Digital health behaviour change interventions targeting physical activity and diet in cancer survivors: a systematic review and meta-analysis

Anna L Roberts, Abigail Fisher, Lee Smith, Malgorzata Heinrich, Henry W W Potts, Anna L Roberts, Abigail Fisher, Lee Smith, Malgorzata Heinrich, Henry W W Potts

Abstract

Purpose: The number of cancer survivors has risen substantially due to improvements in early diagnosis and treatment. Health behaviours such as physical activity (PA) and diet can reduce recurrence and mortality, and alleviate negative consequences of cancer and treatments. Digital behaviour change interventions (DBCIs) have the potential to reach large numbers of cancer survivors.

Methods: We conducted a systematic review and meta-analyses of relevant studies identified by a search of Medline, EMBASE, PubMed and CINAHL. Studies which assessed a DBCI with measures of PA, diet and/or sedentary behaviour were included.

Results: Fifteen studies were identified. Random effects meta-analyses showed significant improvements in moderate-vigorous PA (seven studies; mean difference (MD) = 41 min per week; 95% CI 12, 71) and body mass index (BMI)/weight (standardised mean difference (SMD) = -0.23; 95% CI -0.41, -0.05). There was a trend towards significance for reduced fatigue and no significant change in cancer-specific measures of quality of life (QoL). Narrative synthesis revealed mixed evidence for effects on diet, generic QoL measures and self-efficacy and no evidence of an effect on mental health. Two studies suggested improved sleep quality.

Conclusions: DBCIs may improve PA and BMI among cancer survivors, and there is mixed evidence for diet. The number of included studies is small, and risk of bias and heterogeneity was high. Future research should address these limitations with large, high-quality RCTs, with objective measures of PA and sedentary time.

Implications for cancer survivors: Digital technologies offer a promising approach to encourage health behaviour change among cancer survivors.

Keywords: Behaviour change; Cancer survivors; Diet; Digital interventions; Physical activity; Sedentary behaviour.

Conflict of interest statement

Conflict of interest

HP has previously received consultancy from myownteam. AR, AF, LS and MH declare that they have no conflict of interest.

Funding

AR is funded by a Medical Research Council PhD studentship. AF, HP and LS are funded by the Higher Education Funding Council for England. MH is funded by Cancer Research UK (grant number C1418/A14133).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. The current study was a review/meta-analysis of existing studies that did not involve collection of new data.

Figures

Fig. 1
Fig. 1
PRISMA flow diagram illustrating article selection strategy
Fig. 2
Fig. 2
Meta-analysis of DBCIs on MVPA
Fig. 3
Fig. 3
Risk of bias in included studies

