver injury. Gut. 2005;54(7):1024‐1033.
    1. Kinnunen PKJ, Kaarniranta K, Mahalka AK. Protein‐oxidized phospholipid interactions in cellular signaling for cell death: from biophysics to clinical correlations. Biochim Biophys Acta Biomembr. 2012;1818(10):2446‐2455.
    1. Dogan SA, Cerutti R, Beninca C, et al. Perturbed redox signaling exacerbates a mitochondrial myopathy. Cell Metab. 2018;28(5):764‐775 e765.
    1. Jaber S, Polster BM. Idebenone and neuroprotection: antioxidant, pro‐oxidant, or electron carrier? J Bioenerg Biomembr. 2015;47(1–2):111‐118.
    1. Klopstock T, Yu‐Wai‐Man P, Dimitriadis K, et al. A randomized placebo‐controlled trial of idebenone in Leber's hereditary optic neuropathy. Brain. 2011;134(9):2677‐2686.
    1. Martinelli D, Catteruccia M, Piemonte F, et al. EPI‐743 reverses the progression of the pediatric mitochondrial disease–genetically defined Leigh syndrome. Mol Genet Metab. 2012;107(3):383‐388.
    1. Enns GM, Kinsman SL, Perlman SL, et al. Initial experience in the treatment of inherited mitochondrial disease with EPI‐743. Mol Genet Metab. 2012;105(1):91‐102.
    1. Beyrath J, Pellegrini M, Renkema H, et al. KH176 safeguards mitochondrial diseased cells from redox stress‐induced cell death by interacting with the Thioredoxin system/Peroxiredoxin enzyme machinery. Sci Rep. 2018;8(1):6577.
    1. de Haas R, Das D, Garanto A, et al. Therapeutic effects of the mitochondrial ROS‐redox modulator KH176 in a mammalian model of Leigh disease. Sci Rep. 2017;7(1):11733.
    1. Janssen MCH, Koene S, de Laat P, et al. The KHENERGY study: safety and efficacy of KH176 in mitochondrial m.3243A>G Spectrum disorders. Clin Pharmacol Ther. 2019;105(1):101‐111.
    1. Spiegelman BM. Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found Symp. 2007;287:60‐63. discussion 63‐69.
    1. Komen JC, Thorburn DR. Turn up the power ‐ pharmacological activation of mitochondrial biogenesis in mouse models. Br J Pharmacol. 2014;171(8):1818‐1836.
    1. Bogacka I, Xie H, Bray GA, Smith SR. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes. 2005;54(5):1392‐1399.
    1. Lagouge M, Argmann C, Gerhart‐Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC‐1alpha. Cell. 2006;127(6):1109‐1122.
    1. Reisman SA, Gahir SS, Lee CI, Proksch JW, Sakamoto M, Ward KW. Pharmacokinetics and pharmacodynamics of the novel Nrf2 activator omaveloxolone in primates. Drug Des Devel Ther. 2019;13:1259‐1270.
    1. Viscomi C, Bottani E, Civiletto G, et al. In vivo correction of COX deficiency by activation of the AMPK/PGC‐1alpha axis. Cell Metab. 2011;14(1):80‐90.
    1. Cerutti R, Pirinen E, Lamperti C, et al. NAD(+)‐dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 2014;19(6):1042‐1049.
    1. Khan NA, Auranen M, Paetau I, et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med. 2014;6(6):721‐731.
    1. Kanabus M, Fassone E, Hughes SD, et al. The pleiotropic effects of decanoic acid treatment on mitochondrial function in fibroblasts from patients with complex I deficient Leigh syndrome. J Inherit Metab Dis. 2016;39(3):415‐426.
    1. Gueguen N, Desquiret‐Dumas V, Leman G, et al. Resveratrol directly binds to mitochondrial complex I and increases oxidative stress in brain mitochondria of aged mice. PLoS ONE. 2015;10(12):e0144290.
    1. Yatsuga S, Suomalainen A. Effect of bezafibrate treatment on late‐onset mitochondrial myopathy in mice. Hum Mol Genet. 2012;21(3):526‐535.
