Intravenous Infusion of Dexmedetomidine Combined Isoflurane Inhalation Reduces Oxidative Stress and Potentiates Hypoxia Pulmonary Vasoconstriction during One-Lung Ventilation in Patients

Rui Xia, Jinjin Xu, Hong Yin, Huozhi Wu, Zhengyuan Xia, Daiwei Zhou, Zhong-yuan Xia, Liangqing Zhang, Haobo Li, Xiaoshan Xiao, Rui Xia, Jinjin Xu, Hong Yin, Huozhi Wu, Zhengyuan Xia, Daiwei Zhou, Zhong-yuan Xia, Liangqing Zhang, Haobo Li, Xiaoshan Xiao

Abstract

Inhalation anesthetic isoflurane inhibits hypoxia pulmonary vasoconstriction (HPV), while dexmedetomidine (Dex) could reduce the dose of isoflurane inhalation and potentiate HPV, but the mechanism is unclear. Inhibition of reactive oxygen species (ROS) production can favor HPV during one-lung ventilation (OLV). Similarly, nitric oxide (NO), an important endothelium-derived vasodilator in lung circulation, can decrease the regional pulmonary vascular resistance of ventilated lung and reduce intrapulmonary shunting. We hypothesized that Dex may augment HPV and improve oxygenation during OLV through inhibiting oxidative stress and increasing NO release. Patients undergoing OLV during elective thoracic surgery were randomly allocated to either isoflurane + saline (NISO, n = 24) or isoflurane + dexmedetomidine (DISO, n = 25) group. Anesthesia was maintained with intravenous remifentanil and inhalational isoflurane (1.0-2.0%), with concomitant infusion of dexmedetomidine 0.7 μgkg(-1)h(-1) in DISO and saline 0.25 mL kg(-1)h(-1) in NISO group. Hemodynamic variables or depth of anesthesia did not significantly differ between groups. Administration of Dex significantly reduced Qs/Qt and increased PaO2 after OLV, accompanied with reduced lipid peroxidation product malondialdehyde and higher levels of SOD activity as well as serum NO (all P < 0.05 DISO versus NISO). In conclusion, reducing oxidative stress and increasing NO release during OLV may represent a mechanism whereby Dex potentiates HPV.

Figures

Figure 1
Figure 1
Perioperative time-course alterations of the bispectral index (BIS) in DISO group and NISO group. The values were measured as follows: 15 min after two-lung ventilation (TLV-15), 10 min after one-lung ventilation (OLV-10 min), 20 min after one-lung ventilation (OLV-20 min), 30 min after one-lung ventilation (OLV-30 min), and 40 min after one-lung ventilation (OLV-40 min). Data are presented as median (interquartile range).
Figure 2
Figure 2
Perioperative time-course alterations of the end-expiratory isoflurane concentration (EEIso) in DISO group and NISO group. The values were measured as follows: 15 min after two-lung ventilation (TLV-15), 10 min after one-lung ventilation (OLV-10 min), 20 min after one-lung ventilation (OLV-20 min), 30 min after one-lung ventilation (OLV-30 min), and 40 min after one-lung ventilation (OLV-40 min). Data are presented as median (interquartile range). *P < 0.05 intergroup comparison between group DISO and group NISO.

