A Narrative Review of Cancer-Related Fatigue (CRF) and Its Possible Pathogenesis

Songwei Yang, Shifeng Chu, Yan Gao, Qidi Ai, Yingjiao Liu, Xun Li, Naihong Chen, Songwei Yang, Shifeng Chu, Yan Gao, Qidi Ai, Yingjiao Liu, Xun Li, Naihong Chen

Abstract

Many cancer patients suffer from severe fatigue when treated with chemotherapy or radiotherapy; however, the etiology and pathogenesis of this kind of fatigue remains unknown. Fatigue is associated with cancer itself, as well as adjuvant therapies and can persist for a long time. Cancer patients present a high degree of fatigue, which dramatically affects the quality of their everyday life. There are various clinical research studies and reviews that aimed to explore the mechanisms of cancer-related fatigue (CRF). However, there are certain limitations in these studies: For example, some studies have only blood biochemical texts without histopathological examination, and there has been insufficient systemic evaluation of the dynamic changes in relevant indexes. Thus, we present this narrative review to summarize previous studies on CRF and explore promising research directions. Plenty of evidence suggests a possible association between CRF and physiological dysfunction, including skeletal muscular and mitochondrial dysfunction, peripheral immune activation and inflammation dysfunction, as well as central nervous system (CNS) disorder. Mitochondrial DNA (mtDNA), mitochondrial structure, oxidative pressure, and some active factors such as ATP play significant roles that lead to the induction of CRF. Meanwhile, several pro-inflammatory and anti-inflammatory cytokines in the peripheral system, even in the CNS, significantly contribute to the occurrence of CRF. Moreover, CNS function disorders, such as neuropeptide, neurotransmitter, and hypothalamic-pituitary-adrenal (HPA) axis dysfunction, tend to amplify the sense of fatigue in cancer patients through various signaling pathways. There have been few accurate animal models established to further explore the molecular mechanisms of CRF due to different types of cancer, adjuvant therapy schedules, living environments, and physical status. It is imperative to develop appropriate animal models that can mimic human CRF and to explore additional mechanisms using histopathological and biochemical methods. Therefore, the main purpose of this review is to analyze the possible pathogenesis of CRF and recommend future research that will clarify CRF pathogenesis and facilitate the formulation of new treatment options.

Keywords: cancer-related fatigue; central nervous system; inflammatory cytokines; mitochondrion; peripheral immune activation; skeletal muscle.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Cancer-related fatigue (CRF) is associated with various risk factors. The predominant factors are demographic characteristics, pathological factors, the types of cancer, and anti-cancer treatment schedules.
Figure 2
Figure 2
When treated with chemotherapy or radiotherapy, the regular structure and function of mitochondria are damaged through different signaling pathways. The processes involved in the transcription of nDNA and mtDNA are significantly destroyed, and the levels of mtROS and mtRNS are upregulated when skeletal muscle is nonspecifically targeted by chemotherapies. Meanwhile, the respiratory function of mitochondria is weakened by the impaired mitochondrial membrane. The Cu2+ capacity is critical for mitochondrial complexes and ATP generation, so when Cu2+ is competitively inhibited by some chemotherapies, such as oxaliplatin, the outflow of Cu2+ increases, which is harmful to the mitochondrial energy generation. In general, direct chemo/radio-therapy injuries, hyperoxidative stress, and a low energy supply are likely to cause physical fatigue via apoptosis or other detrimental signaling pathways.
Figure 3
Figure 3
Inflammatory cytokines such as TNF-α, IL-1β, IL-2, IL-6, and INF-γ, which are correlated with the severity of fatigue, play a significant role in peripheral immune activation. Cytokines are primarily generated by immune cells and regulate inflammatory responses through peripheral, neural, and even systematic circulations. The pro/anti-inflammatory function encourages the body to maintain relative homeostasis by autocrine and paracrine communication between immune cells. When stimulated by chemotherapies, the inflammatory responses of immune cells are further strengthened, and the secretion of cytokines such as NF-κB, IL-1β, and TNF-α into the peripheral or neural circulation is increased. These changes lead to more severe fatigue symptoms that are closely linked to the incidence of CRF.
Figure 4
Figure 4
The central nervous system (CNS) integrates the signals from peripheral circulations to inhibit or amplify immune signals through neural regulation mechanisms. On the account of inflammatory stress, peripheral inflammatory cytokines enter the brain through various routes to activate microglia and astrocytes and to generate neurotoxins that cause neuroinflammation in the CNS. Furthermore, inflammation of the nervous system leads to severe disorders of systemic circulations, such as decreased blood-brain barrier (BBB) strength, atrophy of spinal gray matter, or decreased muscular innervation. A nervous system affected by peripheral or central inflammatory responses is inclined to destroy muscle cells and inhibit the generation of energy and nutrition, leading to motor unit decrease and severe fatigue, both physical and mental.

References

    1. Yancey J.R., Thomas S.M. Chronic fatigue syndrome: Diagnosis and treatment. Am. Fam. Physician. 2012;86:741–746.
    1. Hawley J.A., Reilly T. Fatigue revisited. J. Sports Sci. 1997;15:245–246.
    1. Urrila A.S., Paunio T., Palomaki E., Marttunen M. Sleep in adolescent depression: Physiological perspectives. Acta Physiol. 2015;213:758–777. doi: 10.1111/apha.12449.
    1. Ce E., Rampichini S., Limonta E., Esposito F. Fatigue effects on the electromechanical delay components during the relaxation phase after isometric contraction. Acta Physiol. 2014;211:82–96. doi: 10.1111/apha.12212.
    1. Cancer-related fatigue. Clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 2003;1:308–331.
    1. Goldstein D., Bennett B.K., Webber K., Boyle F., de Souza P.L., Wilcken N.R., Scott E.M., Toppler R., Murie P., O’Malley L., et al. Cancer-related fatigue in women with breast cancer: Outcomes of a 5-year prospective cohort study. J. Clin. Oncol. 2012;30:1805–1812. doi: 10.1200/JCO.2011.34.6148.
    1. Servaes P., Gielissen M.F., Verhagen S., Bleijenberg G. The course of severe fatigue in disease-free breast cancer patients: A longitudinal study. Psychooncology. 2007;16:787–795. doi: 10.1002/pon.1120.