    1. Steele H, Gomez‐Duran A, Pyle A, et al. Metabolic effects of bezafibrate in mitochondrial disease. EMBO Mol Med. 2020;12(3):e11589.
    1. Madsen KL, Buch AE, Cohen BH, et al. Safety and efficacy of omaveloxolone in patients with mitochondrial myopathy: MOTOR trial. Neurology. 2020;94(7):e687‐e698.
    1. Pirinen E, Auranen M, Khan NA, et al. Niacin cures systemic NAD(+) deficiency and improves muscle performance in adult‐onset mitochondrial myopathy. Cell Metab. 2020;31:1078‐1090.e5.
    1. Karaa A, Haas R, Goldstein A, Vockley J, Cohen BH. A randomized crossover trial of elamipretide in adults with primary mitochondrial myopathy. J Cachexia Sarcopenia Muscle. 2020. [online ahead of print]
    1. Stealth BioTherapeutics Inc. provides update on Phase III Trial of Elamipretide in Primary Mitochondrial Myopathy. 2019. .
    1. Thompson RMR, Aiudi A, Jones JJ, Carr J, Hornby B, Vernon H. Elamipretide in patients with Barth syndrome: a randomized, double‐blind, placebo‐controlled clinical trial followed by 36‐week open‐label extension. J Am Coll Cardiol. 2020;75(11) Supp 1:957.
    1. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20(1):31‐42.
    1. Gilkerson RW, De Vries RL, Lebot P, et al. Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Hum Mol Genet. 2012;21(5):978‐990.
    1. Johnson SC, Yanos ME, Kayser EB, et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013;342(6165):1524‐1528.
    1. Civiletto G, Dogan SA, Cerutti R, et al. Rapamycin rescues mitochondrial myopathy via coordinated activation of autophagy and lysosomal biogenesis. EMBO Mol Med. 2018;10(11):e8799.
    1. Siegmund SE, Yang H, Sharma R, et al. Low‐dose rapamycin extends lifespan in a mouse model of mtDNA depletion syndrome. Hum Mol Genet. 2017;26(23):4588‐4605.
    1. Khan NA, Nikkanen J, Yatsuga S, et al. mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression. Cell Metab. 2017;26(2):419‐428 e415.
    1. Wang A, Mouser J, Pitt J, Promislow D, Kaeberlein M. Rapamycin enhances survival in a drosophila model of mitochondrial disease. Oncotarget. 2016;7(49):80131‐80139.
    1. Zheng X, Boyer L, Jin M, et al. Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria‐related neurodegeneration. elife. 2016;5:e13378.
    1. Peng M, Ostrovsky J, Kwon YJ, et al. Inhibiting cytosolic translation and autophagy improves health in mitochondrial disease. Hum Mol Genet. 2015;24(17):4829‐4847.
    1. Barriocanal‐Casado E, Hidalgo‐Gutierrez A, Raimundo N, et al. Rapamycin administration is not a valid therapeutic strategy for every case of mitochondrial disease. EBioMedicine. 2019;42:511‐523.
    1. Johnson SC, Martinez F, Bitto A, et al. mTOR inhibitors may benefit kidney transplant recipients with mitochondrial diseases. Kidney Int. 2019;95(2):455‐466.
    1. Sage‐Schwaede A, Engelstad K, Salazar R, et al. Exploring mTOR inhibition as treatment for mitochondrial disease. Ann Clin Transl Neurol. 2019;6(9):1877‐1881.
    1. Sanz A, Soikkeli M, Portero‐Otin M, et al. Expression of the yeast NADH dehydrogenase Ndi1 in drosophila confers increased lifespan independently of dietary restriction. Proc Natl Acad Sci U S A. 2010;107(20):9105‐9110.
    1. Dassa EP, Dufour E, Goncalves S, et al. Expression of the alternative oxidase complements cytochrome c oxidase deficiency in human cells. EMBO Mol Med. 2009;1(1):30‐36.
    1. Fernandez‐Ayala DJ, Sanz A, Vartiainen S, et al. Expression of the Ciona intestinalis alternative oxidase (AOX) in drosophila complements defects in mitochondrial oxidative phosphorylation. Cell Metab. 2009;9(5):449‐460.
