Green tea-a new perspective of glaucoma prevention

Kornelijus Gasiunas, Saulius Galgauskas, Kornelijus Gasiunas, Saulius Galgauskas

Abstract

Aim: To determine how green tea and catechins can affect intraocular pressure (IOP) changes.

Methods: Totally 43 young volunteers were included in the study. The experiment was held between noon and 2 p.m. Two extracts-green tea and epigallocatechin gallate (EGCG, 400 mg capsules) and placebo (400 mg capsules) were used in the study. Participants were divided into three groups. Green tea extract group (GT group) had 17 subjects, EGCG extract group 17 subjects, control (placebo) group 9 subjects. IOP was measured with the Icare tonometer before and 30min, 1, 1.5, 2h after the consumption of each extract and placebo. Results were analyzed using the IBM SPSS program. Statistical confidence level P<0.05.

Results: The most significant reduction of IOP from the beginning of the experiment was measured after 2h in GT group (left 2.18±3.19 mm Hg, P=0.012; right 2.59±1.97 mm Hg, P<0.000) and after 1h in EGCG extract group (left 2.41±2.98 mm Hg, P<0.004; right 1.94±1.98 mm Hg, P<0.001). In control group no significant changes were measured.

Conclusion: People who have increased IOP or risk factors for glaucoma development, could benefit from drinking green tea or its concentrated extracts in moderate doses.

Keywords: catechin; glaucoma; intraocular pressure; ocular hypertension; tea.

International Journal of Ophthalmology Press.

Figures

Figure 1. Left eye IOP changes.
Figure 1. Left eye IOP changes.
Figure 2. Right eye IOP changes.
Figure 2. Right eye IOP changes.