    1. Andrykowski M.A., Schmidt J.E., Salsman J.M., Beacham A.O., Jacobsen P.B. Use of a case definition approach to identify cancer-related fatigue in women undergoing adjuvant therapy for breast cancer. J. Clin. Oncol. 2005;23:6613–6622. doi: 10.1200/JCO.2005.07.024.
    1. Thong M.S., Mols F., Wang X.S., Lemmens V.E., Smilde T.J., van de Poll-Franse L.V. Quantifying fatigue in (long-term) colorectal cancer survivors: A study from the population-based patient reported outcomes following initial treatment and long term evaluation of survivorship registry. Eur. J. Cancer. 2013;49:1957–1966. doi: 10.1016/j.ejca.2013.01.012.
    1. Bower J.E., Lamkin D.M. Inflammation and cancer-related fatigue: Mechanisms, contributing factors, and treatment implications. Brain Behav. Immun. 2013;30:S48–S57. doi: 10.1016/j.bbi.2012.06.011.
    1. Prue G., Rankin J., Allen J., Gracey J., Cramp F. Cancer-related fatigue: A critical appraisal. Eur. J. Cancer. 2006;42:846–863. doi: 10.1016/j.ejca.2005.11.026.
    1. Evans W.J., Morley J.E., Argiles J., Bales C., Baracos V., Guttridge D., Jatoi A., Kalantar-Zadeh K., Lochs H., Mantovani G., et al. Cachexia: A new definition. Clin. Nutr. 2008;27:793–799. doi: 10.1016/j.clnu.2008.06.013.
    1. Fearon K., Strasser F., Anker S.D., Bosaeus I., Bruera E., Fainsinger R.L., Jatoi A., Loprinzi C., MacDonald N., Mantovani G., et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011;12:489–495. doi: 10.1016/S1470-2045(10)70218-7.
    1. Vanhoutte G., van de Wiel M., Wouters K., Sels M., Bartolomeeussen L., de Keersmaecker S., Verschueren E., de Vroey V., de Wilde A., Smits E., et al. Cachexia in cancer: What is in the definition? BMJ. Open Gastroenterol. 2016;3:e000097. doi: 10.1136/bmjgast-2016-000097.
    1. Argiles J.M., Busquets S., Stemmler B., Lopez-Soriano F.J. Cancer cachexia: Understanding the molecular basis. Nat. Rev. Cancer. 2014;14:754–762. doi: 10.1038/nrc3829.
    1. Grimble R.F. Nutritional therapy for cancer cachexia. Gut. 2003;52:1391–1392. doi: 10.1136/gut.52.10.1391.
    1. Gullett N.P., Mazurak V.C., Hebbar G., Ziegler T.R. Nutritional interventions for cancer-induced cachexia. Curr. Probl. Cancer. 2011;35:58–90. doi: 10.1016/j.currproblcancer.2011.01.001.
    1. Miller M., Maguire R., Kearney N. Patterns of fatigue during a course of chemotherapy: Results from a multi-centre study. Eur. J. Oncol. Nurs. 2007;11:126–132. doi: 10.1016/j.ejon.2006.05.001.
    1. Cleeland C.S., Bennett G.J., Dantzer R., Dougherty P.M., Dunn A.J., Meyers C.A., Miller A.H., Payne R., Reuben J.M., Wang X.S. Are the symptoms of cancer and cancer treatment due to a shared biologic mechanism? Cancer. 2003;97:2919–2925. doi: 10.1002/cncr.11382.
    1. Abrahams H.J., Gielissen M.F., Schmits I.C., Verhagen C.A., Rovers M.M., Knoop H. Risk factors, prevalence, and course of severe fatigue after breast cancer treatment: A meta-analysis involving 12,327 breast cancer survivors. Ann. Oncol. 2016;27:965–974. doi: 10.1093/annonc/mdw099.
    1. Prigozin A., Uziely B., Musgrave C.F. The relationship between symptom severity and symptom interference, education, age, marital status, and type of chemotherapy treatment in Israeli women with early-stage breast cancer. Oncol. Nurs. Forum. 2010;37:411–418. doi: 10.1188/10.ONF.E411-E418.
    1. Berger A.M., Lockhart K., Agrawal S. Variability of patterns of fatigue and quality of life over time based on different breast cancer adjuvant chemotherapy regimens. Oncol. Nurs. Forum. 2009;36:563–570. doi: 10.1188/09.ONF.563-570.
    1. Gilliam L.A., St Clair D.K. Chemotherapy-induced weakness and fatigue in skeletal muscle: The role of oxidative stress. Antioxid. Redox Signal. 2011;15:2543–2563. doi: 10.1089/ars.2011.3965.
    1. Larsen S., Nielsen J., Hansen C.N., Nielsen L.B., Wibrand F., Stride N., Schroder H.D., Boushel R., Helge J.W., Dela F., et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J. Physiol. 2012;590:3349–3360. doi: 10.1113/jphysiol.2012.230185.
    1. Argiles J.M., Lopez-Soriano F.J., Busquets S. Muscle wasting in cancer: The role of mitochondria. Curr. Opin. Clin. Nutr. Metab. Care. 2015;18:221–225. doi: 10.1097/MCO.0000000000000164.
    1. Agudelo D., Bourassa P., Berube G., Tajmir-Riahi H.A. Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: Structural features and biological implications. Int. J. Biol. Macromol. 2014;66:144–150. doi: 10.1016/j.ijbiomac.2014.02.028.
    1. Quach B., Birk A., Szeto H. Mechanism of preventing doxorubicin-induced mitochondrial toxicity with cardiolipin-targeted peptide, SS-31. FASEB J. 2014;28:966.
    1. Cheregi B., Timpani C., Nurgali K., Hayes A., Rybalka E. Chemotherapy-induced mitochondrial respiratory dysfunction, oxidant production and death in healthy skeletal muscle C2C12 myoblast and myotube models. Neuromuscul. Disord. 2015;25:S202. doi: 10.1016/j.nmd.2015.06.069.
    1. Deavall D.G., Martin E.A., Horner J.M., Roberts R. Drug-induced oxidative stress and toxicity. J. Toxicol. 2012;2012:645460. doi: 10.1155/2012/645460.
