Stress, Dietary Patterns and Cardiovascular Disease: A Mini-Review

Luis Pedro Morera, Georgina Noel Marchiori, Leonardo Adrián Medrano, María Daniela Defagó, Luis Pedro Morera, Georgina Noel Marchiori, Leonardo Adrián Medrano, María Daniela Defagó

Abstract

According to the World Health Organization, an unhealthy diet and insufficient physical activity are the leading global risks to health. Dietary behavior is a modifiable factor in cardiovascular disease (CVD) prevention. Furthermore, the fact that cardiovascular events and stress-related emotional disorders share a common epidemiology may indicate the existence of pathways linking these two diseases (Chauvet-Gelinier and Bonin, 2017). Psychosocial stress can lead to changes in dietary patterns (DP) and under chronic stress conditions, high caloric and hyperpalatable foods are preferred. The interplay between these two factors impacts on several biological pathways: for example, it can prime the hippocampus to produce a potentiated neuroinflammatory response, generating memory deficits; it can also affect gut microbiota composition, ultimately influencing behavior and brain health and creating a predisposition to the development of diseases such as obesity, CVD, diabetes and metabolic syndrome. Though both cognition and emotion can be heavily affected by caloric intake, diet composition and stress, the molecular pathways involved remain elusive (Spencer et al., 2017). In this review, we describe the interplay between stress and DP at a molecular level, and how these factors relate to brain health and mental fitness. Finally, we show how these findings could give rise to novel therapeutic targets for chronic diseases.

Keywords: cardiovascular disease; dietary patterns; microbiome; nutrition; stress.

Copyright © 2019 Morera, Marchiori, Medrano and Defagó.

Figures

FIGURE 1
FIGURE 1
Relationship between nutritional changes and emotional state and brain health.