    1. Perales‐Clemente E, Bayona‐Bafaluy MP, Perez‐Martos A, Barrientos A, Fernandez‐Silva P, Enriquez JA. Restoration of electron transport without proton pumping in mammalian mitochondria. Proc Natl Acad Sci U S A. 2008;105(48):18735‐18739.
    1. Rajendran J, Purhonen J, Tegelberg S, et al. Alternative oxidase‐mediated respiration prevents lethal mitochondrial cardiomyopathy. EMBO Mol Med. 2019;11(1):e9456.
    1. Patgiri A, Skinner OS, Miyazaki Y, et al. An engineered enzyme that targets circulating lactate to alleviate intracellular NADH:NAD(+) imbalance. Nat Biotechnol. 2020;38(3):309‐313.
    1. Jain IH, Zazzeron L, Goli R, et al. Hypoxia as a therapy for mitochondrial disease. Science. 2016;352(6281):54‐61.
    1. Mootha VK, Chinnery PF. Oxygen in mitochondrial disease: can there be too much of a good thing? J Inherit Metab Dis. 2018;41(5):761‐763.
    1. Peters MJ, Jones GA, Eaton S, Wiley D, Ray S. Risks and benefits of oxygen therapy. J Inherit Metab Dis. 2018;41(5):757‐759.
    1. Lopez‐Gomez C, Levy RJ, Sanchez‐Quintero MJ, et al. Deoxycytidine and Deoxythymidine treatment for thymidine kinase 2 deficiency. Ann Neurol. 2017;81(5):641‐652.
    1. Garone C, Taylor RW, Nascimento A, et al. Retrospective natural history of thymidine kinase 2 deficiency. J Med Genet. 2018;55(8):515‐521.
    1. Brinkman K, ter Hofstede HJM, Burger DM, Smeitink JAM, Koopmans PP. Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway. AIDS. 1998;12(14):1735‐1744.
    1. Johnson AA, Ray AS, Hanes J, et al. Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA polymerase. J Biol Chem. 2001;276(44):40847‐40857.
    1. Copeland WC. The mitochondrial DNA polymerase in health and disease. Subcell Biochem. 2010;50:211‐222.
    1. Arnaudo E, Dalakas M, Shanske S, Moraes CT, DiMauro S, Schon EA. Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine‐induced myopathy. Lancet. 1991;337(8740):508‐510.
    1. Halter JP, Michael W, Schupbach M, et al. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Brain. 2015;138(10):2847‐2858.
    1. Bax BE, Levene M, Bain MD, et al. Erythrocyte encapsulated thymidine Phosphorylase for the treatment of patients with mitochondrial Neurogastrointestinal Encephalomyopathy: study protocol for a multi‐Centre, multiple dose, open label trial. J Clin Med. 2019;8(8):1096.
    1. Boschetti E, D'Alessandro R, Bianco F, et al. Liver as a source for thymidine phosphorylase replacement in mitochondrial neurogastrointestinal encephalomyopathy. PLoS ONE. 2014;9(5):e96692.
    1. Grabhorn E, Tsiakas K, Herden U, et al. Long‐term outcomes after liver transplantation for deoxyguanosine kinase deficiency: a single‐center experience and a review of the literature. Liver Transpl. 2014;20(4):464‐472.
    1. Diomedi‐Camassei F, Di Giandomenico S, Santorelli FM, et al. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J Am Soc Nephrol. 2007;18(10):2773‐2780.
    1. Homan DJ, Niyazov DM, Fisher PW, et al. Heart transplantation for a patient with Kearns‐Sayre syndrome and end‐stage heart failure. Congest Heart Fail. 2011;17(2):102‐104.
    1. Bonnefoy N, Fox TD. Directed alteration of Saccharomyces cerevisiae mitochondrial DNA by biolistic transformation and homologous recombination. Methods Mol Biol. 2007;372:153‐166.
    1. Yasuzaki Y, Yamada Y, Ishikawa T, Harashima H. Validation of mitochondrial gene delivery in liver and skeletal muscle via hydrodynamic injection using an artificial mitochondrial reporter DNA vector. Mol Pharm. 2015;12(12):4311‐4320.