References

    1. Campos J. H. Current techniques for perioperative lung isolation in adults. Anesthesiology. 2002;97(5):1295–1301.
    1. Karzai W., Schwarzkopf K. Hypoxemia during one-lung ventilation: prediction, prevention, and treatment. Anesthesiology. 2009;110(6):1402–1411. doi: 10.1097/aln.0b013e31819fb15d.
    1. Evans A. M., Ward J. P. Hypoxic pulmonary vasoconstriction—invited article. (Advances in Experimental Medicine and Biology).Arterial Chemoreceptors. 2009;648:351–360. doi: 10.1007/978-90-481-2259-2_40.
    1. Wang J. Y. Y., Russell G. N., Page R. D., Jackson M., Pennefather S. H. Comparison of the effects of sevoflurane and isoflurane on arterial oxygenation during one lung ventilation. British Journal of Anaesthesia. 1998;81(6):850–853. doi: 10.1093/bja/81.6.850.
    1. Mariappan R., Ashokkumar H., Kuppuswamy B. Comparing the effects of oral clonidine premedication with intraoperative dexmedetomidine infusion on anesthetic requirement and recovery from anesthesia in patients undergoing major spine surgery. Journal of Neurosurgical Anesthesiology. 2014;26(3):192–197. doi: 10.1097/ana.0b013e3182a2166f.
    1. Tan J. A., Ho K. M. Use of dexmedetomidine as a sedative and analgesic agent in critically ill adult patients: a meta-analysis. Intensive Care Medicine. 2010;36(6):926–939. doi: 10.1007/s00134-010-1877-6.
    1. Zhou C., Wu Y., Liu Y., et al. Dexmedetomidine inhibits inflammatory reaction in lung tissues of septic rats by suppressing TLR4/NF-κB pathway. Mediators of Inflammation. 2013;2013:9. doi: 10.1155/2013/562154.562154
    1. Xianbao L., Hong Z., Xu Z., Chunfang Z., Dunjin C. Dexmedetomidine reduced cytokine release during postpartum bleeding-induced multiple organ dysfunction syndrome in rats. Mediators of Inflammation. 2013;2013:7. doi: 10.1155/2013/627831.627831
    1. Xia R., Yin H., Xia Z. Y., Mao Q. J., Chen G. D., Xu W. Effect of intravenous infusion of dexmedetomidine combined with inhalation of isoflurane on arterial oxygenation and intrapulmonary shunt during single-lung ventilation. Cell Biochemistry and Biophysics. 2013;67(3):1547–1550. doi: 10.1007/s12013-013-9659-8.
    1. Wong E. S. W., Man R. Y. K., Vanhoutte P. M., Ng K. F. J. Dexmedetomidine induces both relaxations and contractions, via different α 2-adrenoceptor subtypes, in the isolated mesenteric artery and aorta of the rat. Journal of Pharmacology and Experimental Therapeutics. 2010;335(3):659–664. doi: 10.1124/jpet.110.170688.
    1. Talke P., Lobo E., Brown R. Systemically administered alpha2-agonist-induced peripheral vasoconstriction in humans. Anesthesiology. 2003;99(1):65–70. doi: 10.1097/00000542-200307000-00014.
    1. Ariyaratnam P., Loubani M., Morice A. H. Hypoxic pulmonary vasoconstriction in humans. BioMed Research International. 2013;2013:8. doi: 10.1155/2013/623684.623684
    1. Archer S. L., Reeve H. L., Michelakis E., et al. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(14):7944–7949. doi: 10.1073/pnas.96.14.7944.
    1. Mehta J. P., Campian J. L., Guardiola J., Cabrera J. A., Weir E. K., Eaton J. W. Generation of oxidants by hypoxic human pulmonary and coronary smooth-muscle cells. Chest. 2008;133(6):1410–1414. doi: 10.1378/chest.07-2984.
    1. Gupte S. A., Wolin M. S. Oxidant and redox signaling in vascular oxygen sensing: implications for systemic and pulmonary hypertension. Antioxidants and Redox Signaling. 2008;10(6):1137–1152. doi: 10.1089/ars.2007.1995.
    1. Cheng Y.-D., Gao Y., Zhang H., Duan C.-J., Zhang C.-F. Effects of OLV preconditioning and postconditioning on lung injury in thoracotomy. Asian Journal of Surgery. 2014;37(2):80–85. doi: 10.1016/j.asjsur.2013.09.003.
    1. Misthos P., Katsaragakis S., Milingos N., et al. Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. European Journal of Cardio-thoracic Surgery. 2005;27(3):379–383. doi: 10.1016/j.ejcts.2004.12.023.
    1. Zhang B., Niu W., Xu D., et al. Oxymatrine prevents hypoxia- and monocrotaline-induced pulmonary hypertension in rats. Free Radical Biology and Medicine. 2014;69:198–207. doi: 10.1016/j.freeradbiomed.2014.01.013.
    1. Araneda O. F., Tuesta M. Lung oxidative damage by hypoxia. Oxidative Medicine and Cellular Longevity. 2012;2012:18. doi: 10.1155/2012/856918.856918
    1. Cekic B., Geze S., Ozkan G., et al. The effect of dexmedetomidine on oxidative stress during pneumoperitoneum. BioMed Research International. 2014;2014:5. doi: 10.1155/2014/760323.760323
    1. Subramani J., Leo M. D. M., Kathirvel K., et al. Essential role of nitric oxide in sepsis-induced impairment of endothelium-derived hyperpolarizing factor-mediated relaxation in rat pulmonary artery. European Journal of Pharmacology. 2010;630(1–3):84–91. doi: 10.1016/j.ejphar.2009.12.026.
