Symptomatic Premature Ventricular Contractions in Vasovagal Syncope Patients: Autonomic Modulation and Catheter Ablation

Lihui Zheng, Wei Sun, Yu Qiao, Bingbo Hou, Jinrui Guo, Ammar Killu, Yan Yao, Lihui Zheng, Wei Sun, Yu Qiao, Bingbo Hou, Jinrui Guo, Ammar Killu, Yan Yao

Abstract

Introduction: There has been limited reports about the comorbid premature ventricular contractions (PVCs) and vasovagal syncope (VVS). Deceleration capacity (DC) was demonstrated to be a quantitative evaluation to assess the cardiac vagal activity. This study sought to report the impact of autonomic modulation on symptomatic PVCs in VVS patients.

Methods and results: Twenty-six VVS patients with symptomatic idiopathic PVCs were consecutively enrolled. Identification and catheter ablation of left atrial ganglionated plexi (GP) and PVCs were performed in 26 and 20 patients, respectively. Holter 24 h-electrocardiograms were performed before and after the procedure to evaluate DC and PVCs occurrence. Eighteen patients were subtyped as DC-dependent PVCs (D-PVCs) and eight as DC-independent PVCs groups (I-PVCs). In D-PVCs group, circadian rhythm of hourly PVCs was positively correlated with hourly DC (P < 0.05) while there was no correlation in I-PVCs group (P > 0.05). Fifty-three GPs with positive vagal response were successfully elicited (2.0 ± 0.8 per patient). PVCs failed to occur spontaneously nor to be induced in six patients. In the remaining 20 patients, PVCs foci identified were all located in the ventricular outflow tract region. Post-ablation DC decreased significantly from baseline (P < 0.05). During mean follow-up of 10.64 ± 6.84 months, syncope recurred in one patient and PVCs recurred in another. PVCs burden of the six patients in whom neither catheter ablation nor antiarrhythmic drugs were applied demonstrated a significant decrease during follow-up (P = 0.037).

Conclusion: Autonomic activities were involved in the occurrence of symptomatic idiopathic PVCs in some VVS patients. D-PVCs might be facilitated by increased vagal activities. Catheter ablation of GP and PVCs foci may be an effective, safe treatment in patients with concomitant VVS and idiopathic PVCs.

Keywords: autonomic modulation; catheter ablation; deceleration capacity; vasovagal syncope; ventricular arrhythmia.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zheng, Sun, Qiao, Hou, Guo, Killu and Yao.

Figures

FIGURE 1
FIGURE 1
Associations between hourly premature ventricular contractions (PVCs) burden in % and hourly deceleration capacity (DC) in ms. The left two panels (A,B) illustrate this association in patients with PVCs dependent on DC and the right two panels illustrate the association in DC independent PVCs patients. (A) shows hourly PVCs burden and hourly DC plotted over 24 h in D-PVCs patients. (B) shows correlation between hourly PVCs burden and hourly DC in D-PVC patients. (C) shows hourly PVCs burden and hourly DC plotted over 24 h in I-PVC patients. (D) shows correlation between hourly PVCs burden and hourly DC in I-PVC patients.