References

    1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–E386. doi: 10.1002/ijc.29210.
    1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. Available from: , accessed on 28th November 2016.
    1. Cancer Research UK. Cancer Statistics for the UK. 2016. . Accessed 28th November 2016.
    1. Weis J. Cancer-related fatigue: prevalence, assessment and treatment strategies. Expert Rev Pharmacoecon Outcomes Res. 2011;11(4):441–446. doi: 10.1586/erp.11.44.
    1. van den Beuken-van Everdingen MH, De Rijke JM, Kessel AG, Schouten HC, Van Kleef M, Patijn J. Prevalence of pain in patients with cancer: a systematic review of the past 40 years. Ann Oncol. 2007;18(9):1437–1449. doi: 10.1093/annonc/mdm056.
    1. Sharma N, Hansen CH, O'Connor M, et al. Sleep problems in cancer patients: prevalence and association with distress and pain. Psycho-Oncology. 2012;21(9):1003–1009. doi: 10.1002/pon.2004.
    1. Hayes SC, Janda M, Cornish B, Battistutta D, Newman B. Lymphedema after breast cancer: incidence, risk factors, and effect on upper body function. J Clin Oncol. 2008;26(21):3536–3542. doi: 10.1200/JCO.2007.14.4899.
    1. Koo HY, Seo YG, Cho MH, Kim MJ, Choi HC. Weight change and associated factors in long-term breast cancer survivors. PLoS One. 2016;11(7):e0159098. doi: 10.1371/journal.pone.0159098.
    1. Krebber AMH, Buffart LM, Kleijn G, et al. Prevalence of depression in cancer patients: a meta-analysis of diagnostic interviews and self-report instruments. Psycho-Oncology. 2014;23(2):121–130. doi: 10.1002/pon.3409.
    1. Mitchell AJ, Ferguson DW, Gill J, Paul J, Symonds P. Depression and anxiety in long-term cancer survivors compared with spouses and healthy controls: a systematic review and meta-analysis. Lancet Oncol. 2013;14(8):721–732. doi: 10.1016/S1470-2045(13)70244-4.
    1. Simard S, Thewes B, Humphris G, et al. Fear of cancer recurrence in adult cancer survivors: a systematic review of quantitative studies. J Cancer Surviv. 2013;7(3):300–322. doi: 10.1007/s11764-013-0272-z.
    1. Quinten C, Coens C, Ghislain I, et al. The effects of age on health-related quality of life in cancer populations: a pooled analysis of randomized controlled trials using the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30 involving 6024 cancer patients. Eur J Cancer. 2015;51(18):2808–2819. doi: 10.1016/j.ejca.2015.08.027.
    1. Macmillan Cancer Support. The burden of cancer and other long-term health conditions. 2015. . Accessed 28th November 2016.
    1. Koene RJ, Prizment AE, Blaes A, Konety SH. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016;133(11):1104–1114. doi: 10.1161/CIRCULATIONAHA.115.020406.
    1. Johnson CB, Davis MK, Law A, Sulpher J. Shared risk factors for cardiovascular disease and cancer: implications for preventive health and clinical care in oncology patients. Can J Cardiol. 2016;32(7):900–907. doi: 10.1016/j.cjca.2016.04.008.
    1. Binder PS, Peipert JF, Kallogjeri D, et al. Adult Comorbidity Evaluation 27 score as a predictor of survival in endometrial cancer patients. Am J Obstet Gynecol. 2016;
    1. Lahart IM, Metsios GS, Nevill AM, Carmichael AR. Physical activity, risk of death and recurrence in breast cancer survivors: a systematic review and meta-analysis of epidemiological studies. Acta Oncol. 2015;54(5):635–654. doi: 10.3109/0284186X.2014.998275.
    1. Schmid D, Leitzmann MF. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol. 2014;25(7):1293–1311. doi: 10.1093/annonc/mdu012.
    1. Mishra SI, Scherer RW, Geigle PM, et al. Exercise interventions on health-related quality of life for cancer survivors. Cochrane Database Syst Rev. 2012;8:CD007566.
    1. van Roekel EH, Winkler EA, Bours MJ, et al. Associations of sedentary time and patterns of sedentary time accumulation with health-related quality of life in colorectal cancer survivors. Prev Med Rep. 2016;4:262–269. doi: 10.1016/j.pmedr.2016.06.022.
    1. Phillips SM, Lloyd GR, Awick EA, McAuley E. Correlates of objectively measured sedentary behavior in breast cancer survivors. Cancer Causes Control. 2016;27(6):787–795. doi: 10.1007/s10552-016-0756-z.
