Sexual dimorphic response to rituximab treatment: A longitudinal observational study in a large cohort of patients with primary membranous nephropathy and persistent nephrotic syndrome

Annalisa Perna, Barbara Ruggiero, Manuel Alfredo Podestà, Luca Perico, Silvia Orisio, Hanna Debiec, Giuseppe Remuzzi, Piero Ruggenenti, Annalisa Perna, Barbara Ruggiero, Manuel Alfredo Podestà, Luca Perico, Silvia Orisio, Hanna Debiec, Giuseppe Remuzzi, Piero Ruggenenti

Abstract

Rituximab is one of the first-line therapies for patients with membranous nephropathy (MN) at high risk of progression towards kidney failure. We investigated whether the response to Rituximab was affected by sex and anti-PLA2R antibody levels in 204 consecutive patients (148 males and 56 females) with biopsy-proven MN who were referred to the Nephrology Unit of the Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII from March 2001 to October 2016 and managed conservatively for at least 6 months. The primary outcome was a combined endpoint of complete (proteinuria <0.3 g/24 h) or partial (proteinuria <3.0 g/24 h and >50% reduction vs. baseline) remission. Patients gave written informed consent to Rituximab treatment. The study was internally funded. No pharmaceutical company was involved. Anti-PLA2R antibodies were detectable in 125 patients (61.3%). At multivariable analyses, female gender (p = 0.0198) and lower serum creatinine levels (p = 0.0108) emerged as independent predictors of better outcome (p = 0.0198). The predictive value of proteinuria (p = 0.054) and anti-PLA2R titer (p = 0.0766) was borderline significant. Over a median (IQR) of 24.8 (12.0-36.0) months, 40 females (71.4%) progressed to the combined endpoint compared with 73 males (49.3%). Anti-PLA2R titers at baseline [127.6 (35.7-310.8) vs. 110.1 (39.9-226.7) RU/ml] and after Rituximab treatment were similar between the sexes. However, the event rate was significantly higher in females than in males [HR (95%): 2.12 (1.44-3.12), p = 0.0001]. Forty-five of the 62 patients (72.3%) with anti-PLA2R titer below the median progressed to the combined endpoint versus 35 of the 63 (55.6%) with higher titer [HR (95%): 1.97 (1.26-3.07), p < 0.0029]. The highest probability of progressing to the combined endpoint was observed in females with anti-PLA2R antibody titer below the median (86.7%), followed by females with anti-PLA2R antibody titer above the median (83.3%), males with titer below the median (68.1%), and males with titer above the median (44.4%). This trend was statistically significant (p = 0.0023). Similar findings were observed for complete remission (proteinuria <0.3 g/24 h) and after analysis adjustments for baseline serum creatinine. Thus, despite similar immunological features, females were more resilient to renal injury following Rituximab therapy. These findings will hopefully open new avenues to identify the molecular pathways underlying sex-related nephroprotective effects.

Keywords: anti-PLA2R; membranous nephropathy; nephrotic syndrome; remission; rituximab; sex.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Perna, Ruggiero, Podestà, Perico, Orisio, Debiec, Remuzzi and Ruggenenti.

Figures

FIGURE 1
FIGURE 1
Kaplan–Meier curves for the proportion of participants with primary MN who progressed to the combined endpoint of complete or partial remission (A) or to complete remission considered as a single endpoint (B) in the subgroups of males and females considered separately. The rate of progression to both endpoints was significantly higher in females than in males. The difference was significant even after adjusting for baseline serum creatinine levels.
FIGURE 2
FIGURE 2
Kaplan–Meier curves for the proportion of participants with primary MN who progressed to the combined endpoint of complete or partial remission (A) or to complete remission considered as a single endpoint (B) in the subgroups of patients with anti-PLA2R antibody titer above or below the median considered separately. The rate of progression to the combined endpoint was significantly higher in females than in males. The difference was significant even after adjusting for baseline serum creatinine levels. Similar but non-significant trends were observed for complete remission, considered as a single endpoint, even after adjustment for baseline serum creatinine levels.