References

    1. Ataklte F., Erqou S., Laukkanen J., Kaptoge S. (2013). Meta-analysis of ventricular premature complexes and their relation to cardiac mortality in general populations. Am. J. Cardiol. 112 1263–1270. 10.1016/j.amjcard.2013.05.065
    1. Bauer A., Barthel P., Schneider R., Ulm K., Muller A., Joeinig A., et al. (2009). Improved stratification of autonomic regulation for risk prediction in post-infarction patients with preserved left ventricular function (ISAR-Risk). Eur. Heart J. 30 576–583. 10.1093/eurheartj/ehn540
    1. Bauer A., Kantelhardt J. W., Barthel P., Schneider R., Makikallio T., Ulm K., et al. (2006a). Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet 367 1674–1681. 10.1016/S0140-6736(06)68735-7
    1. Bauer A., Kantelhardt J. W., Bunde A., Barthel P., Schneider R., Malik M., et al. (2006b). Phase-rectified signal averaging detects quasi-periodicities in non-stationary data. Phys. A Stat. Mech. Appl. 364 423–434. 10.1016/j.physa.2005.08.080
    1. Brignole M., Menozzi C., Del Rosso A., Costa S., Gaggioli G., Bottoni N., et al. (2000). New classification of haemodynamics of vasovagal syncope: beyond the VASIS classification. Analysis of the pre-syncopal phase of the tilt test without and with nitroglycerin challenge. Vasovagal Syncope international study. Europace 2 66–76. 10.1053/eupc.1999.0064
    1. Chung F. P., Chong E., Lin Y. J., Chang S. L., Lo L. W., Hu Y. F., et al. (2014). Different characteristics and electrophysiological properties between early and late recurrences after acute successful catheter ablation of idiopathic right ventricular outflow tract arrhythmias during long-term follow-up. Heart Rhythm 11 1760–1769. 10.1016/j.hrthm.2014.06.011
    1. Farkas A., Dempster J., Coker S. J. (2008). Importance of vagally mediated bradycardia for the induction of torsade de pointes in an in vivo model. Br. J. Pharmacol. 154 958–970. 10.1038/bjp.2008.154
    1. Fei L., Statters D. J., Hnatkova K., Poloniecki J., Malik M., Camm A. J. (1994). Change of autonomic influence on the heart immediately before the onset of spontaneous idiopathic ventricular tachycardia. J. Am. Coll. Cardiol. 24 1515–1522. 10.1016/0735-1097(94)90148-1
    1. Flemming M. A., Oral H., Kim M. H., Tse H. F., Pelosi F., Michaud G. F., et al. (1999). Electrocardiographic predictors of successful ablation of tachycardia or bigeminy arising in the right ventricular outflow tract. Am. J. Cardiol. 84 1266–1268,A9.
    1. Hasdemir C., Alp A., Aydin M., Can L. H. (2009). Human model simulating right ventricular outflow tract tachycardia by high-frequency stimulation in the left pulmonary artery: autonomics and idiopathic ventricular arrhythmias. J. Cardiovasc. Electrophysiol. 20 759–763. 10.1111/j.1540-8167.2009.01442.x
    1. Hayashi H., Fujiki A., Tani M., Mizumaki K., Shimono M., Inoue H. (1997). Role of sympathovagal balance in the initiation of idiopathic ventricular tachycardia originating from right ventricular outflow tract. Pacing Clin. Electrophysiol. 20 2371–2377.10.1111/j.1540-8159.1997.tb06073.x
    1. Inagaki M., Kawada T., Lie M., Zheng C., Sunagawa K., Sugimachi M. (2005). Intravascular parasympathetic cardiac nerve stimulation prevents ventricular arrhythmias during acute myocardial ischemia. Conf. Proc. IEEE Eng. Med. Biol. Soc. 7 7076–7079. 10.1109/IEMBS.2005.1616136
    1. Joshi S., Wilber D. J. (2005). Ablation of idiopathic right ventricular outflow tract tachycardia: current perspectives. J. Cardiovasc. Electrophysiol. 16(Suppl. 1) S52–S58. 10.1111/j.1540-8167.2005.50163.x
    1. Kasanuki H., Ohnishi S., Ohtuka M., Matsuda N., Nirei T., Isogai R., et al. (1997). Idiopathic ventricular fibrillation induced with vagal activity in patients without obvious heart disease. Circulation 95 2277–2285. 10.1161/01.cir.95.9.2277
    1. Lujan H. L., Palani G., Zhang L., DiCarlo S. E. (2010). Targeted ablation of cardiac sympathetic neurons reduces the susceptibility to ischemia-induced sustained ventricular tachycardia in conscious rats. Am. J. Physiol. Heart Circ. Physiol. 298 H1330–H1339. 10.1152/ajpheart.00955.2009
    1. Mizumaki K., Nishida K., Iwamoto J., Nakatani Y., Yamaguchi Y., Sakamoto T., et al. (2012). Vagal activity modulates spontaneous augmentation of J-wave elevation in patients with idiopathic ventricular fibrillation. Heart Rhythm 9 249–255. 10.1016/j.hrthm.2011.09.055
    1. Moya A., Sutton R., Ammirati F., Blanc J. J., Brignole M., Dahm J. B., et al. (2009). Guidelines for the diagnosis and management of syncope (version 2009). Eur. Heart J. 30 2631–2671. 10.1093/eurheartj/ehp298
    1. Ribbing M., Wasmer K., Monnig G., Kirchhof P., Loh P., Breithardt G., et al. (2003). Endocardial mapping of right ventricular outflow tract tachycardia using noncontact activation mapping. J. Cardiovasc. Electrophysiol. 14 602–608. 10.1046/j.1540-8167.2003.02180.x
    1. Sassi R., Cerutti S., Lombardi F., Malik M., Huikuri H. V., Peng C. K., et al. (2015). Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC working group and the European Heart rhythm association co-endorsed by the Asia pacific heart rhythm society. Europace 17 1341–1353. 10.1093/europace/euv015
    1. Sun W., Zheng L., Qiao Y., Shi R., Hou B., Wu L., et al. (2016). Catheter ablation as a treatment for Vasovagal Syncope: long-term outcome of endocardial autonomic modification of the left atrium. J. Am. Heart Assoc. 5:e003471. 10.1161/JAHA.116.003471
    1. Vanoli E., De Ferrari G. M., Stramba-Badiale M., Hull S. S., Jr., Foreman R. D., Schwartz P. J. (1991). Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ. Res. 68 1471–1481. 10.1161/01.res.68.5.1471
    1. Weiss J. N., Garfinkel A., Karagueuzian H. S., Chen P. S., Qu Z. (2010). Early afterdepolarizations and cardiac arrhythmias. Heart Rhythm 7 1891–1899. 10.1016/j.hrthm.2010.09.017
    1. Zhang Z., Liu M. B., Huang X., Song Z., Qu Z. (2020). Mechanisms of premature ventricular complexes caused by QT prolongation. Biophys. J. 120 352–369. 10.1016/j.bpj.2020.12.001
    1. Zheng L., Sun W., Liu S., Liang E., Du Z., Guo J., et al. (2020). The diagnostic value of cardiac deceleration capacity in Vasovagal Syncope. Circ. Arrhythm. Electrophysiol. 13:e008659. 10.1161/CIRCEP.120.008659
    1. Zimmermann M. (2005). Sympathovagal balance prior to onset of repetitive monomorphic idiopathic ventricular tachycardia. Pacing Clin. Electrophysiol. 28(Suppl. 1) S163–S167. 10.1111/j.1540-8159.2005.00010.x

Source: PubMed

3
Tilaa