Effects of Panax ginseng and ginsenosides on oxidative stress and cardiovascular diseases: pharmacological and therapeutic roles

Sun Hee Hyun, Kiran D Bhilare, Gyo In, Chae-Kyu Park, Jong-Hoon Kim, Sun Hee Hyun, Kiran D Bhilare, Gyo In, Chae-Kyu Park, Jong-Hoon Kim

Abstract

Traditionally, Asian ginseng or Korean ginseng, Panax ginseng has long been used in Korea and China to treat various diseases. The main active components of Panax ginseng is ginsenoside, which is known to have various pharmacological treatment effects such as antioxidant, vascular easing, anti-allergic, anti-inflammatory, anti-diabetes, and anticancer. Most reactive oxygen species (ROS) cause chronic diseases such as myocardial symptoms and cause fatal oxidative damage to cell membrane lipids and proteins. Therefore, many studies that inhibit the production of oxidative stress have been conducted in various fields of physiology, pathophysiology, medicine and health, and disease. Recently, ginseng or ginsenosides have been known to act as antioxidants in vitro and in vivo results, which have a beneficial effect on preventing cardiovascular disease. The current review aims to provide mechanisms and inform precious information on the effects of ginseng and ginsenosides on the prevention of oxidative stress and cardiovascular disease in animals and clinical trials.

Keywords: Cardiovascular diseases; Ginsenosides; Oxidative stress; Panax ginseng.

Conflict of interest statement

The authors declare no conflict of interest.

© 2021 The Korean Society of Ginseng. Publishing services by Elsevier B.V.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Molecular structures of protopanaxadiol (A) and protopanaxatriol (B) of ginsenosides.
Fig. 2
Fig. 2
Mechanisms of Ginseng in Protecting Heart. Notes: eNOS: endothelial nitric oxide synthase, GLUT-4: glucose transporter-4, GS: ginseng total saponins, HB-EGF: heparin-binding EGF-like growth factor, ICa,R: R-type calcium channel current, ICa,L: L-type calcium channel current, IKr: rapidly activating component of rectifier K+ current, MAPK: mitogen activated protein kinase, IKs: slowly activating component, PI3K/Akt: phosphoinositide 3-kinase/protein kinase B, RyRs: ryanodine receptors, ROS: reactive oxygen species, SR: sarcoplasmic reticulum, STAT3: signal transducer and activator of transcription 3, SN: S-nitrosylation of channel protein.