    1. Sahebjami H. Inhaled nitric oxide for the adult respiratory distress syndrome. The New England Journal of Medicine. 1993;329(3):206–207. doi: 10.1056/nejm199307153290313.
    1. Grubb T., Frendin J. H. M., Edner A., Funkquist P., Hedenstierna G., Nyman G. The effects of pulse-delivered inhaled nitric oxide on arterial oxygenation, ventilation-perfusion distribution and plasma endothelin-1 concentration in laterally recumbent isoflurane-anaesthetized horses. Veterinary Anaesthesia and Analgesia. 2013;40(6):e19–e30. doi: 10.1111/vaa.12037.
    1. Takemoto M., Sun J., Hiroki J., Shimokawa H., Liao J. K. Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation. 2002;106(1):57–62. doi: 10.1161/01.cir.0000020682.73694.ab.
    1. Maltsev A. V., Kokoz Y. M., Evdokimovskii E. V., Pimenov O. Y., Reyes S., Alekseev A. E. Alpha-2 adrenoceptors and imidazoline receptors in cardiomyocytes mediate counterbalancing effect of agmatine on NO synthesis and intracellular calcium handling. Journal of Molecular and Cellular Cardiology. 2014;68:66–74. doi: 10.1016/j.yjmcc.2013.12.030.
    1. Roe P. G., Jones J. G. Analysis of factors which affect the relationship between inspired oxygen partial pressure and arterial oxygen saturation. British Journal of Anaesthesia. 1993;71(4):488–494. doi: 10.1093/bja/71.4.488.
    1. Yao W., Luo G., Zhu G., et al. Propofol activation of the Nrf2 pathway is associated with amelioration of acute lung injury in a rat liver transplantation model. Oxidative Medicine and Cellular Longevity. 2014;2014:9. doi: 10.1155/2014/258567.258567
    1. Liu K. X., Rinne T., He W., Wang F., Xia Z. Propofol attenuates intestinal mucosa injury induced by intestinal ischemia-reperfusion in the rat. Canadian Journal of Anesthesia. 2007;54(5):366–374. doi: 10.1007/bf03022659.
    1. Lei S., Su W., Liu H., et al. Nitroglycerine-induced nitrate tolerance compromises propofol protection of the endothelial cells against TNF- α: the role of PKC- β 2 and nadph oxidase. Oxidative Medicine and Cellular Longevity. 2013;2013:9. doi: 10.1155/2013/678484.678484
    1. Lei S., Li H., Xu J., et al. Hyperglycemia-induced protein kinase C β2 activation induces diastolic cardiac dysfunction in diabetic rats by impairing caveolin-3 expression and Akt/eNOS signaling. Diabetes. 2013;62(7):2318–2328. doi: 10.2337/db12-1391.
    1. Kernan S., Rehman S., Meyer T., Bourbeau J., Caron N., Tobias J. D. Effects of dexmedetomidine on oxygenation during one-lung ventilation for thoracic surgery in adults. Journal of Minimal Access Surgery. 2011;7(4):227–231. doi: 10.4103/0972-9941.85645.
    1. Yamaguchi K., Asano K., Takasugi T., et al. Modulation of hypoxic pulmonary vasoconstriction by antioxidant enzymes in red blood cells. American Journal of Respiratory and Critical Care Medicine. 1996;153(1):211–217. doi: 10.1164/ajrccm.153.1.8542118.
    1. Mam V., Tanbe A. F., Vitali S. H., Arons E., Christou H. A., Khalil R. A. Impaired vasoconstriction and nitric oxide-mediated relaxation in pulmonary arteries of hypoxia- and monocrotaline-induced pulmonary hypertensive rats. Journal of Pharmacology and Experimental Therapeutics. 2010;332(2):455–562. doi: 10.1124/jpet.109.160119.
    1. Hakim T. S., Pedoto A., Mangar D., Camporesi E. M. Nitric oxide plays a minimal role in hypoxic pulmonary vasoconstriction in isolated rat lungs. Respiratory Physiology and Neurobiology. 2013;189(1):93–98. doi: 10.1016/j.resp.2013.06.028.
    1. Minamishima S., Kida K., Tokuda K., et al. Inhaled nitric oxide improves outcomes after successful cardiopulmonary resuscitation in mice. Circulation. 2011;124(15):1645–1653. doi: 10.1161/CIRCULATIONAHA.111.025395.
    1. Lang J. D., Jr., Teng X., Chumley P., et al. Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation. Journal of Clinical Investigation. 2007;117(9):2583–2591. doi: 10.1172/jci31892.
    1. Feldman J., Fellmann L., Bousquet P. The central hypotensive effect induced by α2-adrenergic receptor stimulation is dependent on endothelial nitric oxide synthase. Journal of Hypertension. 2008;26(5):1033–1036. doi: 10.1097/HJH.0b013e3282f7cbab.
    1. Snapir A., Talke P., Posti J., Huiku M., Kentala E., Scheinin M. Effects of nitric oxide synthase inhibition on dexmedetomidine-induced vasoconstriction in healthy human volunteers. British Journal of Anaesthesia. 2009;102(1):38–46. doi: 10.1093/bja/aen316.
    1. Vulliemoz Y. The nitric oxide-cyclic 3′,5′-guanosine monophosphate signal transduction pathway in the mechanism of action of general anesthetics. Toxicology Letters. 1998;100-101:103–108. doi: 10.1016/s0378-4274(98)00172-6.
    1. Arriero M. M., Muñoz Alameda L., López-Farré A., et al. Sevoflurane reduces endothelium-dependent vasorelaxation: role of superoxide anion and endothelin. Canadian Journal of Anesthesia. 2002;49(5):471–476. doi: 10.1007/bf03017923.

Source: PubMed

3
Tilaa