FIGURE 3
FIGURE 3
Kaplan–Meier curves for the proportion of participants with primary MN who progressed to the combined endpoint of complete or partial remission (A) or to complete remission considered as a single endpoint (B) in the four subgroups of male or female patients with anti-PLA2R antibody titer above or below the median considered separately. The highest probability of progressing to the combined endpoint was observed in females with anti-PLA2R antibody titer below the median. A slightly lower probability of progressing to the combined endpoint was observed in females with anti-PLA2R antibody titer above the median, whereas the probability crumbled in males with antibody titer below the median. The lowest probability was observed in males with antibody titer above the median. Differences between considered subgroups versus the subgroup of males with antibody titer below the median (reference group) were significant. A similar trend was observed for complete remission, considered as a single endpoint.
FIGURE 4
FIGURE 4
Anti-PLA2R antibody levels (mean ± SEM) at baseline (month 0) and at different time points after Rituximab administration in males and females considered separately. Between-group changes in antibody titer at different time points versus baseline never differed significantly.
FIGURE 5
FIGURE 5
Kaplan–Meier curves for the proportion of participants with primary MN who had a relapse of the NS after progression to the combined endpoint of complete or partial remission in males and females (A) and in patients with anti-PLA2R antibody titer above or below the median (B) considered separately. Relapse rates never differed significantly between considered groups.

References

    1. Akiyama S., Akiyama M., Imai E., Ozaki T., Matsuo S., Maruyama S. (2015). Prevalence of anti-phospholipase A2 receptor antibodies in Japanese patients with membranous nephropathy. Clin. Exp. Nephrol. 19, 653–660. 10.1007/s10157-014-1054-2
    1. Baylis C. (2009). Sexual dimorphism, the aging kidney, and involvement of nitric oxide deficiency. Semin. Nephrol. 29, 569–578. 10.1016/j.semnephrol.2009.07.003
    1. Baylis C. (2012). Sexual dimorphism: the aging kidney, involvement of nitric oxide deficiency, and angiotensin II overactivity. J. Gerontol. A Biol. Sci. Med. Sci. 67, 1365–1372. 10.1093/gerona/gls171
    1. Beck L. H., Bonegio R. G. B., Lambeau G., Beck D. M., Powell D. W., Cummins T. D., et al. (2009). M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21. 10.1056/nejmoa0810457
    1. Beck L. H., Fervenza F. C., Beck D. M., Bonegio R. G. B., Malik F. A., Erickson S. B., et al. (2011). Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J. Am. Soc. Nephrol. 22, 1543–1550. 10.1681/ASN.2010111125
    1. Cattran D. (2005). Management of membranous nephropathy: when and what for treatment. J. Am. Soc. Nephrol. 16, 1188–1194. 10.1681/ASN.2005010028
    1. Cattran D. C., Reich H. N., Beanlands H. J., Miller J. A., Scholey J. W., Troyanov S., et al. (2008). The impact of sex in primary glomerulonephritis. Nephrol. Dial. Transpl. 23, 2247–2253. 10.1093/ndt/gfm919
    1. Cravedi P., Remuzzi G., Ruggenenti P. (2014). Rituximab in primary membranous nephropathy: first-line therapy, why not? Nephron. Clin. Pract. 128, 261–269. 10.1159/000368589
    1. Cravedi P., Ruggenenti P., Remuzzi G. (2010). Low-dose rituximab for posttransplant recurrent membranous nephropathy. Am. J. Transpl. 10, 1336. 10.1111/j.1600-6143.2010.03029.x
    1. Cravedi P., Ruggenenti P., Remuzzi G. (2011a). Circulating anti-PLA2R autoantibodies to monitor immunological activity in membranous nephropathy. J. Am. Soc. Nephrol. 22, 1400–1402. 10.1681/ASN.2011060610
    1. Cravedi P., Ruggenenti P., Remuzzi G. (2011b). Circulating anti-pla2r autoantibodies to monitor immunological activity in membranous nephropathy. J. Am. Soc. Nephrol. 22, 1400–1402. 10.1681/ASN.2011060610
    1. Cravedi P., Ruggenenti P., Sghirlanzoni M. C., Remuzzi G. (2007). Titrating rituximab to circulating B cells to optimize lymphocytolytic therapy in idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol. 2, 932–937. 10.2215/CJN.01180307
    1. Cravedi P., Sghirlanzoni M. C., Marasa M., Salerno A., Remuzzi G., Ruggenenti P. (2011c). Efficacy and safety of rituximab second-line therapy for membranous nephropathy: a prospective, matched-cohort study. Am. J. Nephrol. 33, 461–468. 10.1159/000327611
    1. Dahan K., Debiec H., Plaisier E., Cachanado M., Rousseau A., Wakselman L., et al. (2017). Rituximab for severe membranous nephropathy: A 6-month trial with extended follow-up. J. Am. Soc. Nephrol. 28, 348–358. 10.1681/ASN.2016040449
    1. Dahnrich C., Komorowski L., Probst C., Seitz-Polski B., Esnault V., Wetzels J. F., et al. (2013). Development of a standardized ELISA for the determination of autoantibodies against human M-type phospholipase A2 receptor in primary membranous nephropathy. Clin. Chim. Acta. 421, 213–218. 10.1016/j.cca.2013.03.015
    1. Davison A. M., Cameron J. S., Kerr D. N., Ogg C. S., Wilkinson R. W. (1984). The natural history of renal function in untreated idiopathic membranous glomerulonephritis in adults. Clin. Nephrol. 22, 61–67.