References

    1. Ahmadmehrabi S., Tang W. H. W. (2017). Gut microbiome and its role in cardiovascular diseases. Curr. Opin. Cardiol. 32 761–766. 10.1097/HCO.0000000000000445
    1. Barnard N. D., Bunner A. E., Agarwal U. (2014). Saturated and trans fats and dementia: a systematic review. Neurobiol. Aging 35 S65–S73. 10.1016/j.neurobiolaging.2014.02.030
    1. Brahe L. K., Astrup A., Larsen L. H. (2016). Can we prevent obesity-related metabolic diseases by dietary modulation of the gut microbiota? Adv. Nutr. 7 90–101. 10.3945/an.115.010587
    1. Bravo J. A., Forsythe P., Chew M. V., Escaravage E., Savignac H. M., Dinan T. G., et al. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U.S.A. 108 16050–16055. 10.1073/pnas.1102999108
    1. Buford T. W. (2017). Dis trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome 5:80. 10.1186/s40168-017-0296-0
    1. Chauvet-Gelinier J.-C., Bonin B. (2017). Stress, anxiety and depression in heart disease patients: a major challenge for cardiac rehabilitation. Ann. Phys. Rehabil. Med. 60 6–12. 10.1016/j.rehab.2016.09.002
    1. Christiansen J. J., Djurhuus C. B., Gravholt C. H., Iversen P., Christiansen J. S., Schmitz O., et al. (2007). Effects of cortisol on carbohydrate, lipid, and protein metabolism: studies of acute cortisol withdrawal in adrenocortical failure. J. Clin. Endocrinol. Metab. 92 3553–3559. 10.1210/jc.2007-0445
    1. Clapp M., Aurora N., Herrera L., Bhatia M., Wilen E., Wakefield S. (2017). gut microbiota’s effect on mental health: the gut-brain axis. Clin. Pract. 7:987.
    1. Clarke G., Grenham S., Scully P., Fitzgerald P., Moloney R. D., Shanahan F., et al. (2012). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18 666–673. 10.1038/mp.2012.77
    1. Cooper D., Kim E. B., Marco M., Rust B., Welch L., Horn W., et al. (2016). Relationship between human gut microbiota and interleukin 6 levels in overweight and obese adults. FASEB J. 30:146.
    1. Cresci G. A., Bawden E. (2015). Gut microbiome: what we do and don’t know. Nutr. Clin. Pract. 30 734–746.
    1. Defagó M. D., Elorriaga N., Irazola V. E., Rubinstein A. L. (2014). Influence of food patterns on endothelial biomarkers: a systematic review. J. Clin. Hypertens. 16 907–913. 10.1111/jch.12431
    1. Desbonnet L., Clarke G., Traplin A., O’sullivan O., Crispie F., Moloney R. D., et al. (2015). Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav. Immun. 48 165–173. 10.1016/j.bbi.2015.04.004
    1. Desbonnet L., Garrett L., Clarke G., Kiely B., Cryan J. F., Dinan T. G. (2010). Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170 1179–1188. 10.1016/j.neuroscience.2010.08.005
    1. Diaz Heijtz R., Wang S., Anuar F., Qian Y., Björkholm B., Samuelsson A., et al. (2011). Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U.S.A. 108 3047–3052. 10.1073/pnas.1010529108
    1. Epel E., Lapidus R., Mcewen B., Brownell K. (2001). Stress may add bite to appetite in women: a laboratory study of stress-induced cortisol and eating behavior. Psychoneuroendocrinology 26 37–49. 10.1016/s0306-4530(00)00035-4
    1. Esmaillzadeh A., Kimiagar M., Mehrabi Y., Azadbakht L., Hu F. B., Willett W. C. (2007). Dietary patterns and markers of systemic inflammation among iranian women. J. Nutr. 137 992–998. 10.1093/jn/137.4.992
    1. Farzi A., Fröhlich E. E., Holzer P. (2018). Gut Microbiota and the Neuroendocrine System. Neurotherapeutics 15 5–22. 10.1007/s13311-017-0600-5
    1. Foster J. A., McVey Neufeld K.-A. (2013). Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36 305–312. 10.1016/j.tins.2013.01.005
    1. Foster J. A., Rinaman L., Cryan J. F. (2017). Stress & the gut-brain axis: regulation by the microbiome. Neurobiol. Stress 7 124–136.
    1. Goehler L. E., Park S. M., Opitz N., Lyte M., Gaykema R. P. A. (2008). Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav. Immun. 22 354–366. 10.1016/j.bbi.2007.08.009
    1. Grant R., Guest J. (2016). “Role of omega-3 PUFAs in neurobiological health,” in The Benefits of Natural Products for Neurodegenerative Diseases, eds Essa M.M., Akbar M., Guillemin G. (Cham: Springer International Publishing; ), 247–274. 10.1007/978-3-319-28383-8_13
    1. Groesz L. M., Mccoy S., Carl J., Saslow L., Stewart J., Adler N., et al. (2012). What is eating you? Stress and the drive to eat. Appetite 58 717–721. 10.1016/j.appet.2011.11.028