    1. Lynch BM, Boyle T, Winkler E, Occleston J, Courneya KS, Vallance JK. Patterns and correlates of accelerometer-assessed physical activity and sedentary time among colon cancer survivors. Cancer Causes Control. 2016;27(1):59–68. doi: 10.1007/s10552-015-0683-4.
    1. Rock CL, Doyle C, Demark-Wahnefried W, et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin. 2012;62(4):242–274. doi: 10.3322/caac.21142.
    1. U.S. Department of Health and Human Services. Physical activity guidelines for Americans. 2008. . Accessed 28th November 2016.
    1. Schmitz KH, Courneya KS, Matthews C, et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42(7):1409–1426. doi: 10.1249/MSS.0b013e3181e0c112.
    1. Xing MY, Xu SZ, Shen P. Effect of low-fat diet on breast cancer survival: a meta-analysis. Asian Pac J Cancer P. 2014;15(3):1141–1144. doi: 10.7314/APJCP.2014.15.3.1141.
    1. Brennan SF, Woodside JV, Lunny PM, Cardwell CR, Cantwell MM. Dietary fat and breast cancer mortality: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2015.
    1. Schwingshackl L, Hoffmann G. Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis of observational studies. Cancer Med. 2015;4(12):1933–1947. doi: 10.1002/cam4.539.
    1. Meyerhardt JA, Niedzwiecki D, Hollis D, et al. Association of dietary patterns with cancer recurrence and survival in patients with stage III colon cancer. JAMA. 2007;298(7):754–764. doi: 10.1001/jama.298.7.754.
    1. George SM, Ballard-Barbash R, Shikany JM, et al. Better postdiagnosis diet quality is associated with reduced risk of death among postmenopausal women with invasive breast cancer in the women’s health initiative. Cancer Epidemiol Biomark Prev. 2014;23(4):575–583. doi: 10.1158/1055-9965.EPI-13-1162.
    1. Vrieling A, Buck K, Seibold P, et al. Dietary patterns and survival in German postmenopausal breast cancer survivors. Br J Cancer. 2013;108(1):188–192. doi: 10.1038/bjc.2012.521.
    1. Jayachandran J, Banez LL, Aronson WJ, et al. Obesity as a predictor of adverse outcome across black and white race: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) Database. Cancer. 2009;115(22):5263–5271. doi: 10.1002/cncr.24571.
    1. Doleman B, Mills KT, Lim S, Zelhart MD, Gagliardi G. Body mass index and colorectal cancer prognosis: a systematic review and meta-analysis. Tech Coloproctol. 2016;20(8):517–535. doi: 10.1007/s10151-016-1498-3.
    1. Bao PP, Cai H, Peng P, et al. Body mass index and weight change in relation to triple-negative breast cancer survival. Cancer Causes Control. 2016;27(2):229–236. doi: 10.1007/s10552-015-0700-7.
    1. Winkels RM, van Lee L, Beijer S, et al. Adherence to the World Cancer Research Fund/American Institute for Cancer Research lifestyle recommendations in colorectal cancer survivors: results of the PROFILES registry. Cancer Med. 2016;
    1. Blanchard CM, Courneya KS, Stein K. American Cancer Society’s SCS, II. Cancer survivors’ adherence to lifestyle behavior recommendations and associations with health-related quality of life: results from the American Cancer Society's SCS-II. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(13):2198–2204. doi: 10.1200/JCO.2007.14.6217.
    1. Williams K, Steptoe A, Wardle J. Is a cancer diagnosis a trigger for health behaviour change? Findings from a prospective, population-based study. Br J Cancer. 2013;108(11):2407–2412. doi: 10.1038/bjc.2013.254.
    1. Wang Z, McLoone P, Morrison DS. Diet, exercise, obesity, smoking and alcohol consumption in cancer survivors and the general population: a comparative study of 16 282 individuals. Br J Cancer. 2015;112(3):572–575. doi: 10.1038/bjc.2014.598.
    1. Boyle T, Vallance JK, Ransom EK, Lynch BM. How sedentary and physically active are breast cancer survivors, and which population subgroups have higher or lower levels of these behaviors? Support Care Cancer. 2016;24(5):2181–2190. doi: 10.1007/s00520-015-3011-3.
    1. Pew Research Centre. Smartphone ownership and Internet usage continues to climb in emerging economies. 2016.
    1. Ofcom. The Communications Market Report. 2016. . Accessed 28th November 2016.
    1. Mistry N, Keepanasseril A, Wilczynski NL, et al. Technology-mediated interventions for enhancing medication adherence. J Am Med Inform Assoc. 2015;22(e1):e177–e193. doi: 10.1093/jamia/ocu047.