    1. Yamada Y, Furukawa R, Yasuzaki Y, Harashima H. Dual function MITO‐porter, a nano carrier integrating both efficient cytoplasmic delivery and mitochondrial macromolecule delivery. Mol Ther. 2011;19(8):1449‐1456.
    1. Santos J, Sousa F, Queiroz J, Costa D. Rhodamine based plasmid DNA nanoparticles for mitochondrial gene therapy. Colloids Surf B Biointerfaces. 2014;121:129‐140.
    1. Flierl A, Jackson C, Cottrell B, Murdock D, Seibel P, Wallace DC. Targeted delivery of DNA to the mitochondrial compartment via import sequence‐conjugated peptide nucleic acid. Mol Ther. 2003;7(4):550‐557.
    1. Jang YH, Lim KI. Recent advances in mitochondria‐targeted gene delivery. Molecules. 2018;23(9):2316.
    1. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1‐9 mediated gene expression and tropism in mice after systemic injection. Mol Ther. 2008;16(6):1073‐1080.
    1. Zhang H, Yang B, Mu X, et al. Several rAAV vectors efficiently cross the blood‐brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther. 2011;19(8):1440‐1448.
    1. Schnepp BC, Clark KR, Klemanski DL, Pacak CA, Johnson PR. Genetic fate of recombinant adeno‐associated virus vector genomes in muscle. J Virol. 2003;77(6):3495‐3504.
    1. Zaiss AK, Liu Q, Bowen GP, Wong NC, Bartlett JS, Muruve DA. Differential activation of innate immune responses by adenovirus and adeno‐associated virus vectors. J Virol. 2002;76(9):4580‐4590.
    1. Murrey DA, Naughton BJ, Duncan FJ, et al. Feasibility and safety of systemic rAAV9‐hNAGLU delivery for treating mucopolysaccharidosis IIIB: toxicology, biodistribution, and immunological assessments in primates. Hum Gene Ther Clin Dev. 2014;25(2):72‐84.
    1. Benkhelifa‐Ziyyat S, Besse A, Roda M, et al. Intramuscular scAAV9‐SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice. Mol Ther. 2013;21(2):282‐290.
    1. Doerfler PA, Todd AG, Clement N, et al. Copackaged AAV9 vectors promote simultaneous immune tolerance and phenotypic correction of Pompe disease. Hum Gene Ther. 2016;27(1):43‐59.
    1. Du S, Ou H, Cui R, et al. Delivery of Glucosylceramidase Beta gene using AAV9 vector therapy as a treatment strategy in mouse models of Gaucher disease. Hum Gene Ther. 2019;30(2):155‐167.
    1. Laoharawee K, Podetz‐Pedersen KM, Nguyen TT, et al. Prevention of neurocognitive deficiency in Mucopolysaccharidosis type II mice by central nervous system‐directed, AAV9‐mediated Iduronate Sulfatase gene transfer. Hum Gene Ther. 2017;28(8):626‐638.
    1. Ribera A, Haurigot V, Garcia M, et al. Biochemical, histological and functional correction of mucopolysaccharidosis type IIIB by intra‐cerebrospinal fluid gene therapy. Hum Mol Genet. 2015;24(7):2078‐2095.
    1. Weismann CM, Ferreira J, Keeler AM, et al. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan. Hum Mol Genet. 2015;24(15):4353‐4364.
    1. Mendell JR, Al‐Zaidy S, Shell R, et al. Single‐dose gene‐replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377(18):1713‐1722.
    1. Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2‐hRPE65v2) in patients with RPE65‐mediated inherited retinal dystrophy: a randomised, controlled, open‐label, phase 3 trial. Lancet. 2017;390(10097):849‐860.
    1. Bottani E, Giordano C, Civiletto G, et al. AAV‐mediated liver‐specific MPV17 expression restores mtDNA levels and prevents diet‐induced liver failure. Mol Ther. 2014;22(1):10‐17.
    1. Di Meo I, Auricchio A, Lamperti C, Burlina A, Viscomi C, Zeviani M. Effective AAV‐mediated gene therapy in a mouse model of ethylmalonic encephalopathy. EMBO Mol Med. 2012;4(9):1008‐1014.