    1. Hoban A. E., Stilling R. M., Moloney G., Moloney R. D., Shanahan F., Dinan T. G., et al. (2017). Microbial regulation of microRNA expression in the amygdala and prefrontal cortex. Microbiome 5:102. 10.1186/s40168-017-0321-3
    1. Hu F. B. (2002). Dietary pattern analysis: a new direction in nutritional epidemiology. Curr. Opin. Lipidol. 13 3–9. 10.1097/00041433-200202000-00002
    1. Karmali K. N., Persell S. D., Perel P., Lloyd-Jones D. M., Berendsen M. A., Huffman M. D. (2017). Risk scoring for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 3:CD006887
    1. Koloverou E., Panagiotakos D. B., Pitsavos C., Chrysohoou C., Georgousopoulou E. N., Grekas A., et al. (2016). Adherence to Mediterranean diet and 10-year incidence (2002–2012) of diabetes: correlations with inflammatory and oxidative stress biomarkers in the ATTICA cohort study. Diabetes Metab. Res. Rev. 32 73–81. 10.1002/dmrr.2672
    1. Lane D., Carroll D., Ring C., Beevers D. G., Lip G. Y. H. (2002). The prevalence and persistence of depression and anxiety following myocardial infarction. Br. J. Health Psychol. 7 11–21. 10.1348/135910702169321
    1. Leigh S. J., Lee F., Morris M. J. (2018). Hyperpalatability and the generation of obesity: roles of environment, stress exposure and individual difference. Curr. Obes. Rep. 7 6–18. 10.1007/s13679-018-0292-0
    1. Ley R. E. (2010). Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26 5–11. 10.1097/mog.0b013e328333d751
    1. Liu W.-H., Chuang H.-L., Huang Y.-T., Wu C.-C., Chou G.-T., Wang S., et al. (2016). Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behav. Brain Res. 298 202–209. 10.1016/j.bbr.2015.10.046
    1. Lyte M., Ernst S. (1992). Catecholamine induced growth of gram negative bacteria. Life Sci. 50 203–212. 10.1016/0024-3205(92)90273-r
    1. Lyte M., Li W., Opitz N., Gaykema R. P. A., Goehler L. E. (2006). Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia citrobacter rodentium. Physiol. Behav. 89 350–357. 10.1016/j.physbeh.2006.06.019
    1. Malan-Muller S., Valles-Colomer M., Raes J., Lowry C. A., Seedat S., Hemmings S. M. J. (2017). The gut microbiome and mental health: implications for anxiety- and trauma-related disorders. J. Int. Biol. 22 90–107. 10.1089/omi.2017.0077
    1. Marc U., Jose M.-E., Lucile C., Ricard N., Magi F., Eduard V., et al. (2014). Cytokine-induced depression: current status and novel targets for depression therapy. CNS Neurol. Disord. Drug Targets 13 1066–1074. 10.2174/1871527313666140612121921
    1. Marchiori G. N., González A. L., Perovic N. R., Defagó M. D. (2017). Una mirada global sobre la influencia de los patrones alimentarios en las enfermedades cardiovasculares. Perspect. Nutr. Humana. 19 79–92. 10.17533/udea.penh.v19n1a07
    1. Martín R., Miquel S., Benevides L., Bridonneau C., Robert V., Hudault S., et al. (2017). Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of f. prausnitzii as a next-generation probiotic. Front. Microbiol. 8:1226. 10.3389/fmicb.2017.01226
    1. Micha R., Mozaffarian D. (2008). Trans fatty acids: effects on cardiometabolic health and implications for policy. Prostaglandins Leukot. Essent. Fatty Acids 79 147–152. 10.1016/j.plefa.2008.09.008
    1. GBD 2013 Mortality and Causes of Death Collaborators, (2015). Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease study 2013. Lancet 385 117–171. 10.1016/s0140-6736(14)61682-2
    1. Mozaffarian D. (2016). Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 133 187–225. 10.1161/CIRCULATIONAHA.115.018585
    1. Mozaffarian D., Appel L. J., Horn L. V. (2011). Components of a cardioprotective diet. Circulation 123 2870–2891. 10.1161/circulationaha.110.968735
    1. Neufeld K. M., Kang N., Bienenstock J., Foster J. A. (2011). Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 23 255–264. 10.1111/j.1365-2982.2010.01620.x
    1. O’Donnell M. J., Xavier D., Liu L., Zhang H., Chin S. L., Rao-Melacini P., et al. (2010). Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet 376 112–123. 10.1016/s0140-6736(10)60834-3
    1. Packard A. E. B., Ghosal S., Herman J. P., Woods S. C., Ulrich-Lai Y. M. (2014). Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes. Psychoneuroendocrinology 47 178–188. 10.1016/j.psyneuen.2014.05.016