    1. De Vriese A. S., Glassock R. J., Nath K. A., Sethi S., Fervenza F. C. (2017). A proposal for a serology-based approach to membranous nephropathy. J. Am. Soc. Nephrol. 28, 421–430. 10.1681/ASN.2016070776
    1. Debiec H., Guigonis V., Mougenot B., Decobert F., Haymann J. P., Bensman A., et al. (2002). Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N. Engl. J. Med. 346, 2053–2060. 10.1056/NEJMoa012895
    1. Deng L., Huang Q., Wang J., Luo K., Liu J., Yan W., et al. (2021). Efficacy and safety of different immunosuppressive therapies in patients with membranous nephropathy and high PLA2R antibody titer. Front. Pharmacol. 12, 786334. 10.3389/fphar.2021.786334
    1. Dong H.-R., Wang Y.-Y., Cheng X.-H., Wang G.-Q., Sun L.-J., Cheng H., et al. (2016). Retrospective study of phospholipase A2 receptor and igg subclasses in glomerular deposits in Chinese patients with membranous nephropathy. Plos One 11, e0156263. 10.1371/journal.pone.0156263
    1. Doublier S., Lupia E., Catanuto P., Periera-Simon S., Xia X., Korach K., et al. (2011). Testosterone and 17β-estradiol have opposite effects on podocyte apoptosis that precedes glomerulosclerosis in female estrogen receptor knockout mice. Kidney Int. 79, 404–413. 10.1038/ki.2010.398
    1. Durin S., Barbanel C., Landais P., Noël L. H., Grünfeld J. P. (1990). Long term course of idiopathic extramembranous glomerulonephritis. Study of predictive factors of terminal renal insufficiency in 82 untreated patients. Nephrologie 11, 67–71.
    1. El-Zoghby Z. M., Grande J. P., Fraile M. G., Norby S. M., Fervenza F. C., Cosio F. G. (2009). Recurrent idiopathic membranous nephropathy: early diagnosis by protocol biopsies and treatment with anti-CD20 monoclonal antibodies. Am. J. Transpl. 9, 2800–2807. 10.1111/j.1600-6143.2009.02851.x
    1. Fervenza F. C., Appel G. B., Barbour S. J., Rovin B. H., Lafayette R. A., Aslam N., et al. (2019). Rituximab or cyclosporine in the treatment of membranous nephropathy. N. Engl. J. Med. 381, 36–46. 10.1056/nejmoa1814427
    1. Gaspari F., Perico N., Ruggenenti P., Mosconi L., Amuchastegui C. S., Guerini E., et al. (1995). Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J. Am. Soc. Nephrol. 6, 257–263. 10.1681/ASN.V62257
    1. Gracelli J. B., Souza-Menezes J., Barbosa C. M. L., Ornellas F. S., Takiya C. M., Alves L. M., et al. (2012). Role of estrogen and progesterone in the modulation of CNG-A1 and Na/K+-atpase expression in the renal cortex. Cell. Physiol. biochem. 30, 160–172. 10.1159/000339055
    1. Herak-Kramberger C. M., Breljak D., Ljubojević M., Matokanović M., Lovrić M., Rogić D., et al. (2015). Sex-dependent expression of water channel AQP1 along the rat nephron. Am. J. Physiol. Ren. Physiol. 308, F809–F821. 10.1152/ajprenal.00368.2014
    1. Hihara K., Iyoda M., Tachibana S., Iseri K., Saito T., Yamamoto Y., et al. (2016). Anti-phospholipase A2 receptor (PLA2R) antibody and glomerular PLA2R expression in Japanese patients with membranous nephropathy. Plos One 11, e0158154. 10.1371/journal.pone.0158154
    1. Hofstra J. M., Beck L. H., Beck D. M., Wetzels J. F., Salant D. J. (2011). Anti-phospholipase A₂ receptor antibodies correlate with clinical status in idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol. 6, 1286–1291. 10.2215/CJN.07210810
    1. Hopper J., Trew P. A., Biava C. G. (1981). Membranous nephropathy: Its relative benignity in women. Nephron 29, 18–24. 10.1159/000182232
    1. Hoxha E., Kneißler U., Stege G., Zahner G., Thiele I., Panzer U., et al. (2012). Enhanced expression of the M-type phospholipase A2 receptor in glomeruli correlates with serum receptor antibodies in primary membranous nephropathy. Kidney Int. 82, 797–804. 10.1038/ki.2012.209
