Modern Bronchoscopic Treatment Options for Patients with Chronic Bronchitis

Anna Katharina Mayr, Arschang Valipour, Anna Katharina Mayr, Arschang Valipour

Abstract

Chronic Obstructive Pulmonary Disease (COPD) is one of the leading causes of death worldwide and has a large impact on a patient's quality of life due to its wide range of symptoms and comorbidities. There are known to be different phenotypes in COPD with various extents on the burden of the disease and its prognosis. Chronic bronchitis with persistent cough and mucus production is regarded as one of the main symptoms of COPD with tremendous effects on subjectively reported symptom burden and frequency of exacerbations. Exacerbations in turn are known to have an impact on disease progression and increase health care costs. Modern bronchoscopic treatment options are currently under investigation targeting the problem of chronic bronchitis and frequent exacerbations. This review summarizes the existing literature about these modern interventional treatment options and provides perspectives on upcoming studies.

Keywords: Chronic Obstructive Pulmonary Disease (COPD); balloon desobstruction; bronchial rheoplasty; chronic bronchitis; metered cryospray; targeted lung denervation.

Conflict of interest statement

A.K.M. has nothing to disclose. A.V. reports speaker fees from Nuvaira Inc. and Galvanize Therapeutics Inc. and has been the investigator in clinical trials on bronchial rheoplasty and targeted lung denervation.

Figures

Figure 1
Figure 1
The RheOx bronchial rheoplasty catheter. Reproduced with permission from GALA Therapeutics, San Carlos, CA, USA.
Figure 2
Figure 2
The RejuvenAir System metered cryospray catheter. Reproduced with permission of the © ERS 2023: European Respiratory Review 30 (159) 200281; DOI: 10.1183/16000617.0281-2020 Published 19 January 2021 [27].
Figure 3
Figure 3
The dual-cooled radiofrequency catheter for targeted lung denervation. Reproduced with permission from Nuvaira Inc., Maple Grove, MN, USA.