References

    1. Bridges A.B., Scott N.A., Parry G.J., Belch J.J. Age, sex, cigarette smoking and indices of free radical activity in healthy humans. Eur J Med. 1993;2(4):205–208.
    1. Sanderson K.J., van Rij A.M., Wade C.R., Sutherland W.H. Lipid peroxidation of circulating low density lipoproteins with age, smoking and in peripheral vascular disease. Atherosclerosis. 1995;118(1):45–51.
    1. Higashi Y., Sasaki S., Nakagawa K., Matsuura H., Oshima T., Chayama K. Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med. 2002;346(25):1954–1962.
    1. Ghiadoni L., Magagna A., Versari D., Kardasz I., Huang Y., Taddei S., Salvettiet A. Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension. 2003;41(6):1281–1286.
    1. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem. 1997;272(34):20963–20966.
    1. Witztum J.L., Berliner J.A. Oxidized phospholipids and isoprostanes in atherosclerosis. Curr Opin Lipidol. 1998;9(5):441–448.
    1. Chisolm G.M., Steinberg D. The oxidative modification hypothesis of atherogenesis: an overview. Free Radic Biol Med. 2000;28(15):1815–1826.
    1. Walter M.F., Jacob R.F., Jeffers B., Ghadanfar M.M., Preston G.M., Buch J., Mason R.P. Serum levels of thiobarbituric acid reactive substances predict cardiovascular events in patients with stable coronary artery disease: a longitudinal analysis of the PREVENT study. J Am Coll Cardiol. 2004;44(10):1996–2002.
    1. Zahavi J., Betteridge J.D., Jones N.A., Galton D.J., Kakkar V.V. Enhanced in vivo platelet release reaction and malondialdehyde formation in patients with hyperlipidemia. Am J Med. 1981;70(1):59–64.
    1. Collier A., Rumley A., Rumley A.G., Paterson J.R., Leach J.P., Lowe G.D., Small M. Free radical activity and hemostatic factors in NIDDM patients with and without microalbuminuria. Diabetes. 1992;41(8):909–913.
    1. Wang D., Kreutzer D.A., Essigmann J.M. Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat Res. 1998;400(1–2):99–115.
    1. Taysi S., Polat F., Gul M., Sari R.A., Bakan E. Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol Int. 2002;21(5):200–204.
    1. Oliver C.N., Ahn B.W., Moerman E.J., Goldstein S., Stadtman E.R. Age-related changes in oxidized proteins. J Biol Chem. 1987;262(12):5488–5491.
    1. Beal M.F. Oxidatively modified proteins in aging and disease. Free Radic Biol Med. 2002;32(9):797–803.
    1. Mutlu-Türkoğlu Ü., İlhan E., Öztezcan S., Kuru A., Aykaç-Toker G., Uysal M. Age-related increases in plasma malondialdehyde and protein carbonyl levels and lymphocyte DNA damage in elderly subjects. Clin Biochem. 2003;36(5):397–400.
    1. Toth P.P. Making a case for quantitative assessment of cardiovascular risk. J Clin Lipidol. 2007;1(4):234–241.
    1. Davies M.J., Gordon J.L., Gearing A.J., Pigott R., Woolf N., Katz D., Kyriakopoulos A. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and Eselectin in human atherosclerosis. J Pathol. 1993;171(3):223–229.
    1. Kim J.-H. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res. 2018;42(3):264–269.
    1. Siti H.N., Kamisaha Y., Kamsiaha J.J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review) Vascular Pharmacology. 2015;71:40–56.
    1. Qi L.W., Wang C.Z., Yuan C.S. Isolation and analysis of ginseng: advances and challenges. Nat Prod Rep. 2011;28(3):467–495.
    1. Sengupta S., Toh S.A., Sellers L.A., Skepper J.N., Koolwijk P., Leung H.W., Yeung H.W., Wong R.N., Sasisekharan R., Fan T.P. Modulating angiogenesis: the yin and the yang in ginseng. Circulation. 2004;110(10):1219–1225.
    1. Nah S.Y., Kim D.H., Rhim H. Ginsenosides: are any of them candidates for drugs acting on the central nervous system? CNS Drug Rev. 2007;13(4):381–404.