    1. Iliescu R., Reckelhoff J. F. (2008). Sex and the kidney. Hypertension 51, 1000–1001. 1979. 10.1161/HYPERTENSIONAHA.107.101345
    1. Institute of Medicine (US) Committee on Understanding the Biology of Sex and Gender Differences (2001). “Committee on understanding the Biology of sex and gender differences,” in Exploring the biological contributions to human health: Does sex matter? Editors Wizemann T. M., Pardue M.-L. (Washington (DC): National Academies Press US; ). Available at: (Accessed December 14, 2016).
    1. Kafami M., Hosseini M., Niazmand S., Hadjzadeh M. A., Farrokhi E., Mazloum T., et al. (2016). Interaction of central Angiotensin II and estrogen on systolic blood pressure in female DOCA-salt treated rats. Adv. Biomed. Res. 5, 78. 10.4103/2277-9175.180990
    1. Kim D., Lee A. S., Jung Y. J., Yang K. H., Lee S., Park S. K., et al. (2014). Tamoxifen ameliorates renal tubulointerstitial fibrosis by modulation of estrogen receptor α-mediated transforming growth factor-β1/Smad signaling pathway. Nephrol. Dial. Transpl. 29, 2043–2053. 10.1093/ndt/gfu240
    1. Kim S. A., Lee K. Y., Kim J.-R., Choi H. C. (2016). Estrogenic compound attenuates angiotensin II-induced vascular smooth muscle cell proliferation through interaction between LKB1 and estrogen receptor α. J. Pharmacol. Sci. 132, 78–85. 10.1016/j.jphs.2016.09.001
    1. Kim Y. G., Choi Y.-W., Kim S.-Y., Moon J. Y., Ihm C.-G., Lee T. W., et al. (2015). Anti-phospholipase A2 receptor antibody as prognostic indicator in idiopathic membranous nephropathy. Am. J. Nephrol. 42, 250–257. 10.1159/000440983
    1. Kittikulsuth W., Sullivan J. C., Pollock D. M. (2013). ET-1 actions in the kidney: evidence for sex differences. Br. J. Pharmacol. 168, 318–326. 10.1111/j.1476-5381.2012.01922.x
    1. Klein S. L., Flanagan K. L. (2016). Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638. 10.1038/nri.2016.90
    1. Kumar V., Ramachandran R., Kumar A., Nada R., Suri D., Gupta A., et al. (2015). Antibodies to m-type phospholipase A2 receptor in children with idiopathic membranous nephropathy. Nephrology 20, 572–575. 10.1111/nep.12478
    1. Li Y.-C., Ding X.-S., Li H.-M., Zhang Y., Bao J. (2014). Role of G protein-coupled estrogen receptor 1 in modulating transforming growth factor-β stimulated mesangial cell extracellular matrix synthesis and migration. Mol. Cell. Endocrinol. 391, 50–59. 10.1016/j.mce.2014.04.014
    1. Lu K.-T., Keen H. L., Weatherford E. T., Sequeira-Lopez M. L. S., Gomez R. A., Sigmund C. D. (2016). Estrogen receptor α is required for maintaining baseline renin expression. Hypertension 67, 992–999. 1979. 10.1161/HYPERTENSIONAHA.115.07082
    1. Mallick N. P., Short C. D., Manos J. (1983). Clinical membranous nephropathy. Nephron 34, 209–219. 10.1159/000183018
    1. Matrai M., Hetthéssy J. R., Nadasy G. L., Szekacs B., Mericli M., Acs N., et al. (2016). Estrogen therapy may counterbalance eutrophic remodeling of coronary arteries and increase bradykinin relaxation in a rat model of menopausal hypertension. Menopause 23, 778–783. 10.1097/GME.0000000000000654
    1. Mompeón A., Lázaro-Franco M., Bueno-Betí C., Pérez-Cremades D., Vidal-Gómez X., Monsalve E., et al. (2016). Estradiol, acting through erα, induces endothelial non-classic renin-angiotensin system increasing angiotensin 1-7 production. Mol. Cell. Endocrinol. 422, 1–8. 10.1016/j.mce.2015.11.004
    1. Neugarten J., Acharya A., Silbiger S. R. (2000). Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J. Am. Soc. Nephrol. 11, 319–329. 10.1681/ASN.V112319
    1. NIH (2001). NIH Guidelines on the inclusion of women and Minorities as subjects in clinical research - amended. Available at: (Accessed December 14, 2016).