References

    1. World Health Organization (WHO) WHO Global Health Observatory. Global Health Estimates. [(accessed on 22 December 2022)]; Available online: .
    1. Iheanacho I., Zhang S., King D., Rizzo M., Ismaila A.S. Economic Burden of Chronic Obstructive Pulmonary Disease (COPD): A Systematic Literature Review. Int. J. Chron. Obstr. Pulm. Dis. 2020;15:439–460. doi: 10.2147/COPD.S234942.
    1. Global Initiative for Chronic Obstructive Lung Disease (GOLD) Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease—2023 GOLD Report. [(accessed on 28 December 2022)]. Available online:
    1. Saetta M., Turato G., Baraldo S., Zanin A., Braccioni F., Mapp C.E., Maestrelli P., Cavallesco G., Papi A., Fabbri L.M. Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. Pt 1Am. J. Respir. Crit. Care Med. 2000;161:1016–1021. doi: 10.1164/ajrccm.161.3.9907080.
    1. Kim V., Oros M., Durra H., Kelsen S., Aksoy M., Cornwell W.D., Rogers T.J., Criner G.J. Chronic bronchitis and current smoking are associated with more goblet cells in moderate to severe COPD and smokers without airflow obstruction. PLoS ONE. 2015;10:e0116108. doi: 10.1371/journal.pone.0116108.
    1. Kistemaker L.E.M., Gosens R. Acetylcholine beyond bronchoconstriction: Roles in inflammation and remodeling. Trends Pharmacol. Sci. 2015;36:164–171. doi: 10.1016/j.tips.2014.11.005.
    1. Miravitlles M., Soler-Cataluña J.J., Calle M., Molina J., Almagro P., Quintano J.A., Riesco J.A., Trigueros J.A., Piñera P., Simón A., et al. Spanish COPD Guidelines (GesEPOC): Pharmacological Treatment of Stable COPD. Arch. Bronconeumol. 2012;48:247–257. doi: 10.1016/j.arbres.2012.04.001.
    1. Bakeer M., Funk G.-C., Valipour A. Chronic obstructive pulmonary disease phenotypes: Imprint on pharmacological and non-pharmacological therapy. Ann. Transl. Med. 2020;8:1472. doi: 10.21037/atm-20-2219.
    1. Miravitlles M., Calle M., Molina J., Almagro P., Gómez J.T., Trigueros J.A., Cosío B.G., Casanova C., López-Campos J.L., Riesco J.A., et al. Spanish COPD Guidelines (GesEPOC) 2021: Updated Pharmacological treatment of stable COPD. Arch. Bronconeumol. 2022;58:69–81. doi: 10.1016/j.arbres.2021.03.005.
    1. Cosio B.G., Soriano J.B., López-Campos J.L., Calle M., Soler J.J., De-Torres J.P., Marín J.M., Martínez C., De Lucas P., Mir I., et al. Distribution and Outcomes of a Phenotype-Based Approach to Guide COPD Management: Results from the CHAIN Cohort. PLoS ONE. 2016;11:e0160770. doi: 10.1371/journal.pone.0160770.
    1. Koblizek V., Milenkovic B., Barczyk A., Tkacova R., Somfay A., Zykov K., Tudoric N., Kostov K., Zbozinkova Z., Svancara J., et al. Phenotypes of COPD patients with a smoking history in Central and Eastern Europe: The POPE Study. Eur. Respir. J. 2017;49:1601446. doi: 10.1183/13993003.01446-2016.
    1. Kim V., Han M.L.K., Vance G.B., Make B.J., Newell J.D., Hokanson J.E., Hersh C.P., Stinson D., Silverman E.K., Criner G.J. The chronic bronchitic phenotype of COPD: An analysis of the COPDGene Study. Chest. 2011;140:626–633. doi: 10.1378/chest.10-2948.
    1. Montes De Oca M., Halbert R.J., Lopez M.V., Perez-Padilla R., Tálamo C., Moreno D., Muiño A., Jardim J.R.B., Valdivia G., Pertuzé J., et al. The chronic bronchitis phenotype in subjects with and without COPD: The PLATINO study. Eur. Respir. J. 2012;40:28–36. doi: 10.1183/09031936.00141611.
    1. Woodruff P.G., Barr R.G., Bleecker E., Christenson S.A., Couper D., Curtis J.L., Gouskova N.A., Hansel N.N., Hoffman E.A., Kanner R.E., et al. Clinical Significance of Symptoms in Smokers with Preserved Pulmonary Function. N. Engl. J. Med. 2016;374:1811–1821. doi: 10.1056/NEJMoa1505971.
    1. Soler-Cataluña J.J., Martínez-García M.Á., Román Sánchez P., Salcedo E., Navarro M., Ochando R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax. 2005;60:925–931. doi: 10.1136/thx.2005.040527.
    1. Dransfield M.T., Kunisaki K.M., Strand M.J., Anzueto A., Bhatt S.P., Bowler R.P., Criner G.J., Curtis J.L., Hanania N.A., Nath H., et al. Acute exacerbations and lung function loss in smokers with and without chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2017;195:324–330. doi: 10.1164/rccm.201605-1014OC.
    1. Seemungal T.A.R., Donaldson G.C., Paul E.A., Bestall J.C., Jeffries D.J., Wedzicha J.A. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1998;157:1418–1422. doi: 10.1164/ajrccm.157.5.9709032.
    1. Dalal A.A., Christensen L., Liu F., Riedel A.A. Direct costs of chronic obstructive pulmonary disease among managed care patients. Pt 1Int. J. Chron. Obstr. Pulm. Dis. 2010;5:341–349. doi: 10.2147/COPD.S13771.