    1. Wang Y., Choi H.K., Brinckmann J.A., Jiang X., Huang L. Chemical analysis of Panax quinquefolius (North American ginseng): a review. J Chromatogr A. 2015;1426:1–15.
    1. Zhang Y.C., Li G., Jiang C., Yang B., Yang H.J., Xu H.Y., Huang L.Q. Tissue-specific distribution of ginsenosides in different aged ginseng and antioxidant activity of ginseng leaf. Molecules. 2014;19(11):17381–17399.
    1. Shin B.K., Kwon S.W., Park J.H. Chemical diversity of ginseng saponins from Panax ginseng. J. Ginseng Res. 2015;39(4):287–298.
    1. Jiao L., Zhang X., Wang M., Li B., Liu Z., Liu S. Chemical and antihyperglycemic activity changes of ginseng pectin induced by heat processing. Carbohydr Polym. 2014;114:567–573.
    1. Lee S.M., Bae B.S., Park H.W., Ahn N.G., Cho B.G., Cho Y.L., Kwak Y.S. Characterization of Korean red ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res. 2015;39(4):384–391.
    1. Chong-Zhi W.A., Anderson S., Wei D.U., Tong-Chuan H.E., Chun-Su Y.U. Red ginseng and cancer treatment. Chin J Nat Med. 2016;14(1):7–16.
    1. Kim G.N., Lee J.S., Song J.H., Oh C.H., Kwon Y.I., Jang H.D. Heat processing decreases Amadori products and increases total phenolic content and antioxidant activity of Korean Red ginseng. J Med Food. 2010;13(6):1478–1484.
    1. Matsuura Y., Zheng Y., Takaku T., Kameda K., Okuda H. Isolation and physiological activities of new amino acid derivatives from Korean Red ginseng. Korean J Ginseng Sci. 1994;18(3):204–211.
    1. Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82(2):291–295.
    1. Nickenig G., Harrison D.G. The AT-1-type angiotensin receptor in oxidative stress and hypertension part I: oxidative stress and atherogenesis. Circulation. 2002;105(3):393–396.
    1. Ray R., Shah A.M. NADPH oxidase and endothelial cell function. Clin Sci. 2005;109(3):217–226.
    1. Sies H. Total antioxidant capacity: appraisal of a concept. J Nutr. 2007;137(6):1493–1495.
    1. Wang Y., Chun O.K., Song W.O. Plasma and dietary antioxidant status as cardiovascular disease risk factors: a review of human studies. Nutrients. 2013;5(8):2969–3004.
    1. Sawyer D.B., Colucci W.S. Nitric oxide in the failing myocardium. Cardiol Clin. 1998;16(4):657–664.
    1. Ing D.J., Zang J., Dzau V.J., Webster K.A., Bishopric N.H. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res. 1999;84(1):21–33.
    1. von Harsdorf R., Li P.F., Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation. 1999;99(22):2934–2941.
    1. Griendling K.K., Ushio-Fukai M. Redox control of vascular smooth muscle proliferation. J Lab Clin Med. 1998;132(1):9–15.
    1. Ushio-Fukai M., Alexander R.W., Akers M., Griendling K.K. p38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem. 1998;273(24):15022–15029.
    1. Fukai T., Siegfried M.R., Ushio-Fukai M., Griendling K.K., Harrison D.G. Modulation of extracellular superoxide dismutase expression by angiotensin II and hypertension. Circ Res. 1999;85(1):23–28.
    1. Kanani P.M., Sinkey C.A., Browning R.L., Allaman M., Knapp H.R., Haynes W.G. Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans. Circulation. 1999;100(11):1161–1168.
    1. B Britten M., Zeiher A M., Schächinger V. Clinical importance of coronary endothelial vasodilator dysfunction and therapeutic options. J Intern Med. 1999;245(4):315–327.
    1. Jimi S., Saku K., Kusaba H., Itabe H., Koga N., Takebayashi S. Deposition of oxidized low-density lipoprotein and collagenosis occur coincidentally in human coronary stenosis: an immunohistochemical study of atherectomy. Coron Artery Dis. 1998;9(9):551–557.
    1. Ferrari R., Agnoletti L., Comini L., Gaia G., Bachetti T., Cargnoni A., Ceconi C., Curello S., Visioli O. Oxidative stress during myocardial ischaemia and heart failure. Eur Heart J. 1998;19:B2–B11.