    1. Sawyer D.B., Peng X., Chen B., Pentassuglia L., Lim C.C. Mechanisms of anthracycline cardiac injury: Can we identify strategies for cardioprotection? Prog. Cardiovasc. Dis. 2010;53:105–113. doi: 10.1016/j.pcad.2010.06.007.
    1. Sarosiek K.A., Ni Chonghaile T., Letai A. Mitochondria: Gatekeepers of response to chemotherapy. Trends Cell Biol. 2013;23:612–619. doi: 10.1016/j.tcb.2013.08.003.
    1. Wallace D.C. Mitochondria and cancer. Nat. Rev. Cancer. 2012;12:685–698. doi: 10.1038/nrc3365.
    1. Zorov D.B., Juhaszova M., Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014;94:909–950. doi: 10.1152/physrev.00026.2013.
    1. Dirks-Naylor A.J., Tran N.T., Yang S., Mabolo R., Kouzi S.A. The effects of acute doxorubicin treatment on proteome lysine acetylation status and apical caspases in skeletal muscle of fasted animals. J. Cachexia Sarcopenia Muscle. 2013;4:239–243. doi: 10.1007/s13539-013-0104-z.
    1. Gilliam L.A., Moylan J.S., Callahan L.A., Sumandea M.P., Reid M.B. Doxorubicin causes diaphragm weakness in murine models of cancer chemotherapy. Muscle Nerve. 2011;43:94–102. doi: 10.1002/mus.21809.
    1. Ismail H.M., Dorchies O.M., Perozzo R., Strosova M.K., Scapozza L., Ruegg U.T. Inhibition of iPLA2 beta and of stretch-activated channels by doxorubicin alters dystrophic muscle function. Br. J. Pharmacol. 2013;169:1537–1550. doi: 10.1111/bph.12188.
    1. Morris G., Berk M., Walder K., Maes M. Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses. BMC Med. 2015;13:28. doi: 10.1186/s12916-014-0259-2.
    1. Bai P., Canto C., Oudart H., Brunyanszki A., Cen Y., Thomas C., Yamamoto H., Huber A., Kiss B., Houtkooper R.H., et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 2011;13:461–468. doi: 10.1016/j.cmet.2011.03.004.
    1. Zong W.X., Ditsworth D., Bauer D.E., Wang Z.Q., Thompson C.B. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 2004;18:1272–1282. doi: 10.1101/gad.1199904.
    1. Niere M., Kernstock S., Koch-Nolte F., Ziegler M. Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix. Mol. Cell. Biol. 2008;28:814–824. doi: 10.1128/MCB.01766-07.
    1. Gourdier I., Crabbe L., Andreau K., Pau B., Kroemer G. Oxaliplatin-induced mitochondrial apoptotic response of colon carcinoma cells does not require nuclear DNA. Oncogene. 2004;23:7449–7457. doi: 10.1038/sj.onc.1208047.
    1. Lutsenko S., Barnes N.L., Bartee M.Y., Dmitriev O.Y. Function and regulation of human copper-transporting ATPases. Physiol. Rev. 2007;87:1011–1046. doi: 10.1152/physrev.00004.2006.
    1. Neel B.A., Lin Y., Pessin J.E. Skeletal muscle autophagy: A new metabolic regulator. Trends Endocrinol. Metab. 2013;24:635–643. doi: 10.1016/j.tem.2013.09.004.
    1. Lind M.J. Principles of cytotoxic chemotherapy. Medicine. 2004;32:20–25. doi: 10.1383/medc.32.3.20.28621.
    1. Singh R., Teel C., Sabus C., McGinnis P., Kluding P. Fatigue in Type 2 Diabetes: Impact on Quality of Life and Predictors. PLoS ONE. 2016;11:e0165652. doi: 10.1371/journal.pone.0165652.
    1. Lazzarino G., Amorini A.M., Eikelenboom M.J., Killestein J., Belli A., di Pietro V., Tavazzi B., Barkhof F., Polman C.H., Uitdehaag B.M., et al. Cerebrospinal fluid ATP metabolites in multiple sclerosis. Mult. Scler. J. 2010;16:549–554. doi: 10.1177/1352458510364196.
    1. Morris G., Maes M. Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab. Brain Dis. 2014;29:19–36. doi: 10.1007/s11011-013-9435-x.
    1. Booth N.E., Myhill S., McLaren-Howard J. Mitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Int. J. Clin. Exp. Med. 2012;5:208–220.
    1. Myhill S., Booth N.E., McLaren-Howard J. Targeting mitochondrial dysfunction in the treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)—A clinical audit. Int. J. Clin. Exp. Med. 2013;6:1.
    1. Behan W.M., Mcdonald M., Darlington L.G., Stone T.W. Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: Protection by melatonin and deprenyl. Br. J. Pharmacol. 1999;128:1754–1760. doi: 10.1038/sj.bjp.0702940.
    1. Hollingsworth K.G., Jones D.E., Taylor R., Blamire A.M., Newton J.L. Impaired cardiovascular response to standing in chronic fatigue syndrome. Eur. J. Clin. Investig. 2010;40:608–615. doi: 10.1111/j.1365-2362.2010.02310.x.
    1. Jones D.E., Hollingsworth K.G., Taylor R., Blamire A.M., Newton J.L. Abnormalities in pH handling by peripheral muscle and potential regulation by the autonomic nervous system in chronic fatigue syndrome. J. Intern. Med. 2010;267:394–401. doi: 10.1111/j.1365-2796.2009.02160.x.
    1. Perl A., Hanczko R., Doherty E. Assessment of mitochondrial dysfunction in lymphocytes of patients with systemic lupus erythematosus. Methods Mol. Biol. 2012;900:61–89.
    1. Perl A., Nagy G., Gergely P., Puskas F., Qian Y., Banki K. Apoptosis and mitochondrial dysfunction in lymphocytes of patients with systemic lupus erythematosus. Methods Mol. Med. 2004;102:87–114.
    1. Nagy G., Koncz A., Fernandez D., Perl A. Nitric oxide, mitochondrial hyperpolarization, and T cell activation. Free Radic. Biol. Med. 2007;42:1625–1631. doi: 10.1016/j.freeradbiomed.2007.02.026.