    1. Oh Y. J., Yang S. H., Kim D. K., Kang S.-W., Kim Y. S. (2013). Autoantibodies against phospholipase A2 receptor in Korean patients with membranous nephropathy. Plos One 8, e62151. 10.1371/journal.pone.0062151
    1. Peduzzi P., Concato J., Feinstein A. R., Holford T. R. (1995). Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J. Clin. Epidemiol. 48, 1503–1510. 10.1016/0895-4356(95)00048-8
    1. Pérez-Torres I., Roque P., El Hafidi M., Diaz-Diaz E., Baños G. (2009). Association of renal damage and oxidative stress in a rat model of metabolic syndrome. Influence of gender. Free Radic. Res. 43, 761–771. 10.1080/10715760903045296
    1. Pollow D. P., Romero-Aleshire M. J., Sanchez J. N., Konhilas J. P., Brooks H. L. (2015). ANG II-induced hypertension in the VCD mouse model of menopause is prevented by estrogen replacement during perimenopause. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R1546–R1552. 10.1152/ajpregu.00170.2015
    1. Pringle K. G., Sykes S. D., Lumbers E. R. (2015). Circulating and intrarenal renin-angiotensin systems in healthy men and nonpregnant women. Physiol. Rep. 3, e12586. 10.14814/phy2.12586
    1. Putting gender on the agenda (2010). Putting gender on the agenda. Nature 465, 665. 10.1038/465665a
    1. Qin W., Beck L. H., Zeng C., Chen Z., Li S., Zuo K., et al. (2011). Anti-phospholipase A2 receptor antibody in membranous nephropathy. J. Am. Soc. Nephrol. 22, 1137–1143. 10.1681/ASN.2010090967
    1. Radice A., Trezzi B., Maggiore U., Pregnolato F., Stellato T., Napodano P., et al. (2016). Clinical usefulness of autoantibodies to M-type phospholipase A2 receptor (PLA2R) for monitoring disease activity in idiopathic membranous nephropathy (IMN). Autoimmun. Rev. 15, 146–154. 10.1016/j.autrev.2015.10.004
    1. Ramachandran R., Kumar V., Kumar A., Yadav A. K., Nada R., Kumar H., et al. (2016). PLA2R antibodies, glomerular PLA2R deposits and variations in PLA2R1 and HLA-DQA1 genes in primary membranous nephropathy in South Asians. Nephrol. Dial. Transpl. 31, 1486–1493. 10.1093/ndt/gfv399
    1. Reinhard L., Zahner G., Menzel S., Koch-Nolte F., Stahl R. A. K., Hoxha E. (2020). Clinical relevance of domain-specific phospholipase A2 receptor 1 antibody levels in patients with membranous nephropathy. J. Am. Soc. Nephrol. 31, 197–207. 10.1681/ASN.2019030273
    1. Remuzzi A., Puntorieri S., Mazzoleni A., Remuzzi G. (1988). Sex related differences in glomerular ultrafiltration and proteinuria in Munich-Wistar rats. Kidney Int. 34, 481–486. 10.1038/ki.1988.206
    1. Remuzzi G., Chiurchiu C., Abbate M., Brusegan V., Bontempelli M., Ruggenenti P. (2002). Rituximab for idiopathic membranous nephropathy. Lancet 360, 923–924. 10.1016/S0140-6736(02)11042-7
    1. Rubtsova K., Marrack P., Rubtsov A. V. (2015). Sexual dimorphism in autoimmunity. J. Clin. Invest. 125, 2187–2193. 10.1172/JCI78082
    1. Ruggenenti P., Cravedi P., Chianca A., Perna A., Ruggiero B., Gaspari F., et al. (2012). Rituximab in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 23, 1416–1425. 10.1681/ASN.2012020181
    1. Ruggenenti P., Cravedi P., Sghirlanzoni M. C., Gagliardini E., Conti S., Gaspari F., et al. (2008). Effects of rituximab on morphofunctional abnormalities of membranous glomerulopathy. Clin. J. Am. Soc. Nephrol. 3, 1652–1659. 10.2215/CJN.01730408