    1. Anversa P., Cheng W., Liu Y., Leri A., Redaelli G., Kajstura J. Apoptosis and myocardial infarction. Basic Res Cardiol. 1998;93(3):8–12.
    1. Zhang J.T., Qu Z.W., Liu Y., Deng H.L. Preliminary study on antiamnestic mechanism of ginsenoside Rg1 and Rb1. Chin Med J (Engl) 1990;103(11):932–938.
    1. Deng H.L., Zhang J.T. Anti-lipid peroxilative effect of ginsenoside Rb1 and Rg1. Chin Med J (Engl) 1991;104(5):395–398.
    1. Kim J.S., Nam K., Shim K.H., Kim K.W., Im K.S., Chung H.Y. Antioxidative mechanism of total saponin of red ginseng. Korean J Life Sci. 1996;6(1):48–55.
    1. Jung J., Jang H.J., Eom S.J., Choi N.S., Lee N.K., Paik H.D. Fermentation of red ginseng extract by the probiotic Lactobacillus plantarum KCCM 11613P: ginsenoside conversion and antioxidant effects. J Ginseng Res. 2019;43(1):20–26.
    1. Tsai C.C., Chan P., Chen L.J., Chang C.K., Liu Z., Lin J.W. Merit of ginseng in the treatment of heart failure in type 1-like diabetic rats. BioMed Research International. 2014 Article ID 484161.
    1. Irfan M., Kwak Y.S., Han C.K., Hyun S.H., Rhee M.H. Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions. J Ginseng Res. 2020;44(4):538–543.
    1. Komishon A.M., Shishtar E., Ha V., Sievenpiper J.L., de Souza R.J., Jovanovski E., Ho H.V., Duvnjak L.S., Vuksan V. The effect of ginseng (genus Panax) on blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials. J Hum Hypertens. 2016;30(10):619–626.
    1. Kwon Y.J., Jang S.N., Liu K.H., Jung D.H. Effect of Korean red ginseng on cholesterol metabolites in postmenopausal women with hypercholesterolemia: a pilot randomized controlled trial. Nutrients. 2020;12(11):3423.
    1. Li J., Ichikawa T., Jin Y., Hofseth L.J., Nagarkatti P., Nagarkatti M., Windust A., Cui T. An essential role of Nrf2 in American ginseng-mediated anti-oxidative actions in cardiomyocytes. J Ethnopharmacol. 2010;130(2):222–230.
    1. Lim K.H., Ko D., Kim J.H. Cardioprotective potential of Korean Red Ginseng extract on isoproterenol-induced cardiac injury in rats. J Ginseng Res. 2013;37(3):273–282.
    1. Zhou W., Chai H., Lin P.H., Lumsden A.B., Yao Q., Chen C. Ginsenoside Rb1 blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J Vasc Surg. 2005;41(5):861–868.
    1. Xie J.T., Shao Z.H., Hoek T.L., Chang W.T., Li J., Mehendale S., Wang C.Z., Hsu C.W., Becker L.B., Yin J.J., et al. Antioxidant effects of ginsenoside Re in cardiomyocytes. Eur J Pharmacol. 2006;532(3):201–207.
    1. Kim Y.M., Namkoong S., Yun Y.G., Hong H.D., Lee Y.C., Ha K.S., Lee H., Kwon H.J., Kwon Y.G., Kim Y.M. Water extract of Korean red ginseng stimulates angiogenesis by activating the Pi3k/Akt-dependent Erk1/2 and eNOS pathways in human umbilical vein endothelial cells. Biol Pharm Bull. 2007;30(9):1674–1679.
    1. Wan J.B., Lee S.M., Wang J.D., Wang N., He C.W., Wang Y.T., Kang J.X. Panax notoginseng reduces atherosclerotic lesions in ApoE-deficient mice and inhibits TNF-alpha-induced endothelial adhesion molecule expression and monocyte adhesion. J Agric Food Chem. 2009;57(15):6692–6697.
    1. Hien T.T., Kim N.D., Pokharel Y.R., Oh S.J., Lee M.Y., Kang K.W. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: essential roles of estrogen receptor-dependent Pi3-kinase and Amp-activated protein kinase. Toxicol Appl Pharmacol. 2010;246(3):171–183.
    1. Leung K.W., Cheng Y.K., Mak N.K., Chan K.K., Fan T.P., Wong R.N. Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Lett. 2006;580(13):3211–3216.
    1. Lee J.Y., Lim K.M., Kim S.Y., Bae O.N., Noh J.Y., Chung S.M., Kim K., Shin Y.S., Lee M.Y., Chung J.H. Vascular smooth muscle dysfunction and remodeling induced by ginsenoside Rg3, a bioactive component of ginseng. Toxicol Sci. 2010;117(2):505–514.