    1. Whitehead L, Seaton P. The effectiveness of self-management mobile phone and tablet apps in long-term condition management: a systematic review. J Med Internet Res. 2016;18(5):e97. doi: 10.2196/jmir.4883.
    1. Su D, Zhou J, Kelley MS, et al. Does telemedicine improve treatment outcomes for diabetes? A meta-analysis of results from 55 randomized controlled trials. Diabetes Res Clin Pract. 2016;116:136–148. doi: 10.1016/j.diabres.2016.04.019.
    1. Jackson BD, Gray K, Knowles SR, De Cruz P. EHealth technologies in inflammatory bowel disease: a systematic review. J Crohns Colitis. 2016;
    1. Spohr SA, Nandy R, Gandhiraj D, Vemulapalli A, Anne S, Walters ST. Efficacy of SMS text message interventions for smoking cessation: a meta-analysis. J Subst Abus Treat. 2015;56:1–10. doi: 10.1016/j.jsat.2015.01.011.
    1. Flores Mateo G, Granado-Font E, Ferre-Grau C, Montana-Carreras X. Mobile phone apps to promote weight loss and increase physical activity: a systematic review and meta-analysis. J Med Internet Res. 2015;17(11):e253. doi: 10.2196/jmir.4836.
    1. Hammersley ML, Jones RA, Okely AD. Parent-focused childhood and adolescent overweight and obesity eHealth interventions: a systematic review and meta-analysis. J Med Internet Res. 2016;18(7):e203. doi: 10.2196/jmir.5893.
    1. Nour M, Chen J, Allman-Farinelli M. Efficacy and external validity of electronic and mobile phone-based interventions promoting vegetable intake in young adults: systematic review and meta-analysis. J Med Internet Res. 2016;18(4):e58. doi: 10.2196/jmir.5082.
    1. Rawstorn JC, Gant N, Direito A, Beckmann C, Maddison R. Telehealth exercise-based cardiac rehabilitation: a systematic review and meta-analysis. Heart. 2016;102(15):1183–1192. doi: 10.1136/heartjnl-2015-308966.
    1. Afshin A, Babalola D, McLean M, et al. Information technology and lifestyle: a systematic evaluation of Internet and mobile interventions for improving diet, physical activity, obesity, tobacco, and alcohol use. J Am Heart Assoc. 2016;5(9).
    1. Goode AD, Lawler SP, Brakenridge CL, Reeves MM, Eakin EG. Telephone, print, and Web-based interventions for physical activity, diet, and weight control among cancer survivors: a systematic review. J Cancer Surviv. 2015;9(4):660–682. doi: 10.1007/s11764-015-0442-2.
    1. Valle CG, Tate DF, Mayer DK, Allicock M, Cai J. A randomized trial of a Facebook-based physical activity intervention for young adult cancer survivors. J Cancer Surviv. 2013;7(3):355–368. doi: 10.1007/s11764-013-0279-5.
    1. Rabin C, Dunsiger S, Ness KK, Marcus BH. Internet-based physical activity intervention targeting young adult cancer survivors. J Adolesc Young Adult Oncol. 2012;1(4):188–194. doi: 10.1089/jayao.2011.0040.
    1. Hatchett A, Hallam JS, Ford MA. Evaluation of a social cognitive theory-based email intervention designed to influence the physical activity of survivors of breast cancer. Psycho-Oncol. 2013;22(4):829–836. doi: 10.1002/pon.3082.
    1. Michie S, Richardson M, Johnston M, et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann Behav Med. 2013;46(1):81–95. doi: 10.1007/s12160-013-9486-6.
    1. Michie S, Atkins L, West R. The behaviour change wheel: A Guide to Designing Interventions. Silverback Publishing; 2014.
    1. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions. 2011.
    1. Michie S, Prestwich A. Are interventions theory-based? Development of a theory coding scheme. Health Psychol. 2010;29(1):1–8. doi: 10.1037/a0016939.
    1. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Br Med J. 1997;315(7109):629–634. doi: 10.1136/bmj.315.7109.629.
    1. Bantum EO, Albright CL, White KK, et al. Surviving and thriving with cancer using a web-based health behavior change intervention: randomized controlled trial. J Med Int Res. 2014;16(2).
    1. Berg CJ, Stratton E, Giblin J, Esiashvili N, Mertens A. Pilot results of an online intervention targeting health promoting behaviors among young adult cancer survivors. Psycho-Oncology. 2014;23(10):1196–1199. doi: 10.1002/pon.3526.
    1. Forbes CC, Blanchard CM, Mummery WK, Courneya KS. Feasibility and preliminary efficacy of an online intervention to increase physical activity in Nova Scotian cancer survivors: a randomized controlled trial. JMIR Cancer. 2015;1(2):e12. doi: 10.2196/cancer.4586.
