Differences in the experience of active and sham transcranial direct current stimulation

Sudha Kilaru Kessler, Peter E Turkeltaub, Jennifer G Benson, Roy H Hamilton, Sudha Kilaru Kessler, Peter E Turkeltaub, Jennifer G Benson, Roy H Hamilton

Abstract

Background: A limited number of studies have shown that modulation of cortical excitability using transcranial direct current stimulation (tDCS) is safe and tolerable. Few have directly evaluated whether sham and active stimulation are indistinguishable.

Objective: We aimed to demonstrate tDCS safety and tolerability in a large cohort, and to compare the occurrence and severity of side effects between sham and active stimulation sessions.

Methods: One hundred thirty-one healthy subjects undergoing 277 tDCS sessions rated on a 1 to 5 scale the perception of side effects during and after stimulation. Proportions of active and sham sessions associated with side effects were compared using Fisher exact test, and distributions of severity ratings were compared using the Kruskal-Wallis test.

Results: No serious adverse effects occurred. Side effects most commonly reported were tingling (76%), itching (68%), burning (54%), and pain (25%). Side effect severity was mild, with fewer than 2% of responses indicating a severity > 3 on all questions except tingling (15%), itching (20%), burning (7%), pain (5%), and fatigue (3%) during stimulation. Rates of sensory side effects were statistically significantly higher in active stimulation sessions compared with sham sessions. No other stimulation parameters had a statistically significant impact on side effect occurrence.

Conclusions: TDCS is a safe well-tolerated technique with no evidence of risk for serious adverse effects. Sensory side effects are common, but the severity is typically low. Because sensory side effects are more frequent and more severe in active compared with sham tDCS, the current method of sham stimulation may not be an adequate control condition for some studies.

Conflict of interest statement

The authors have no actual or potential financial conflicts of interest to report.

Copyright © 2012 Elsevier Inc. All rights reserved.

Figures

Figure 1
Figure 1
Box plots for severity of side effects during stimulation. Boxes represent the interquartile range, with median represented by a thick black line. Whiskers represent inner and outer adjacent values and circles represent outliers.
Figure 2
Figure 2
Box plots for severity of side effects experienced after stimulation. Boxes represent the interquartile range, with median represented by a thick black line. Whiskers represent inner and outer adjacent values and circles represent outliers.

References

    1. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000 Sep 15;527(Pt 3):633–9.
    1. Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport. 1998 Jul 13;9(10):2257–60.
    1. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001 Nov 27;57(10):1899–901.
    1. Ardolino G, Bossi B, Barbieri S, Priori A. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J Physiol. 2005 Oct 15;568(Pt 2):653–63.
    1. Rango M, Cogiamanian F, Marceglia S, Barberis B, Arighi A, Biondetti P, et al. Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: a 1H-MRS study. Magn Reson Med. 2008 Oct;60(4):782–9.
    1. Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol. 2003 Apr;114(4):589–95.
    1. Ferrucci R, Mameli F, Guidi I, Mrakic-Sposta S, Vergari M, Marceglia S, et al. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology. 2008 Aug 12;71(7):493–8.
    1. Schlaug G, Renga V, Nair D. Transcranial direct current stimulation in stroke recovery. Arch Neurol. 2008 Dec;65(12):1571–6.
    1. Ferrucci R, Bortolomasi M, Vergari M, Tadini L, Salvoro B, Giacopuzzi M, et al. Transcranial direct current stimulation in severe, drug-resistant major depression. J Affect Disord. 2009 Nov;118(1–3):215–9.
    1. Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology. 2005 Mar 8;64(5):872–5.
    1. Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol. 2003 Nov;114(11):2220–2. author reply 2–3.
    1. Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007 May 30;72(4–6):208–14.
    1. Dundas JE, Thickbroom GW, Mastaglia FL. Perception of comfort during transcranial DC stimulation: effect of NaCl solution concentration applied to sponge electrodes. Clin Neurophysiol. 2007 May;118(5):1166–70.
    1. Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W. Modulation of cortical excitability by weak direct current stimulation--technical, safety and functional aspects. Suppl Clin Neurophysiol. 2003;56:255–76.
    1. Priori A, Hallett M, Rothwell JC. Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimul. 2009 Oct;2(4):241–5.
    1. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006 Apr;117(4):845–50.
    1. Tadini L, El-Nazer R, Brunoni AR, Williams J, Carvas M, Boggio P, et al. Cognitive, Mood, and Electroencephalographic Effects of Noninvasive Cortical Stimulation With Weak Electrical Currents. J ECT. 2010 Oct 5;
    1. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008 Jul;1(3):206–23.

Source: PubMed

3
Tilaa