    1. Morris G., Maes M. Oxidative and Nitrosative Stress and Immune-Inflammatory Pathways in Patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS) Curr. Neuropharmacol. 2014;12:168–185. doi: 10.2174/1570159X11666131120224653.
    1. Lutz N.W., Cozzone P.J. Metabolic profiling in multiple sclerosis and other disorders by quantitative analysis of cerebrospinal fluid using nuclear magnetic resonance spectroscopy. Curr. Pharm. Biotechnol. 2011;12:1016–1025. doi: 10.2174/138920111795909122.
    1. Lutz N.W., Viola A., Malikova I., Confort-Gouny S., Audoin B., Ranjeva J.P., Pelletier J., Cozzone P.J. Inflammatory multiple-sclerosis plaques generate characteristic metabolic profiles in cerebrospinal fluid. PLoS ONE. 2007;2:e595. doi: 10.1371/journal.pone.0000595.
    1. Reinke S.N., Broadhurst D.L., Sykes B.D., Baker G.B., Catz I., Warren K.G., Power C. Metabolomic profiling in multiple sclerosis: Insights into biomarkers and pathogenesis. Mult. Scler. J. 2014;20:1396–1400. doi: 10.1177/1352458513516528.
    1. Miaskowski C., Aouizerat B.E., Dodd M., Cooper B. Conceptual issues in symptom clusters research and their implications for quality-of-life assessment in patients with cancer. J. Natl. Cancer Inst. Monogr. 2007;2007:39–46. doi: 10.1093/jncimonographs/lgm003.
    1. Teunissen S.C., Wesker W., Kruitwagen C., de Haes H.C., Voest E.E., de Graeff A. Symptom prevalence in patients with incurable cancer: A systematic review. J. Pain Symptom Manag. 2007;34:94–104. doi: 10.1016/j.jpainsymman.2006.10.015.
    1. Molfino A., Formiconi A., Rossi Fanelli F., Muscaritoli M. Ghrelin: From discovery to cancer cachexia therapy. Curr. Opin. Clin. Nutr. Metab. Care. 2014;17:471–476. doi: 10.1097/MCO.0000000000000075.
    1. Kim H.J., Kim H.J., Yun J., Kim K.H., Kim S.H., Lee S.C., Bae S.B., Kim C.K., Lee N.S., Lee K.T., et al. Pathophysiological role of hormones and cytokines in cancer cachexia. J. Korean Med. Sci. 2012;27:128–134. doi: 10.3346/jkms.2012.27.2.128.
    1. Mak R.H., Cheung W.W., Gertler A. Exploiting the therapeutic potential of leptin signaling in cachexia. Curr. Opin. Support. Palliat. Care. 2014;8:352–357. doi: 10.1097/SPC.0000000000000092.
    1. Wolf I., Sadetzki S., Kanety H., Kundel Y., Pariente C., Epstein N., Oberman B., Catane R., Kaufman B., Shimon I. Adiponectin, ghrelin, and leptin in cancer cachexia in breast and colon cancer patients. Cancer. 2006;106:966–973. doi: 10.1002/cncr.21690.
    1. Morris G., Anderson G., Galecki P., Berk M., Maes M. A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and sickness behavior. BMC Med. 2013;11:64. doi: 10.1186/1741-7015-11-64.
    1. Norheim K.B., Jonsson G., Omdal R. Biological mechanisms of chronic fatigue. Rheumatology. 2011;50:1009–1018. doi: 10.1093/rheumatology/keq454.
    1. Lee B.N., Dantzer R., Langley K.E., Bennett G.J., Dougherty P.M., Dunn A.J., Meyers C.A., Miller A.H., Payne R., Reuben J.M., et al. A cytokine-based neuroimmunologic mechanism of cancer-related symptoms. Neuroimmunomodulation. 2004;11:279–292. doi: 10.1159/000079408.
    1. Miaskowski C., Aouizerat B.E. Is there a biological basis for the clustering of symptoms? Semin. Oncol. Nurs. 2007;23:99–105. doi: 10.1016/j.soncn.2007.01.008.
    1. Dantzer R. Cytokine, sickness behavior, and depression. Neurol. Clin. 2006;24:441–460. doi: 10.1016/j.ncl.2006.03.003.
    1. Fernandez-Gonzalo R., de Paz J.A., Rodriguez-Miguelez P., Cuevas M.J., Gonzalez-Gallego J. Effects of eccentric exercise on toll-like receptor 4 signaling pathway in peripheral blood mononuclear cells. J. Appl. Physiol. 2012;112:2011–2018. doi: 10.1152/japplphysiol.01499.2011.
    1. Jialal I., Kaur H., Devaraj S. Toll-like receptor status in obesity and metabolic syndrome: A translational perspective. J. Clin. Endocrinol. Metab. 2014;99:39–48. doi: 10.1210/jc.2013-3092.
    1. Lucas K., Maes M. Role of the Toll Like receptor (TLR) radical cycle in chronic inflammation: Possible treatments targeting the TLR4 pathway. Mol. Neurobiol. 2013;48:190–204. doi: 10.1007/s12035-013-8425-7.
    1. Ader R. Psychoneuroimmunology. ILAR J. 1998;39:27–29. doi: 10.1093/ilar.39.1.27.
    1. Li M.C., He S.H. IL-10 and its related cytokines for treatment of inflammatory bowel disease. World J. Gastroenterol. 2004;10:620–625. doi: 10.3748/wjg.v10.i5.620.
    1. Gilbertson-White S., Aouizerat B.E., Miaskowski C. Methodologic issues in the measurement of cytokines to elucidate the biological basis for cancer symptoms. Biol. Res. Nurs. 2011;13:15–24. doi: 10.1177/1099800410379497.
    1. Goedendorp M.M., Tack C.J., Steggink E., Bloot L., Bazelmans E., Knoop H. Chronic fatigue in type 1 diabetes: Highly prevalent but not explained by hyperglycemia or glucose variability. Diabetes Care. 2014;37:73–80. doi: 10.2337/dc13-0515.
    1. Willems L.M., Kwakkenbos L., Leite C.C., Thombs B.D., van den Hoogen F.H., Maia A.C., Vliet Vlieland T.P., van den Ende C.H. Frequency and impact of disease symptoms experienced by patients with systemic sclerosis from five European countries. Clin. Exp. Rheumatol. 2014;32:88–93.