References

    1. Machiele R, Motlagh M, Patel BC. StatPearls. Treasure Island (FL): StatPearls Publishing; Aug 28, 2020. Intraocular pressure.
    1. Goel M, Picciani RG, Lee RK, Bhattacharya SK. Aqueous humor dynamics: a review. Open Ophthalmol J. 2010;4:52–59.
    1. Prum BE, Jr, Rosenberg LF, Gedde SJ, Mansberger SL, Stein JD, Moroi SE, Herndon LW, Jr, Lim MC, Williams RD. Primary open-angle glaucoma preferred practice pattern(®) guidelines. Ophthalmology. 2016;123(1):P41–P111.
    1. Negri A, Naponelli V, Rizzi F, Bettuzzi S. Molecular targets of epigallocatechin-gallate (EGCG): a special focus on signal transduction and cancer. Nutrients. 2018;10(12):E1936.
    1. Chu KO, Chan KP, Wang CC, Chu CY, Li WY, Choy KW, Rogers MS, Pang CP. Green tea catechins and their oxidative protection in the rat eye. J Agric Food Chem. 2010;58(3):1523–1534.
    1. Isemura M. Catechin in human health and disease. Molecules. 2019;24(3):E528.
    1. Bernatoniene J, Kopustinskiene DM. The role of catechins in cellular responses to oxidative stress. Molecules. 2018;23(4):E965.
    1. Yang YP, Xu CY, Chen YH, Liang JJ, Xu YX, Chen SL, Huang SF, Yang QC, Cen LP, Pang CP, Sun XH, Ng TK. Green tea extract ameliorates ischemia-induced retinal ganglion cell degeneration in rats. Oxid Med Cell Longev. 2019;2019:8407206.
    1. Ren JL, Yu QX, Liang WC, Leung PY, Ng TK, Chu WK, Pang CP, Chan SO. Green tea extract attenuates LPS-induced retinal inflammation in rats. Sci Rep. 2018;8(1):429.
    1. Vranka JA, Kelley MJ, Acott TS, Keller KE. Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res. 2015;133:112–125.
    1. Acott TS, Kelley MJ, Keller KE, Vranka JA, Abu-Hassan DW, Li XB, Aga MN, Bradley JM. Intraocular pressure homeostasis: maintaining balance in a high-pressure environment. J Ocul Pharmacol Ther. 2014;30(2-3):94–101.
    1. Singh M, Tyagi SC. Metalloproteinases as mediators of inflammation and the eyes: molecular genetic underpinnings governing ocular pathophysiology. Int J Ophthalmol. 2017;10(8):1308–1318.
    1. Keller KE, Acott TS. The juxtacanalicular region of ocular trabecular meshwork: a tissue with a unique extracellular matrix and specialized function. J Ocul Biol. 2013;1(1):3.
    1. Keller KE, Aga MN, Bradley JM, Kelley MJ, Acott TS. Extracellular matrix turnover and outflow resistance. Exp Eye Res. 2009;88(4):676–682.
    1. Ashworth Briggs EL, Toh T, Eri R, Hewitt AW, Cook AL. TIMP1, TIMP2, and TIMP4 are increased in aqueous humor from primary open angle glaucoma patients. Mol Vis. 2015;21:1162–1172.
    1. Tejwani S, Machiraju P, Nair AP, Ghosh A, Das RK, Ghosh A, Sethu S. Treatment of glaucoma by prostaglandin agonists and beta-blockers in combination directly reduces pro-fibrotic gene expression in trabecular meshwork. J Cell Mol Med. 2020;24(9):5195–5204.
    1. Yamada H, Yoneda M, Gosho M, Kato T, Zako M. Bimatoprost, latanoprost, and tafluprost induce differential expression of matrix metalloproteinases and tissue inhibitor of metalloproteinases. BMC Ophthalmol. 2016;16:26.
    1. Quigley HA. Glaucoma. The Lancet. 2011;377(9774):1367–1377.
    1. Sihota R, Angmo DW, Ramaswamy D, Dada T. Simplifying “target” intraocular pressure for different stages of primary open-angle glaucoma and primary angle-closure glaucoma. Indian J Ophthalmol. 2018;66(4):495–505.
    1. Caprioli J, Varma R. Intraocular pressure: modulation as treatment for glaucoma. Am J Ophthalmol. 2011;152(3):340–344.e2.
    1. Morales DR, Dreischulte T, Lipworth BJ, Donnan PT, Jackson C, Guthrie B. Respiratory effect of beta-blocker eye drops in asthma: population-based study and meta-analysis of clinical trials. Br J Clin Pharmacol. 2016;82(3):814–822.
    1. Shen WC, Huang BQ, Yang J. Ocular surface changes in prostaglandin analogue-treated patients. J Ophthalmol. 2019;2019:9798272.
    1. Lee YR, Kook MS, Joe SG, Na JH, Han S, Kim S, Shin CJ. Circadian (24-hour) pattern of intraocular pressure and visual field damage in eyes with normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2012;53(2):881–887.
    1. Kim JH, Caprioli J. Intraocular pressure fluctuation: is it important? J Ophthalmic Vis Res. 2018;13(2):170–174.
    1. Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults - results of a systematic review. Regul Toxicol Pharmacol. 2018;95:412–433.
    1. Jówko E. Green Tea Catechins and Sport Performance. In: Lamprecht M, editor. Antioxidants in Sport Nutrition. Boca Raton (FL): CRC Press/Taylor & Francis; 2015.
    1. Cai ZY, Li XM, Liang JP, Xiang LP, Wang KR, Shi YL, Yang R, Shi M, Ye JH, Lu JL, Zheng XQ, Liang YR. Bioavailability of tea catechins and its improvement. Molecules. 2018;23(9):2346.
    1. Sabouri S, Wright AJ, Corredig M. In vitro digestion of sodium caseinate emulsions loaded with EGCG. Food Hydrocoll. 2017;69:350–358.
    1. Peters CM, Green RJ, Janle EM, Ferruzzi MG. Formulation with ascorbic acid and sucrose modulates catechin bioavailability from green tea. Food Res Int. 2010;43(1):95–102.
    1. Son YR, Chung JH, Ko S, Shim SM. Combinational enhancing effects of formulation and encapsulation on digestive stability and intestinal transport of green tea catechins. J Microencapsul. 2016;33(2):183–190.
    1. Naumovski N, Blades BL, Roach PD. Food inhibits the oral bioavailability of the major green tea antioxidant EGCG in humans. Antioxidants (Basel) 2015;4(2):373–393.
    1. Chung JH, Kim S, Lee SJ, Chung JO, Oh YJ, Shim SM. Green tea formulations with vitamin C and xylitol on enhanced intestinal transport of green tea catechins. J Food Sci. 2013;78(5):C685–C690.

Source: PubMed

3
Tilaa