Higher dose corticosteroids in patients admitted to hospital with COVID-19 who are hypoxic but not requiring ventilatory support (RECOVERY): a randomised, controlled, open-label, platform trial

RECOVERY Collaborative Group. Electronic address: recoverytrial@ndph.ox.ac.uk, RECOVERY Collaborative Group

Abstract

Background: Low-dose corticosteroids have been shown to reduce mortality for patients with COVID-19 requiring oxygen or ventilatory support (non-invasive mechanical ventilation, invasive mechanical ventilation, or extracorporeal membrane oxygenation). We evaluated the use of a higher dose of corticosteroids in this patient group.

Methods: This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing multiple possible treatments in patients hospitalised for COVID-19. Eligible and consenting adult patients with clinical evidence of hypoxia (ie, receiving oxygen or with oxygen saturation <92% on room air) were randomly allocated (1:1) to either usual care with higher dose corticosteroids (dexamethasone 20 mg once daily for 5 days followed by 10 mg dexamethasone once daily for 5 days or until discharge if sooner) or usual standard of care alone (which included dexamethasone 6 mg once daily for 10 days or until discharge if sooner). The primary outcome was 28-day mortality among all randomised participants. On May 11, 2022, the independent data monitoring committee recommended stopping recruitment of patients receiving no oxygen or simple oxygen only due to safety concerns. We report the results for these participants only. Recruitment of patients receiving ventilatory support is ongoing. The RECOVERY trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936).

Findings: Between May 25, 2021, and May 13, 2022, 1272 patients with COVID-19 and hypoxia receiving no oxygen (eight [1%]) or simple oxygen only (1264 [99%]) were randomly allocated to receive usual care plus higher dose corticosteroids (659 patients) versus usual care alone (613 patients, of whom 87% received low-dose corticosteroids during the follow-up period). Of those randomly assigned, 745 (59%) were in Asia, 512 (40%) in the UK, and 15 (1%) in Africa. 248 (19%) had diabetes and 769 (60%) were male. Overall, 123 (19%) of 659 patients allocated to higher dose corticosteroids versus 75 (12%) of 613 patients allocated to usual care died within 28 days (rate ratio 1·59 [95% CI 1·20-2·10]; p=0·0012). There was also an excess of pneumonia reported to be due to non-COVID infection (64 cases [10%] vs 37 cases [6%]; absolute difference 3·7% [95% CI 0·7-6·6]) and an increase in hyperglycaemia requiring increased insulin dose (142 [22%] vs 87 [14%]; absolute difference 7·4% [95% CI 3·2-11·5]).

Interpretation: In patients hospitalised for COVID-19 with clinical hypoxia who required either no oxygen or simple oxygen only, higher dose corticosteroids significantly increased the risk of death compared with usual care, which included low-dose corticosteroids. The RECOVERY trial continues to assess the effects of higher dose corticosteroids in patients hospitalised with COVID-19 who require non-invasive ventilation, invasive mechanical ventilation, or extracorporeal membrane oxygenation.

Funding: UK Research and Innovation (Medical Research Council), National Institute of Health and Care Research, and Wellcome Trust.

Conflict of interest statement

Declaration of interests We declare no competing interests or financial relationships relevant to the submitted work to disclose. No form of payment was given to anyone to produce the manuscript. The Nuffield Department of Population Health at the University of Oxford has a staff policy of not accepting honoraria or consultancy fees directly or indirectly from industry.

Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

Figures

Figure 1
Figure 1
Trial profile Higher dose corticosteroid unavailable and higher dose corticosteroid considered unsuitable are not mutually exclusive. *Number recruited overall during period that participants on no oxygen or simple oxygen only could be recruited into the higher dose corticosteroid comparison.
Figure 2
Figure 2
Effect of allocation to higher dose corticosteroids or usual care (lower dose corticosteroids) on 28-day mortality in patients receiving no oxygen or simple oxygen only RR=rate ratio.
Figure 3
Figure 3
Effect of allocation to higher dose corticosteroids or usual care (low-dose corticosteroids) on 28-day mortality in patients receiving no oxygen or simple oxygen only by other baseline characteristics Subgroup-specific rate ratio estimates are represented by squares (with areas of the squares proportional to the amount of statistical information) and the lines through them correspond to the 95% CIs. The ethnicity subgroup excludes those with missing data, but these patients are included in the overall summary diamond. RR=rate ratio. χ2 values and their corresponding p values are tests for heterogeneity or trend.

References

    1. Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med. 2021;384:693–704.
    1. RECOVERY Collaborative Group Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021;397:1637–1645.
    1. RECOVERY Collaborative Group Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial and updated meta-analysis. Lancet. 2022;400:359–368.
    1. Tomazini BM, Maia IS, Cavalcanti AB, et al. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: the CoDEX Randomized Clinical Trial. JAMA. 2020;324:1307–1316.
    1. Dequin PF, Heming N, Meziani F, et al. Effect of hydrocortisone on 21-day mortality or respiratory support among critically ill patients with COVID-19: a randomized clinical trial. JAMA. 2020;324:1298–1306.
    1. Angus DC, Derde L, Al-Beidh F, et al. Effect of hydrocortisone on mortality and organ support in patients with severe COVID-19: the REMAP-CAP COVID-19 corticosteroid domain randomized clinical trial. JAMA. 2020;324:1317–1329.
    1. WHO Rapid Evidence Appraisal for COVID-19 Therapies Working Group. Sterne JAC, Murthy S, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020;324:1330–1341.
    1. Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8:267–276.
    1. Edalatifard M, Akhtari M, Salehi M, et al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: results from a randomised controlled clinical trial. Eur Respir J. 2020;56
    1. Munch MW, Myatra SN, Vijayaraghavan BKT, et al. Effect of 12 mg vs 6 mg of dexamethasone on the number of days alive without life support in adults with COVID-19 and severe hypoxemia: the COVID STEROID 2 randomized trial. JAMA. 2021;326:1807–1817.
    1. Bouadma L, Mekontso-Dessap A, Burdet C, et al. High-dose dexamethasone and oxygen support strategies in intensive care unit patients with severe COVID-19 acute hypoxemic respiratory failure: the COVIDICUS randomized clinical trial. JAMA Intern Med. 2022;182:906–916.
    1. UK Research and Innovation UK-CTAP: record of decisions. April 13, 2021.
    1. WHO Update to living WHO guideline on drugs for COVID-19. BMJ. 2021;372:n860.
    1. UK National Institute for Health and Care Excellence COVID-19 rapid guideline: managing COVID-19. July 14, 2022.
    1. Early Breast Cancer Trialists' Collaborative Group . Oxford University Press; Oxford: 1990. Treatment of early breast cancer: worldwide evidence 1985–1990.
    1. Bassler D, Briel M, Montori VM, et al. Stopping randomized trials early for benefit and estimation of treatment effects: systematic review and meta-regression analysis. JAMA. 2010;303:1180–1187.
    1. Mokra D, Mikolka P, Kosutova P, Mokry J. Corticosteroids in acute lung injury: the dilemma continues. Int J Mol Sci. 2019;20
    1. Prescott HC, Rice TW. Corticosteroids in COVID-19 ARDS: evidence and hope during the pandemic. JAMA. 2020;324:1292–1295.
    1. Chaudhuri D, Sasaki K, Karkar A, et al. Corticosteroids in COVID-19 and non-COVID-19 ARDS: a systematic review and meta-analysis. Intensive Care Med. 2021;47:521–537.
    1. Lansbury LE, Rodrigo C, Leonardi-Bee J, Nguyen-Van-Tam J, Shen Lim W. Corticosteroids as adjunctive therapy in the treatment of influenza: an updated Cochrane systematic review and meta-analysis. Crit Care Med. 2020;48:e98–106.

Source: PubMed

3
Tilaa