    1. Lipson D.A., Barnhart F., Brealey N., Brooks J., Criner G.J., Day N.C., Dransfield M.T., Halpin D.M.G., Han M.K., Jones C.E., et al. Once-Daily Single-Inhaler Triple versus Dual Therapy in Patients with COPD. N. Engl. J. Med. 2018;378:1671–1680. doi: 10.1056/NEJMoa1713901.
    1. Martinez F.J., Calverley P.M.A., Goehring U.-M., Brose M., Fabbri L.M., Rabe K.F. Effect of roflumilast on exacerbations in patients with severe chronic obstructive pulmonary disease uncontrolled by combination therapy (REACT): A multicentre randomised controlled trial. Lancet. 2015;385:857–866. doi: 10.1016/S0140-6736(14)62410-7.
    1. Uzun S., Djamin R.S., Kluytmans J.A.J.W., Mulder P.G.H., van’t Veer N.E., Ermens A.A.M., Pelle A.J., Hoogsteden H.C., Aerts J.G.J.V., Van der Eerden M.M. Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): A randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 2014;2:361–368. doi: 10.1016/S2213-2600(14)70019-0.
    1. Valipour A., Fernandez-Bussy S., Ing A.J., Steinfort D.P., Snell G.I., Williamson J.P., Saghaie T., Irving L.B., Dabscheck E.J., Krimsky W.S., et al. Bronchial Rheoplasty for Treatment of Chronic Bronchitis. Twelve-Month Results from a Multicenter Clinical Trial. Am. J. Respir. Crit. Care Med. 2020;202:681–689. doi: 10.1164/rccm.201908-1546OC.
    1. Darwiche K., Zellerhoff H., Herth F., Brock J., Meilinger M., Sperk I., Valipour A. Bronchial rheoplasty for chronic bronchitis: Initial results from a european registry study with RheOx®. Eur. Respir. J. 2022;60((Suppl. S66)):4026. doi: 10.1183/13993003.congress-2022.4026.
    1. Garner J.L., Shaipanich T., Hartman J.E., Orton C.M., Caneja C., Klooster K., Thornton J., Sin D.D., Slebos D.J., Shah P.L. A prospective safety and feasibility study of metered cryospray for patients with chronic bronchitis in COPD. Eur. Respir. J. 2020;56:2000556. doi: 10.1183/13993003.00556-2020.
    1. Krimsky W.S., Broussard J.N., Sarkar S.A., Harley D.P. Bronchoscopic spray cryotherapy: Assessment of safety and depth of airway injury. J. Thorac. Cardiovasc. Surg. 2010;139:781–782. doi: 10.1016/j.jtcvs.2009.03.051.
    1. Slebos D.J., Breen D., Coad J., Klooster K., Hartman J., Browning R., Shah P.L., McNulty W.H., Al-Abdul Mohsin M., Irshad K. Safety and Histological Effect of Liquid Nitrogen Metered Spray Cryotherapy in the Lung. Am. J. Respir. Crit. Care Med. 2017;196:1351–1352. doi: 10.1164/rccm.201611-2220LE.
    1. Hartman J.E., Garner J.L., Shah P.L., Slebos D.J. New bronchoscopic treatment modalities for patients with chronic bronchitis. Eur. Respir. Rev. 2021;30:200281. doi: 10.1183/16000617.0281-2020.
    1. Karakoca Y., Karaagac Gogus G., Yapicier O. Use of Resector Balloon Desobstruction in Patients with Severe Chronic Obstructive Pulmonary Disease: A Pilot Feasibility Study on a Novel Desobstruction Technique. J. Bronchol. Interv. Pulmonol. 2015;22:209–214. doi: 10.1097/LBR.0000000000000178.
    1. Karakoca Y., Gogus G., Akduman S., Erturk B. Follow-up outcomes of chronic obstructive pulmonary disease patients who underwent dilatation and curettage with the Karakoca resector balloon: A 188-case series over 5 years. Medicine. 2018;97:13400. doi: 10.1097/MD.0000000000013400.
    1. Slebos D.J., Klooster K., Koegelenberg C.F.N., Theron J., Styen D., Valipour A., Mayse M., Bolliger C.T. Targeted lung denervation for moderate to severe COPD: A pilot study. Thorax. 2015;70:411–419. doi: 10.1136/thoraxjnl-2014-206146.
    1. Hummel J.P., Mayse M.L., Dimmer S., Johnson P.J. Physiologic and histopathologic effects of targeted lung denervation in an animal model. J. Appl. Physiol. 2019;126:67–76. doi: 10.1152/japplphysiol.00565.2018.
    1. Mayse M.L., Norman H.S., Peterson A.D., Rouw K.T., Johnson P.J. Targeted lung denervation in sheep: Durability of denervation and long-term histologic effects on bronchial wall and peribronchial structures. Respir. Res. 2020;21:117. doi: 10.1186/s12931-020-01383-3.
    1. Kistemaker L.E.M., Slebos D.J., Meurs H., Kerstjens H.A.M., Gosens R. Anti-inflammatory effects of targeted lung denervation in patients with COPD. Eur. Respir. J. 2015;46:1489–1492. doi: 10.1183/13993003.00413-2015.
    1. Koegelenberg C.F.N., Theron J., Slebos D.J., Klooster K., Mayse M., Gosens R. Antimuscarinic Bronchodilator Response Retained after Bronchoscopic Vagal Denervation in Chronic Obstructive Pulmonary Disease Patients. Respiration. 2016;92:58–60. doi: 10.1159/000447641.