    1. Hewlett S., Chalder T., Choy E., Cramp F., Davis B., Dures E., Nicholls C. Kirwan, J. Fatigue in rheumatoid arthritis: Time for a conceptual model. Rheumatology. 2011;50:1004–1006. doi: 10.1093/rheumatology/keq282.
    1. Meyers C.A., Albitar M., Estey E. Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer. 2005;104:788–793. doi: 10.1002/cncr.21234.
    1. Reyes-Gibby C.C., Wang J., Spitz M., Wu X., Yennurajalingam S., Shete S. Genetic variations in interleukin-8 and interleukin-10 are associated with pain, depressed mood, and fatigue in lung cancer patients. J. Pain Symptom Manag. 2013;46:161–172. doi: 10.1016/j.jpainsymman.2012.07.019.
    1. Miaskowski C., Cooper B.A., Dhruva A., Dunn L.B., Langford D.J., Cataldo J.K., Baggott C.R., Merriman J.D., Dodd M., Lee K., et al. Evidence of Associations between Cytokine Genes and Subjective Reports of Sleep Disturbance in Oncology Patients and Their Family Caregivers. PLoS ONE. 2012;7:e40560. doi: 10.1371/journal.pone.0040560.
    1. Irwin M.R. Inflammation at the intersection of behavior and somatic symptoms. Psychiatr. Clin. N. Am. 2011;34:605–620. doi: 10.1016/j.psc.2011.05.005.
    1. Flachenecker P., Bihler I., Weber F., Gottschalk M., Toyka K.V., Rieckmann P. Cytokine mRNA expression in patients with multiple sclerosis and fatigue. Mult. Scler. J. 2004;10:165–169. doi: 10.1191/1352458504ms991oa.
    1. Heesen C., Nawrath L., Reich C., Bauer N., Schulz K.H., Gold S.M. Fatigue in multiple sclerosis: An example of cytokine mediated sickness behaviour? J. Neurol. Neurosurg. Psychiatry. 2006;77:34–39. doi: 10.1136/jnnp.2005.065805.
    1. Bower J.E. Cancer-related fatigue: Links with inflammation in cancer patients and survivors. Brain Behav. Immun. 2007;21:863–871. doi: 10.1016/j.bbi.2007.03.013.
    1. Bower J.E. Cancer-related fatigue—Mechanisms, risk factors, and treatments. Nat. Rev. Clin. Oncol. 2014;11:597–609. doi: 10.1038/nrclinonc.2014.127.
    1. Lee Y.C., Frits M.L., Iannaccone C.K., Weinblatt M.E., Shadick N.A., Williams D.A., Cui J. Subgrouping of patients with rheumatoid arthritis based on pain, fatigue, inflammation, and psychosocial factors. Arthritis Rheumatol. 2014;66:2006–2014. doi: 10.1002/art.38682.
    1. Norden D.M., Bicer S., Clark Y., Jing R.F., Henry C.J., Wold L.E., Reiser P.J., Godbout J.P., McCarthy D.O. Tumor growth increases neuroinflammation, fatigue and depressive-like behavior prior to alterations in muscle function. Brain Behav. Immun. 2015;43:76–85. doi: 10.1016/j.bbi.2014.07.013.
    1. Arnett S.V., Clark I.A. Inflammatory fatigue and sickness behavior—Lessons for the diagnosis and management of chronic fatigue syndrome. J. Affect Disord. 2012;141:130–142. doi: 10.1016/j.jad.2012.04.004.
    1. Bluthe R.M., Beaudu C., Kelley K.W., Dantzer R. Differential effects of IL-1ra on sickness behavior and weight loss induced by IL-1 in rats. Brain Res. 1995;677:171–176. doi: 10.1016/0006-8993(95)00194-U.
    1. Heinzelmann M., Lee H., Rak H., Livingston W., Barr T., Baxter T., Scattergood-Keepper L., Mysliwiec V., Gill J. Sleep restoration is associated with reduced plasma C-reactive protein and depression symptoms in military personnel with sleep disturbance after deployment. Sleep Med. 2014;15:1565–1570. doi: 10.1016/j.sleep.2014.08.004.
    1. Chauffier K., Salliot C., Berenbaum F., Sellam J. Effect of biotherapies on fatigue in rheumatoid arthritis: A systematic review of the literature and meta-analysis. Rheumatology. 2012;51:60–68. doi: 10.1093/rheumatology/ker162.
    1. Chrousos G.P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N. Engl. J. Med. 1995;332:1351–1362. doi: 10.1056/NEJM199505183322008.
    1. Masson C. Rheumatoid anemia. Jt. Bone Spine. 2011;78:131–137. doi: 10.1016/j.jbspin.2010.05.017.
    1. Schmidt C., Peng B., Li Z., Sclabas G.M., Fujioka S., Niu J., Schmidt-Supprian M., Evans D.B., Abbruzzese J.L., Chiao P.J. Mechanisms of proinflammatory cytokine-induced biphasic NF-kappaB activation. Mol. Cell. 2003;12:1287–1300. doi: 10.1016/S1097-2765(03)00390-3.
    1. Tabruyn S.P., Memet S., Ave P., Verhaeghe C., Mayo K.H., Struman I., Martial J.A., Griffioen A.W. NF-kappaB activation in endothelial cells is critical for the activity of angiostatic agents. Mol. Cancer Ther. 2009;8:2645–2654. doi: 10.1158/1535-7163.MCT-09-0383.
    1. Anrather J., Racchumi G., Iadecola C. NF-kappaB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J. Biol. Chem. 2006;281:5657–5667. doi: 10.1074/jbc.M506172200.
    1. Nakata S., Tsutsui M., Shimokawa H., Yamashita T., Tanimoto A., Tasaki H., Ozumi K., Sabanai K., Morishita T., Suda O., et al. Statin treatment upregulates vascular neuronal nitric oxide synthase through Akt/NF-kappaB pathway. Arterioscler. Thromb. Vasc. Biol. 2007;27:92–98. doi: 10.1161/01.ATV.0000251615.61858.33.