    1. Ruggenenti P., Debiec H., Ruggiero B., Chianca A., Pellé T., Gaspari F., et al. (2015). Anti-phospholipase A2 receptor antibody titer predicts post-rituximab outcome of membranous nephropathy. J. Am. Soc. Nephrol. 26, 2545–2558. 10.1681/ASN.2014070640
    1. Ruggenenti P., Fervenza F. C., Remuzzi G. (2017). Treatment of membranous nephropathy: time for a paradigm shift. Nat. Rev. Nephrol. 13, 563–579. 10.1038/nrneph.2017.92
    1. Ruggenenti P., Perna A., Zoccali C., Gherardi G., Benini R., Testa A., et al. (2000). Chronic proteinuric nephropathies. II. Outcomes and response to treatment in a prospective cohort of 352 patients: differences between women and men in relation to the ACE gene polymorphism. Gruppo italiano di Studi epidemologici in nefrologia (gisen). J. Am. Soc. Nephrol. 11, 88–96. 10.1681/ASN.V11188
    1. Sabiu G., Podestà M. A. (2021). Membranous nephropathy: It is time to go back to the future. Nephron 145, 721–727. 10.1159/000516984
    1. Scolari F., Delbarba E., Santoro D., Gesualdo L., Pani A., Dallera N., et al. (2021). Rituximab or cyclophosphamide in the treatment of membranous nephropathy: The RI-CYCLO randomized trial. J. Am. Soc. Nephrol. 32, 972–982. 10.1681/ASN.2020071091
    1. Seitz-Polski B., Dolla G., Payre C., Girard C. A., Polidori J., Zorzi K., et al. (2016). Epitope spreading of autoantibody response to PLA2R associates with poor prognosis in membranous nephropathy. J. Am. Soc. Nephrol. 27, 1517–1533. 10.1681/ASN.2014111061
    1. Silbiger S. (2009). The effects of hormone replacement therapy on renal function. Nat. Clin. Pract. Nephrol. 5, 6–7. 10.1038/ncpneph0993
    1. Suzuki H., Kondo K. (2012). Chronic kidney disease in postmenopausal women. Hypertens. Res. 35, 142–147. 10.1038/hr.2011.155
    1. Tazumi S., Yokota N., Kawakami M., Omoto S., Takamata A., Morimoto K. (2016). Effects of estrogen replacement on stress-induced cardiovascular responses via renin-angiotensin system in ovariectomized rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311, R898–R905. 10.1152/ajpregu.00415.2015
    1. Tibshirani R. (1997). The lasso method for variable selection in the Cox model. Stat. Med. 16, 385–395. 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>;2-3
    1. Tu W. H., Petitti D. B., Biava C. G., Tulunay O., Hopper J. (1984). Membranous nephropathy: Predictors of terminal renal failure. Nephron 36, 118–124. 10.1159/000183130
    1. USRDS (2007). Annual data report. Available at: (Accessed December 14, 2016).
    1. Wasserstein A. G. (1997). Membranous glomerulonephritis. J. Am. Soc. Nephrol. 8, 664–674. 10.1681/ASN.V84664
    1. Whitacre C. C. (2001). Sex differences in autoimmune disease. Nat. Immunol. 2, 777–780. 10.1038/ni0901-777
    1. Xue B., Johnson A. K., Hay M. (2013). Sex differences in angiotensin II- and aldosterone-induced hypertension: the central protective effects of estrogen. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R459–R463. 10.1152/ajpregu.00222.2013
    1. Yanes L. L., Sartori-Valinotti J. C., Reckelhoff J. F. (2008). Sex steroids and renal disease: Lessons from animal studies. Hypertension 51, 976–981. 1979. 10.1161/HYPERTENSIONAHA.107.105767

Source: PubMed

3
Tilaa