    1. Di Meo I, Marchet S, Lamperti C, Zeviani M, Viscomi C. AAV9‐based gene therapy partially ameliorates the clinical phenotype of a mouse model of Leigh syndrome. Gene Ther. 2017;24(10):661‐667.
    1. Suzuki‐Hatano S, Sriramvenugopal M, Ramanathan M, et al. Increased mtDNA abundance and improved function in human Barth syndrome patient fibroblasts following AAV‐TAZ gene delivery. Int J Mol Sci. 2019;20(14):3416.
    1. Yang L, Slone J, Li Z, et al. Systemic administration of AAV‐Slc25a46 mitigates mitochondrial neuropathy in Slc25a46−/− mice. Hum Mol Genet. 2020;29:649‐661.
    1. Torres‐Torronteras J, Gomez A, Eixarch H, et al. Hematopoietic gene therapy restores thymidine phosphorylase activity in a cell culture and a murine model of MNGIE. Gene Ther. 2011;18(8):795‐806.
    1. Torres‐Torronteras J, Cabrera‐Perez R, Vila‐Julia F, et al. Long‐term sustained effect of liver‐targeted adeno‐associated virus gene therapy for mitochondrial neurogastrointestinal encephalomyopathy. Hum Gene Ther. 2018;29(6):708‐718.
    1. Reynaud‐Dulaurier R, Benegiamo G, Marrocco E, et al. Gene replacement therapy provides benefit in an adult mouse model of Leigh syndrome. Brain. 2020;143:1686‐1696.
    1. Liguore WA, Domire JS, Button D, et al. AAV‐PHP.B administration results in a differential pattern of CNS biodistribution in non‐human primates compared with mice. Mol Ther. 2019;27(11):2018‐2037.
    1. Pereira CV, Peralta S, Arguello T, Bacman SR, Diaz F, Moraes CT. Myopathy reversion in mice after restauration of mitochondrial complex I. EMBO Mol Med. 2020;12(2):e10674.
    1. Wang L, Calcedo R, Bell P, et al. Impact of pre‐existing immunity on gene transfer to nonhuman primate liver with adeno‐associated virus 8 vectors. Hum Gene Ther. 2011;22(11):1389‐1401.
    1. Dong JY, Fan PD, Frizzell RA. Quantitative analysis of the packaging capacity of recombinant adeno‐associated virus. Hum Gene Ther. 1996;7(17):2101‐2112.
    1. Hanna E, Remuzat C, Auquier P, Toumi M. Gene therapies development: slow progress and promising prospect. J Mark Access Health Policy. 2017;5(1):1265293.
    1. Nissanka N, Moraes CT. Mitochondrial DNA heteroplasmy in disease and targeted nuclease‐based therapeutic approaches. EMBO Rep. 2020;21(3):e49612.
    1. Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A. Sequence‐specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci U S A. 2006;103(52):19689‐19694.
    1. Gammage PA, Rorbach J, Vincent AI, Rebar EJ, Minczuk M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large‐scale deletions or point mutations. EMBO Mol Med. 2014;6(4):458‐466.
    1. Gammage PA, Viscomi C, Simard ML, et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat Med. 2018;24(11):1691‐1695.
    1. Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT. Specific elimination of mutant mitochondrial genomes in patient‐derived cells by mitoTALENs. Nat Med. 2013;19(9):1111‐1113.
    1. Bacman SR, Kauppila JHK, Pereira CV, et al. MitoTALEN reduces mutant mtDNA load and restores tRNA(Ala) levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med. 2018;24(11):1696‐1700.
    1. Gearing DP, Nagley P. Yeast mitochondrial ATPase subunit 8, normally a mitochondrial gene product, expressed in vitro and imported back into the organelle. EMBO J. 1986;5(13):3651‐3655.
    1. Vignal C, Uretsky S, Fitoussi S, et al. Safety of rAAV2/2‐ND4 gene therapy for Leber hereditary optic neuropathy. Ophthalmology. 2018;125(6):945‐947.
    1. Guy J, Feuer WJ, Davis JL, et al. Gene therapy for Leber hereditary optic neuropathy: Low‐ and medium‐dose visual results. Ophthalmology. 2017;124(11):1621‐1634.

Source: PubMed

3
Tilaa