    1. Wang T., Yu X.F., Qu S.C., Xu H.L., Sui D.Y. Ginsenoside Rb3 inhibits angiotensin II induced vascular smooth muscle cells proliferation. Basic Clin Pharmacol Toxicol. 2010;107(2):685–689.
    1. Rhee M.Y., Kim Y.S., Bae J.H., Nah D.Y., Kim Y.K., Lee M.M., Kim H.Y. Effect of Korean red ginseng on arterial stiffness in subjects with hypertension. J Altern Complement Med. 2011;17(1):45–49.
    1. Shin W., Yoon J., Oh G.T., Ryoo S. Korean red ginseng inhibits arginase and contributes to endothelium-dependent vasorelaxation through endothelial nitric oxide synthase coupling. J Ginseng Res. 2013;37(1):64–73.
    1. Jeon B.H., Kim C.S., Park K.S., Lee J.W., Park J.B., Kim K.J., Kim S.H., Chang S.J., Nam K.Y. Effect of Korea red ginseng on the blood pressure in conscious hypertensive rats. Gen Pharmacol. 2000;35(3):135–141.
    1. Qin N., Gong Q.H., Wei L.W., Wu Q., Huang X.N. Total ginsenosides inhibit the right ventricular hypertrophy induced by monocrotaline in rats. Biol Pharm Bull. 2008;31(8):1530–1535.
    1. Deng J., Wang Y.W., Chen W.M., Wu Q., Huang X.N. Role of nitric oxide in ginsenoside Rg(1)-induced protection against left ventricular hypertrophy produced by abdominal aorta coarctation in rats. Biol Pharm Bull. 2010;33(4):631–635.
    1. Wu Y., Xia Z.Y., Dou J., Zhang L., Xu J.J., Zhao B., Lei S., Liu H.M. Protective effect of ginsenoside Rb1 against myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats. Mol Biol Rep. 2011;38(7):4327–4335.
    1. Zhu D., Wu L., Li C.R., Wang X.W., Ma Y.J., Zhong Z.Y., Zhao H.B., Cui J., Xun S.F., Huang X.L., et al. Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J Cell Biochem. 2009;108(1):117–124.
    1. Kim T.H., Lee S.M. The effects of ginseng total saponin, panaxadiol and panaxatriol on ischemia/reperfusion injury in isolated rat heart. Food Chem Toxicol. 2010;48(6):1516–1520.
    1. Tsutsumi Y.M., Tsutsumi R., Mawatari K., Nakaya Y., Kinoshita M., Tanaka K., Oshita S. Compound K. a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/Pi3k pathway. Life Sci. 2011;88(15–16):725–729.
    1. Guo J., Gan X.T., Haist J.V., Rajapurohitam V., Zeidan A., Faruq N.S., Karmazyn M. Ginseng inhibits cardiomyocyte hypertrophy and heart failure via NHE-1 inhibition and attenuation of calcineurin activation. Circ Heart Fail. 2011;4(1):79–88.
    1. Jin Y.R., Yu J.Y., Lee J.J., You S.H., Chung J.H., Noh J.Y., Im J.H., Han X.H., Kim T.J., Shin K.S., et al. Antithrombotic and antiplatelet activities of Korean red ginseng extract. Basic Clin Pharmacol Toxicol. 2007;100(3):170–175.
    1. Lee Y.H., Lee B.K., Choi Y.J., Yoon I.K., Chang B.C., Gwak H.S. Interaction between warfarin and Korean red ginseng in patients with cardiac valve replacement. Int J Cardiol. 2010;145(2):275–276.
    1. Ahn C.M., Hong S.J., Choi S.C., Park J.H., Kim J.S., Lim D.S. Red ginseng extract improves coronary flow reserve and increases absolute numbers of various circulating angiogenic cells in patients with first ST-segment elevation acute myocardial infarction. Phytother Res. 2011;25(2):239–249.
    1. Toh H.T. Improved isolated heart contractility and mitochondrial oxidation after chronic treatment with Panax ginseng in rats. Am J Chin Med. 1994;22:275–284.
    1. Yi X.Q., Li T., Wang J.R., Wong V.K., Luo P., Wong I.Y., Jiang Z.H., Liu L., Zhou H. Total ginsenosides increase coronary perfusion flow in isolated rat hearts through activation of PI3K/Akt-eNOS signaling. Phytomedicine. 2010;17(13):1006–1015.
    1. Wang X., Chai H., Yao Q., Chen C. Molecular mechanisms of HIV protease inhibitor-induced endothelial dysfunction. J Acquir Immune Defic Syndr. 2007;44(5):493–499.

Source: PubMed

3
Tilaa