    1. Hoffman AJ, Brintnall RA, Brown JK, et al. Virtual reality bringing a new reality to postthoracotomy lung cancer patients via a home-based exercise intervention targeting fatigue while undergoing adjuvant treatment. Cancer Nurs. 2014;37(1):23–33. doi: 10.1097/NCC.0b013e318278d52f.
    1. Hong YA, Goldberg D, Ory MG, et al. Efficacy of a mobile-enabled web app (iCanFit) in promoting physical activity among older cancer survivors: a pilot study. JMIR Cancer. 2015;1(1):e7. doi: 10.2196/cancer.4389.
    1. Kuijpers W, Groen WG, Oldenburg HSA, Wouters MWJM, Aaronson NK, van Harten WH. eHealth for breast cancer survivors: use, feasibility and impact of an interactive portal. JMIR Cancer. 2016;2(1):e3. doi: 10.2196/cancer.5456.
    1. Lee MK, Yun YH, Park H-A, Lee ES, Jung KH, Noh D-Y. A web-based self-management exercise and diet intervention for breast cancer survivors: pilot randomized controlled trial. Int J Nurs Stud. 2014;51(12):1557–1567. doi: 10.1016/j.ijnurstu.2014.04.012.
    1. McCarroll ML, Armbruster S, Pohle-Krauza RJ, et al. Feasibility of a lifestyle intervention for overweight/obese endometrial and breast cancer survivors using an interactive mobile application. Gynecol Oncol. 2015;137(3):508–515. doi: 10.1016/j.ygyno.2014.12.025.
    1. Puszkiewicz P, Roberts AL, Smith L, Wardle J, Fisher A. Assessment of cancer survivors’ experiences of using a publicly available physical activity mobile application. JMIR Cancer. 2016;2(1):e7. doi: 10.2196/cancer.5380.
    1. Quintiliani LM, Mann DM, Puputti M, Quinn E, Bowen DJ. Pilot and feasibility test of a mobile health-supported behavioral counseling intervention for weight management among breast cancer survivors. JMIR Cancer. 2016;2(1):e4. doi: 10.2196/cancer.5305.
    1. Kanera I, Bolman C, Willems R, et al. Lifestyle-related effects of the web-based Kanker Nazorg Wijzer (Cancer Aftercare Guide) intervention for cancer survivors: a randomized controlled trial. J Cancer Surviv. 2016;10(5):883–897. doi: 10.1007/s11764-016-0535-6.
    1. Short CE, Rebar A, James EL, et al. How do different delivery schedules of tailored web-based physical activity advice for breast cancer survivors influence intervention use and efficacy? J Cancer Surviv. 2016.
    1. Valle CG, Tate DF, Mayer DK, Allicock M, Cai J. Exploring mediators of physical activity in young adult cancer survivors: evidence from a randomized trial of a Facebook-based physical activity intervention. J Adolesc Young Adult Oncol. 2015;4(1):26–33. doi: 10.1089/jayao.2014.0034.
    1. Mishra SI, Scherer RW, Snyder C, Geigle PM, Berlanstein DR, Topaloglu O. Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev. 2012;8:CD008465.
    1. Donkin L, Christensen H, Naismith SL, Neal B, Hickie IB, Glozier N. A systematic review of the impact of adherence on the effectiveness of e-Therapies. Journal of Medical Internet Research. 2011;13(3).
    1. Alkhaldi G, Hamilton FL, Lau R, Webster R, Michie S, Murray E. The effectiveness of prompts to promote engagement with digital interventions: a systematic review. J Med Internet Res. 2016;18(1):e6. doi: 10.2196/jmir.4790.
    1. Garnett C, Crane D, West R, Brown J, Michie S. Identification of behavior change techniques and engagement strategies to design a smartphone app to reduce alcohol consumption using a formal consensus method. JMIR Mhealth Uhealth. 2015;3(2):e73. doi: 10.2196/mhealth.3895.
    1. Zhao J, Freeman B, Li M. Can mobile phone apps influence people’s health behavior change? An evidence review. J Med Internet Res. 2016;18(11):e287. doi: 10.2196/jmir.5692.
    1. Yardley L, Spring BJ, Riper H, et al. Understanding and promoting effective engagement with digital behavior change interventions. Am J Prev Med. 2016;51(5):833–842. doi: 10.1016/j.amepre.2016.06.015.
    1. Gourlan M, Bernard P, Bortolon C, et al. Efficacy of theory-based interventions to promote physical activity. A meta-analysis of randomised controlled trials. Health Psychol Rev. 2016;10(1):50–66. doi: 10.1080/17437199.2014.981777.
    1. Prince SA, Adamo KB, Hamel ME, Hardt J, Gorber SC, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phy. 2008;5

Source: PubMed

3
Tilaa