    1. Sultani M., Stringer A.M., Bowen J.M., Gibson R.J. Anti-inflammatory cytokines: Important immunoregulatory factors contributing to chemotherapy-induced gastrointestinal mucositis. Chemother. Res. Pract. 2012;2012:490804. doi: 10.1155/2012/490804.
    1. Sonis S.T. A biological approach to mucositis. J. Support. Oncol. 2004;2:21–32.
    1. Sonis S.T. Pathobiology of oral mucositis: Novel insights and opportunities. J. Support. Oncol. 2007;5:3–11.
    1. Maes M., Kubera M., Obuchowiczwa E., Goehler L., Brzeszcz J. Depression’s multiple comorbidities explained by (neuro)inflammatory and oxidative & nitrosative stress pathways. Neuroendocr. Endocrinol. Lett. 2011;32:7–24.
    1. Maes M., Mihaylova I., Leunis J.C. Chronic fatigue syndrome is accompanied by an IgM-related immune response directed against neopitopes formed by oxidative or nitrosative damage to lipids and proteins. Neuroendocr. Endocrinol. Lett. 2006;27:615–621.
    1. Kuper H., Adami H.O., Trichopoulos D. Infections as a major preventable cause of human cancer. J. Intern. Med. 2001;249:61–74. doi: 10.1046/j.1365-2796.2001.00742.x.
    1. Morris G., Maes M. A neuro-immune model of Myalgic Encephalomyelitis/Chronic fatigue syndrome. Metab. Brain Dis. 2013;28:523–540. doi: 10.1007/s11011-012-9324-8.
    1. Burfeind K.G., Michaelis K.A., Marks D.L. The central role of hypothalamic inflammation in the acute illness response and cachexia. Semin. Cell Dev. Biol. 2016;54:42–52. doi: 10.1016/j.semcdb.2015.10.038.
    1. Berk M., Williams L.J., Jacka F.N., O’Neil A., Pasco J.A., Moylan S., Allen N.B., Stuart A.L., Hayley A.C., Byrne M.L., et al. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med. 2013;11:200. doi: 10.1186/1741-7015-11-200.
    1. Kreisel T., Frank M.G., Licht T., Reshef R., Ben-Menachem-Zidon O., Baratta M.V., Maier S.F., Yirmiya R. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol. Psychiatry. 2014;19:699–709. doi: 10.1038/mp.2013.155.
    1. Maes M., Berk M., Goehler L., Song C., Anderson G., Galecki P., Leonard B. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med. 2012;10:66. doi: 10.1186/1741-7015-10-66.
    1. Steiner J., Walter M., Gos T., Guillemin G.J., Bernstein H.G., Sarnyai Z., Mawrin C., Brisch R., Bielau H., Schwabedissen L.M.Z., et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission? J. Neuroinflamm. 2013;10:34. doi: 10.1186/1742-2094-10-34.
    1. Ratel S., Kluka V., Vicencio S.G., Jegu A.G., Cardenoux C., Morio C., Coudeyre E., Martin V. Insights into the Mechanisms of Neuromuscular Fatigue in Boys and Men. Med. Sci. Sport Exerc. 2015;47:2319–2328. doi: 10.1249/MSS.0000000000000697.
    1. Amann M., Blain G.M., Proctor L.T., Sebranek J.J., Pegelow D.F., Dempsey J.A. Implications of group III and IV muscle afferents for high-intensity endurance exercise performance in humans. J. Physiol. 2011;589:5299–5309. doi: 10.1113/jphysiol.2011.213769.
    1. Perry V.H., Cunningham C., Boche D. Atypical inflammation in the central nervous system in prion disease. Curr. Opin. Neurol. 2002;15:349–354. doi: 10.1097/00019052-200206000-00020.
    1. Bodnar R.J., Pasternak G.W., Mann P.E., Paul D., Warren R., Donner D.B. Mediation of anorexia by human recombinant tumor necrosis factor through a peripheral action in the rat. Cancer Res. 1989;49:6280–6284.
    1. Cone R.D., Cowley M.A., Butler A.A., Fan W., Marks D.L., Low M.J. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int. J. Obes. 2002;25:S63. doi: 10.1038/sj.ijo.0801913.
    1. Grossberg A.J., Scarlett J.M., Zhu X., Bowe D.D., Batra A.K., Braun T.P., Marks D.L. Arcuate nucleus proopiomelanocortin neurons mediate the acute anorectic actions of leukemia inhibitory factor via gp130. Endocrinology. 2010;151:606–616. doi: 10.1210/en.2009-1135.
    1. Lawrence C.B., Rothwell N.J. Anorexic but Not Pyrogenic Actions of Interleukin-1 are Modulated by Central Melanocortin-3/4 Receptors in the Rat. J. Neuroendocrinol. 2001;13:490–495. doi: 10.1046/j.1365-2826.2001.00660.x.
    1. Sonti G., Ilyin S.E., Plata-Salamán C.R. Anorexia induced by cytokine interactions at pathophysiological concentrations. Am. J. Physiol. 1996;270:1394–1402. doi: 10.1152/ajpregu.1996.270.6.R1394.
    1. Morton G.J., Cummings D.E., Baskin D.G., Barsh G.S., Schwartz M.W. Central nervous system control of food intake and body weight. Nature. 2006;443:289–295. doi: 10.1038/nature05026.
    1. Millington G.W. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr. Metab. 2007;4:18. doi: 10.1186/1743-7075-4-18.
    1. Murphy K.G. Dissecting the role of cocaine- and amphetamine-regulated transcript (CART) in the control of appetite. Brief. Funct. Genom. Proteom. 2005;4:95–111. doi: 10.1093/bfgp/4.2.95.
    1. Cowley M.A., Dinulescu D.M., Pronchuk N., Fan W., Colmers W.F., Cone R.D. Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: Evidence of a cellular basis for the adipostat. Neuron. 1999;24:155–163. doi: 10.1016/S0896-6273(00)80829-6.
    1. Pritchard L.E., Armstrong D., Davies N., Oliver R.L., Schmitz C.A., Brennand J.C., Wikinson G.F., White A. Agouti-related protein (83-132) is a competitive antagonist at the human melanocortin-4 receptor: No evidence for differential interactions with pro-opiomelanocortin-derived ligands. J. Endocrinol. 2004;180:183–191. doi: 10.1677/joe.0.1800183.