    1. Valipour A., Asadi S., Pison C., Jondot M., Kessler R., Benneddif K., Deslee G., Verdier M., Slebos D.J., Mayse M. Long-term safety of bilateral targeted lung denervation in patients with COPD. Int. J. Chron. Obstr. Pulm. Dis. 2018;13:2163–2172. doi: 10.2147/COPD.S158748.
    1. Valipour A., Shah P.L., Pison C., Ninane V., Janssens W., Perez T., Kessler R., Deslee G., Garner J., Abele C., et al. Safety and Dose Study of Targeted Lung Denervation in Moderate/Severe COPD Patients. Respiration. 2019;98:329–339. doi: 10.1159/000500463.
    1. Pison C., Shah P.L., Slebos D.-J., Ninane V., Janssens W., Perez T., Kessler R., Deslee G., Garner J.L., Hartman J.E., et al. Safety of denervation following targeted lung denervation therapy for COPD: AIRFLOW-1 3-year outcomes. Respir. Res. 2021;22:62. doi: 10.1186/s12931-021-01664-5.
    1. Hartman J.E., Conway F., Degano B., Augustijn S.W.S., Herth F.J.F., Mayr A., Chacaroun S., Tonkin J., Valipour A., Slebos D.J. Rate of lung function decline slows in the 3 years after targeted lung denervation in COPD. Respir. Med. 2021;188:106604. doi: 10.1016/j.rmed.2021.106604.
    1. Slebos D.J., Shah P.L., Herth F.J.F., Pison C., Schumann C., Hübner R.H., Bonta P., Kessler R., Gesierich W., Darwiche K., et al. Safety and Adverse Events after Targeted Lung Denervation for Symptomatic Moderate to Severe Chronic Obstructive Pulmonary Disease (AIRFLOW). A Multicenter Randomized Controlled Clinical Trial. Am. J. Respir. Crit. Care Med. 2019;200:1477–1486. doi: 10.1164/rccm.201903-0624OC.
    1. Valipour A., Shah P.L., Herth F.J., Pison C., Schumann C., Hübner R., Bonta P.I., Kessler R., Gesierich W., Darwiche K., et al. Two-Year Outcomes for the Double-Blind, Randomized, Sham-Controlled Study of Targeted Lung Denervation in Patients with Moderate to Severe COPD: AIRFLOW-2. Int. J. Chron. Obstr. Pulm. Dis. 2020;15:2807–2816. doi: 10.2147/COPD.S267409.
    1. Conway F., Tonkin J., Valipour A., Pison C., Schumann C., Bonta P.I., Kessler R., Gesierich W., Darwiche K., Lamprecht B., et al. Crossover Patient Outcomes for Targeted Lung Denervation in Moderate to Severe Chronic Obstructive Pulmonary Disease: AIRFLOW-2. Respiration. 2022;101:1069–1074. doi: 10.1159/000527455.
    1. Slebos D.J., Degano B., Valipour A., Shah P.L., Deslée G., Sciurba F.C. Design for a multicenter, randomized, sham-controlled study to evaluate safety and efficacy after treatment with the Nuvaira® lung denervation system in subjects with chronic obstructive pulmonary disease (AIRFLOW-3) BMC Pulm. Med. 2020;20:41. doi: 10.1186/s12890-020-1058-5.
    1. Restrepo R.D., Alvarez M.T., Wittnebel L.D., Sorenson H., Wettstein R., Vines D.L., Sikkema-Ortiz J., Gardner D.D., Wilkins R.L. Medication adherence issues in patients treated for COPD. Int. J. Chron. Obstr. Pulm. Dis. 2008;3:371–384. doi: 10.2147/COPD.S3036.
    1. López-Campos J.L., Gallego E.Q., Hernández L.C. Status of and strategies for improving adherence to COPD treatment. Int. J. Chron. Obstr. Pulm. Dis. 2019;14:1503–1515. doi: 10.2147/COPD.S170848.
    1. Tzanakis N., Koulouris N., Dimakou K., Gourgoulianis K., Kosmas E., Chasapidou G., Konstantinidis A., Kyriakopoulos C., Kontakiotis T., Rapti A., et al. Classification of COPD patients and compliance to recommended treatment in Greece according to GOLD 2017 report: The RELICO study. BMC Pulm. Med. 2021;21:216. doi: 10.1186/s12890-021-01576-6.
    1. Schilling R., Dhillon G.S., Tondo C., Riva S., Grimaldi M., Quadrini F., Neuzil P., Chierchia G.B., De Asmundis C., Abdelaal A., et al. Safety, effectiveness, and quality of life following pulmonary vein isolation with a multi-electrode radiofrequency balloon catheter in paroxysmal atrial fibrillation: 1-year outcomes from SHINE. Europace. 2021;23:851–860. doi: 10.1093/europace/euaa382.
    1. Tanabe T., Rubin B.K. Airway Goblet Cells Secrete Pro-Inflammatory Cytokines, Chemokines, and Growth Factors. Chest. 2016;149:714–720. doi: 10.1378/chest.15-0947.
    1. Srikanthan K., Kistemaker L., Slebos D.-J., Gesierich W., Darwiche K., Bonta P., Deslee G., Shah P., Gosens R. Targeted lung denervation modulates the mucosal epithelial transcriptome in COPD. ERJ Open Res. 2022;8:00146–02022. doi: 10.1183/23120541.00146-2022.
    1. Hartman J.E., Srikanthan K., Caneja C., ten Hacken N.H.T., Kerstjens H.A.M., Shah P.L., Slebos D.J. Bronchoscopic Targeted Lung Denervation in Patients with Severe Asthma: Preliminary Findings. Respiration. 2022;101:184–189. doi: 10.1159/000518515.

Source: PubMed

3
Tilaa