    1. Razzoli M., Pearson C., Crow S., Bartolomucci A. (2017). Stress, overeating, and obesity: insights from human studies and preclinical models. Neurosci. Biobehav. Rev. 76 154–162. 10.1016/j.neubiorev.2017.01.026
    1. Rodríguez-Monforte M., Flores-Mateo G., Sánchez E. (2015). Dietary patterns and CVD: a systematic review and meta-analysis of observational studies. Br. J. Nut. 114 1341–1359. 10.1017/s0007114515003177
    1. Rubinstein A., Colantonio L., Bardach A., Caporale J., Garcia Marti S., Kopitowski K., et al. (2010). Estimación de la carga de las enfermedades cardiovasculares atribuible a factores de riesgo modificables en Argentina. Rev. Panam. Salud. Publica 27 237–245 10.1590/s1020-49892010000400001
    1. Ruo B., Rumsfeld J. S., Hlatky M. A., Liu H., Browner W. S., Whooley M. A. (2003). Depressive symptoms and health-related quality of life: the heart and soul study. JAMA 290 215–221.
    1. Rutledge T., Reis V. A., Linke S. E., Greenberg B. H., Mills P. J. (2006). Depression in heart failure: a meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes. J. Am. College Cardiol. 48 1527–1537.
    1. Sanches Machado d’Almeida K., Ronchi Spillere S., Zuchinali P., Corrêa Souza G. (2018). Mediterranean diet and other dietary patterns in primary prevention of heart failure and changes in cardiac function markers: a systematic review. Nutrients 10:58. 10.3390/nu10010058
    1. Schächinger V., Britten M. B., Zeiher A. M. (2000). Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101 1899–1906. 10.1161/01.cir.101.16.1899
    1. Schirmer M., Smeekens S. P., Vlamakis H., Jaeger M., Oosting M., Franzosa E. A., et al. (2016). Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167 1125–1136.e8. 10.1016/j.cell.2016.10.020
    1. Serrano Ríos M. (2005). El síndrome metabólico: ¿ una versión moderna de la enfermedad ligada al estrés? Rev. Esp. Cardiol. 58 768–771.
    1. Shen J., Wilmot K. A., Ghasemzadeh N., Molloy D. L., Burkman G., Mekonnen G., et al. (2015). Mediterranean dietary patterns and cardiovascular health. Ann. Rev. Nut. 35 425–449.
    1. Shirtcliff E. A., Coe C. L., Pollak S. D. (2009). Early childhood stress is associated with elevated antibody levels to herpes simplex virus type 1. Proc. Natl. Acad. Sci. U.S.A. 106 2963–2967. 10.1073/pnas.0806660106
    1. Singh R. K., Chang H.-W., Yan D., Lee K. M., Ucmak D., Wong K., et al. (2017). Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15:73.
    1. Spencer S. J., Korosi A., Layé S., Shukitt-Hale B., Barrientos R. M. (2017). Food for thought: how nutrition impacts cognition and emotion. npj Science of Food 1:7.
    1. Strandwitz P., Kim K. H., Terekhova D., Liu J. K., Sharma A., Levering J., et al. (2018). GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4 396–403 10.1038/s41564-018-0307-3
    1. Suárez J. E. (2013). Microbiota autóctona, probióticos y prebióticos. Nutr. Hosp. 28 38–41.
    1. Ulrich-Lai Y. M., Fulton S., Wilson M., Petrovich G., Rinaman L. (2015). Stress exposure, food intake and emotional state. Stress 18 381–399.
    1. Uthman O., Hartley L., Rees K., Taylor F., Volmink J., Ebrahim S., et al. (2014). Multiple risk factor interventions for primary prevention of cardiovascular disease in low- and middle-income countries. Cochrane Database Syst. Rev. 8:CD011163
    1. Vighi G., Marcucci F., Sensi L., Di Cara G., Frati F. (2008). Allergy and the gastrointestinal system. Clin. Exp. Immunol. 153 3–6. 10.1111/j.1365-2249.2008.03713.x
    1. Wallace C. J. K., Milev R. (2017). The effects of probiotics on depressive symptoms in humans: a systematic review. Ann. Gen. Psychiatry 16:14. 10.1186/s12991-017-0138-2
    1. Weaver I. C. G., Cervoni N., Champagne F. A., D’alessio A. C., Sharma S., Seckl J. R., et al. (2004). Epigenetic programming by maternal behavior. Nat. Neurosci. 7 847–854.
    1. Wong M. L., Inserra A., Lewis M. D., Mastronardi C. A., Leong L., Choo J., et al. (2016). Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol. Psychiatry 21 797–805. 10.1038/mp.2016.46
    1. Yano J. M., Yu K., Donaldson G. P., Shastri G. G., Ann P., Ma L., et al. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161 264–276. 10.1016/j.cell.2015.02.047
    1. Zalar B., Haslberger A., Peterlin B. (2018). The role of microbiota in depression - a brief review. Psychiatr. Danub. 30 136–141 10.24869/psyd.2018.136

Source: PubMed

3
Tilaa