    1. Kuo L.E., Kitlinska J.B., Tilan J.U., Li L., Baker S.B., Johnson M.D., Lee E.W., Burnett M.S., Fricke S.T., Kvetnansky R., et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat. Med. 2007;13:803–811. doi: 10.1038/nm1611.
    1. Tatemoto K., Carlquist M., Mutt V. Neuropeptide Y—A novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature. 1982;296:659–660. doi: 10.1038/296659a0.
    1. Scarlett J.M., Jobst E.E., Enriori P.J., Bowe D.D., Batra A.K., Grant W.F., Cowley M.A., Marks D.L. Regulation of central melanocortin signaling by interleukin-1 beta. Endocrinology. 2007;148:4217–4225. doi: 10.1210/en.2007-0017.
    1. Scarlett J.M., Zhu X., Enriori P.J., Bowe D.D., Batra A.K., Levasseur P.R., Grant W.F., Meguid M.M., Cowley M.A., Marks D.L. Regulation of agouti-related protein messenger ribonucleic acid transcription and peptide secretion by acute and chronic inflammation. Endocrinology. 2008;149:4837–4845. doi: 10.1210/en.2007-1680.
    1. Wisse B.E., Ogimoto K., Tang J., Harris M.K., Jr., Raines E.W., Schwartz M.W. Evidence that lipopolysaccharide-induced anorexia depends upon central, rather than peripheral, inflammatory signals. Endocrinology. 2007;148:5230–5237. doi: 10.1210/en.2007-0394.
    1. Braun T.P., Marks D.L. The regulation of muscle mass by endogenous glucocorticoids. Front. Physiol. 2015;6:12. doi: 10.3389/fphys.2015.00012.
    1. Braun T.P., Szumowski M., Levasseur P.R., Grossberg A.J., Zhu X., Agarwal A., Marks D.L. Muscle atrophy in response to cytotoxic chemotherapy is dependent on intact glucocorticoid signaling in skeletal muscle. PLoS ONE. 2014;9:e106489. doi: 10.1371/journal.pone.0106489.
    1. Johns N., Stephens N.A., Fearon K.C. Muscle wasting in cancer. Int. J. Biochem. Cell Biol. 2013;45:2215–2229. doi: 10.1016/j.biocel.2013.05.032.
    1. Finsterer J. Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet. Disord. 2011;13:218. doi: 10.1186/1471-2474-13-218.
    1. Keyser R.E. Peripheral fatigue: High-energy phosphates and hydrogen ions. PM & R. 2010;2:347–358.
    1. Vanhatalo A., Fulford J., DiMenna F.J., Jones A.M. Influence of hyperoxia on muscle metabolic responses and the power-duration relationship during severe-intensity exercise in humans: A 31P magnetic resonance spectroscopy study. Exp. Physiol. 2010;95:528–540. doi: 10.1113/expphysiol.2009.050500.
    1. Guertin P.A. Central pattern generator for locomotion: Anatomical, physiological, and pathophysiological considerations. Front. Neurol. 2013;3:183. doi: 10.3389/fneur.2012.00183.
    1. Green H.J. Mechanisms of muscle fatigue in intense exercise. J. Sports Sci. 1997;15:247–256. doi: 10.1080/026404197367254.
    1. Zajac A., Chalimoniuk M., Maszczyk A., Golas A., Lngfort J. Central and Peripheral Fatigue During Resistance Exercise—A Critical Review. J. Hum. Kinet. 2015;49:159–169. doi: 10.1515/hukin-2015-0118.
    1. Chalimoniuk M., Chrapusta S.J., Lukacova N., Langfort J. Endurance training upregulates the nitric oxide/soluble guanylyl cyclase/cyclic guanosine 3’,5’-monophosphate pathway in the striatum, midbrain and cerebellum of male rats. Brain Res. 2015;1618:29–40. doi: 10.1016/j.brainres.2015.05.020.
    1. Galdino G.S., Xavier C.H., Almeida R., Silva G., Fontes M.A., Menezes G., Duarte I.D., Perez A.C. The Nitric oxide/CGMP/KATP pathway mediates systemic and central antinociception induced by resistance exercise in rats. Int. J. Neurosci. 2015;125:765–773. doi: 10.3109/00207454.2014.970256.
    1. Meeusen R., Watson P. Amino acids and the brain: Do they play a role in “central fatigue”? Int. J. Sport Nutr. Exerc. Metab. 2007;17:37–46. doi: 10.1123/ijsnem.17.s1.s37.
    1. Meeusen R., Watson P., Hasegawa H., Roelands B., Piacentini M.F. Central fatigue: The serotonin hypothesis and beyond. Sports Med. 2006;36:881–909. doi: 10.2165/00007256-200636100-00006.
    1. Sutoo D., Akiyama K. Regulation of brain function by exercise. Neurobiol. Dis. 2003;13:1–14. doi: 10.1016/S0969-9961(03)00030-5.
    1. Bouret S., Sara S.J. Network reset: A simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci. 2005;28:574–582. doi: 10.1016/j.tins.2005.09.002.
    1. Romero-Gomez M., Jover M., Galan J.J., Ruiz A. Gut ammonia production and its modulation. Metab. Brain Dis. 2009;24:147–157. doi: 10.1007/s11011-008-9124-3.
    1. DeLuca J., Genova H.M., Capili E.J., Wylie G.R. Functional neuroimaging of fatigue. Phys. Med. Rehabil. Clin. N. Am. 2009;20:325–337. doi: 10.1016/j.pmr.2008.12.007.
    1. Genova H.M., Rajagopalan V., Deluca J., Das A., Binder A., Arjunan A., Chiaravalloti N., Wylie G. Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging. PLoS ONE. 2013;8:e78811. doi: 10.1371/journal.pone.0078811.
    1. Kohl A.D., Wylie G.R., Genova H.M., Hillary F.G., Deluca J. The neural correlates of cognitive fatigue in traumatic brain injury using functional MRI. Brain Inj. 2009;23:420–432. doi: 10.1080/02699050902788519.
    1. Chaudhuri A., Behan P.O. Fatigue in neurological disorders. Lancet. 2004;363:978–988. doi: 10.1016/S0140-6736(04)15794-2.
    1. Filippi M., Rocca M.A. MR imaging of gray matter involvement in multiple sclerosis: Implications for understanding disease pathophysiology and monitoring treatment efficacy. Am. J. Neuroradiol. 2010;31:1171–1177. doi: 10.3174/ajnr.A1944.
    1. Messina S., Patti F. Gray matters in multiple sclerosis: Cognitive impairment and structural MRI. Mult. Scler. Int. 2014;2014:609694. doi: 10.1155/2014/609694.
    1. Ceccarelli A., Rocca M.A., Pagani E., Colombo B., Martinelli V., Comi G., Filippi M. A voxel-based morphometry study of grey matter loss in MS patients with different clinical phenotypes. Neuroimage. 2008;42:315–322. doi: 10.1016/j.neuroimage.2008.04.173.
    1. Henry R.G., Shieh M., Okuda D.T., Evangelista A., Gorno-Tempini M.L., Pelletier D. Regional grey matter atrophy in clinically isolated syndromes at presentation. J. Neurol. Neurosurg. Psychiatry. 2008;79:1236–1244. doi: 10.1136/jnnp.2007.134825.
    1. Inglese M., Oesingmann N., Casaccia P., Fleysher L. Progressive multiple sclerosis and gray matter pathology: An MRI perspective. Mt. Sinai J. Med. 2011;78:258–267. doi: 10.1002/msj.20247.
    1. Inglese M., Park S.J., Johnson G., Babb J.S., Miles L., Jaggi H., Herbert J., Grossman R.I. Deep gray matter perfusion in multiple sclerosis: Dynamic susceptibility contrast perfusion magnetic resonance imaging at 3 T. Arch. Neurol. 2007;64:196–202. doi: 10.1001/archneur.64.2.196.
    1. Pellicano C., Gallo A., Li X., Ikonomidou V.N., Evangelou I.E., Ohayon J.M., Stern S.K., Ehrmantraut M., Cantor F., McFarland H.F., et al. Relationship of cortical atrophy to fatigue in patients with multiple sclerosis. Arch. Neurol. 2010;67:447–453. doi: 10.1001/archneurol.2010.48.
    1. Téllez N., Alonso J., Río J., Tintoré M., Nos C., Montalban X., Rovira A. The basal ganglia: A substrate for fatigue in multiple sclerosis. Neuroradiology. 2008;50:17–23. doi: 10.1007/s00234-007-0304-3.
    1. Oberheim N.A., Goldman S.A., Nedergaard M. Heterogeneity of astrocytic form and function. Methods Mol. Biol. 2012;814:23–45.
    1. Sofroniew M.V., Vinters H.V. Astrocytes: Biology and pathology. Acta Neuropathol. 2010;119:7–35. doi: 10.1007/s00401-009-0619-8.
    1. Stobart J.L., Anderson C.M. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front. Cell. Neurosci. 2013;7:38. doi: 10.3389/fncel.2013.00038.
    1. Haider L., Simeonidou C., Steinberger G., Hametner S., Grigoriadis N., Deretzi G., Kovacs G.G., Kutzelnigg A., Lassmann H., Frischer J.M. Multiple sclerosis deep grey matter: The relation between demyelination, neurodegeneration, inflammation and iron. J. Neurol. Neurosurg. Psychiatry. 2014;85:1386–1395. doi: 10.1136/jnnp-2014-307712.
    1. Cella D., Peterman A., Passik S., Jacobsen P., Breitbart W. Progress toward guidelines for the management of fatigue. Oncology. 1998;12:369–377.
    1. Sugihara A.Q., Rolle C.E., Lesniak M.S. Regulatory T cells actively infiltrate metastatic brain tumors. Int. J. Oncol. 2009;34:1533–1540.
    1. Lu F., Selak M., O’Connor J., Croul S., Lorenzana C., Butunoi C., Kalman B. Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J. Neurol. Sci. 2000;177:95–103. doi: 10.1016/S0022-510X(00)00343-9.
    1. Raudonis B.M., Kelley I.H., Rowe N., Ellis J. A Pilot Study of Proinflammatory Cytokines and Fatigue in Women with Breast Cancer During Chemotherapy. Cancer Nurs. 2017;40:323–331. doi: 10.1097/NCC.0000000000000406.
    1. Bower J.E., Ganz P.A., Irwin M.R., Castellon S., Arevalo J., Cole S.W. Cytokine Genetic Variations and Fatigue Among Patients with Breast Cancer. J. Clin. Oncol. 2013;31:1656–1661. doi: 10.1200/JCO.2012.46.2143.
    1. Cai B., Allexandre D., Rajagopalan V., Jiang Z., Siemionow V., Ranganathan V.K., Davis M.P., Walsh D., Dai K., Yue G.H. Evidence of Significant Central Fatigue in Patients with Cancer-Related Fatigue during Repetitive Elbow Flexions till Perceived Exhaustion. PLoS ONE. 2014;9:e115370. doi: 10.1371/journal.pone.0115370.
    1. Janda M., Gerstner N., Obermair A., Fuerst A., Wachter S., Dieckmann K., Pötter R. Quality of life changes during conformal radiation therapy for prostate carcinoma. J. Cancer. 2000;89:1322–1328. doi: 10.1002/1097-0142(20000915)89:6<1322::AID-CNCR18>;2-D.
    1. Ng A.V. The underrecognized role of impaired muscle function in cancer-related fatigue. J. Support. Oncol. 2010;8:177.
    1. Mortimer J.E., Waliany S., Dieli-Conwright C.M., Patel S.K., Hurria A., Chao J., Tiep B., Behrendt C.E. Objective physical and mental markers of self-reported fatigue in women undergoing (neo)adjuvant chemotherapy for early-stage breast cancer. Cancer. 2017;123:1810–1816. doi: 10.1002/cncr.30426.
    1. Kanzaki A., Okauchi T., Hu D., Shingaki T., Katayama Y., Koyama H., Watanabe Y., Cui Y. Extension of recovery time from fatigue by repeated rest with short-term sleep during continuous fatigue load: Development of chronic fatigue model. J. Neurosci. Res. 2016;94:424–429. doi: 10.1002/jnr.23718.

Source: PubMed

3
Tilaa