Reduction of Phantom Limb Pain and Improved Proprioception through a TSR-Based Surgical Technique: A Case Series of Four Patients with Lower Limb Amputation

Alexander Gardetto, Eva-Maria Baur, Cosima Prahm, Vinzenz Smekal, Johannes Jeschke, Gerfried Peternell, Michael T Pedrini, Jonas Kolbenschlag, Alexander Gardetto, Eva-Maria Baur, Cosima Prahm, Vinzenz Smekal, Johannes Jeschke, Gerfried Peternell, Michael T Pedrini, Jonas Kolbenschlag

Abstract

Four patients underwent targeted sensory reinnervation (TSR), a surgical technique in which a defined skin area is first selectively denervated and then surgically reinnervated by another sensory nerve. In our case, either the area of the lateral femoral cutaneous nerve or the saphenous nerve was reinnervated by the sural nerve. Patients were then fitted with a special prosthetic device capable of transferring the sense of pressure from the sole of the prosthesis to the newly wired skin area. Pain reduction after TSR was highly significant in all patients. In three patients, permanent pain medication could even be discontinued, in one patient the pain medication has been significantly reduced. Two of the four patients were completely pain-free after the surgical intervention. Surgical rewiring of existing sensory nerves by TSR can provide the brain with new afferent signals seeming to originate from the missing limb. These signals help to reduce phantom limb pain and to restore a more normal body image. In combination with special prosthetic devices, the amputee can be provided with sensory feedback from the prosthesis, thus improving gait and balance.

Keywords: TSR; amputation; lower extremity; neuroma pain; phantom limb pain; targeted sensory reinnervation.

Conflict of interest statement

A.G. is the CMO of Saphenus Medical. The company had no influence whatsoever on study design, data interpretation, or writing of the manuscript. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the result.

Figures

Figure 1
Figure 1
Prevention of neuroma recurrence: (A) nerve stump covering with an epineural cap; (B) transposition of this nerve stump into muscle (arrow).
Figure 2
Figure 2
Illustration of the surgical technique for a transtibial amputation: (A) resection of the stump neuroma; (B) transposition of the ipsilateral sural nerve to the cutaneous territory of the saphenous nerve; (C) medical device Suralis in place, providing sensory feedback from the sole to the reinnervated skin area.
Figure 3
Figure 3
Illustration of the surgical technique for a transfemoral amputation: (A) resection of the stump neuroma; (B) transplantation of the contralateral sural nerve as an autologous graft from the distal stump of the sciatic nerve to the cutaneous territory of the lateral femoral cutaneous nerve; (C) the medical device Suralis in place, providing sensory feedback from the sole to the reinnervated skin area.
Figure 4
Figure 4
(A) Numb skin area 4 weeks after denervation; (B) size reduction of the numb skin area 9 months after TSR surgery; (C) patient’s perception of the foot within the surgically reinnervated skin area (patient 2).
Figure 5
Figure 5
NRS scores before and after TSR surgery show a significant reduction in pain.
Figure 6
Figure 6
Comparison of mean test scores of the eight SF-36 subscales for TSR patients (blue bars) with the age-adjusted mean SF-36 scores of the general German population (navy blue line), lower extremity amputee population (orange line), and chronic neuropathic pain population (green line). Eight subscales measuring different domains of health-related quality of life: physical functioning (PF), role limitations—physical (RP), bodily pain (BP), general health (GH), vitality (VT), social functioning (SF), role limitations—emotional (RE), and mental health (MH). SD: Standard Deviation; LE: Lower Extremity.

References

    1. Ephraim P.L., Wegener S.T., MacKenzie E.J., Dillingham T.R., Pezzin L.E. Phantom pain, residual limb pain, and back pain in amputees: Results of a national survey. Arch. Phys. Med. Rehabil. 2005;86:1910–1919. doi: 10.1016/j.apmr.2005.03.031.
    1. Flor H., Nikolajsen L., Staehelin Jensen T. Phantom limb pain: A case of maladaptive CNS plasticity? Nat. Rev. Neurosci. 2006;7:873–881. doi: 10.1038/nrn1991.
    1. Hsu E., Cohen S.P. Postamputation pain: Epidemiology, mechanisms, and treatment. J. Pain Res. 2013;6:121–136. doi: 10.2147/JPR.S32299.
    1. Economides J.M., DeFazio M.V., Attinger C.E., Barbour J.R. Prevention of Painful Neuroma and Phantom Limb Pain after Transfemoral Amputations Through Concomitant Nerve Coaptation and Collagen Nerve Wrapping. Neurosurgery. 2016;79:508–513. doi: 10.1227/NEU.0000000000001313.
    1. Pet M.A., Ko J.H., Friedly J.L., Mourad P.D., Smith D.G. Does targeted nerve implantation reduce neuroma pain in amputees? Clin. Orthop. Relat. Res. 2014;472:2991–3001. doi: 10.1007/s11999-014-3602-1.
    1. Alviar M.J., Hale T., Dungca M. Pharmacologic interventions for treating phantom limb pain. Cochrane Database Syst. Rev. 2016;10:CD006380. doi: 10.1002/14651858.CD006380.pub3.
    1. Borghi B., D’Addabbo M., White P.F., Gallerani P., Toccaceli L., Raffaeli W., Tognu A., Fabbri N., Mercuri M. The use of prolonged peripheral neural blockade after lower extremity amputation: The effect on symptoms associated with phantom limb syndrome. Anesth. Analg. 2010;111:1308–1315. doi: 10.1213/ANE.0b013e3181f4e848.
    1. Poppler L.H., Parikh R.P., Bichanich M.J., Rebehn K., Bettlach C.R., Mackinnon S.E., Moore A.M. Surgical interventions for the treatment of painful neuroma: A comparative meta-analysis. Pain. 2018;159:214–223. doi: 10.1097/j.pain.0000000000001101.
    1. Ortiz-Catalan M., Guethmundsdottir R.A., Kristoffersen M.B., Zepeda-Echavarria A., Caine-Winterberger K., Kulbacka-Ortiz K., Widehammar C., Eriksson K., Stockselius A., Ragno C., et al. Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: A single group, clinical trial in patients with chronic intractable phantom limb pain. Lancet. 2016;388:2885–2894. doi: 10.1016/S0140-6736(16)31598-7.
    1. Serino A., Akselrod M., Salomon R., Martuzzi R., Blefari M.L., Canzoneri E., Rognini G., van der Zwaag W., Iakova M., Luthi F., et al. Upper limb cortical maps in amputees with targeted muscle and sensory reinnervation. Brain. 2017;140:2993–3011. doi: 10.1093/brain/awx242.
    1. Kuiken T. Targeted reinnervation for improved prosthetic function. Phys. Med. Rehabil. Clin. N. Am. 2006;17:1–13. doi: 10.1016/j.pmr.2005.10.001.
    1. Kuiken T.A., Dumanian G.A., Lipschutz R.D., Miller L.A., Stubblefield K.A. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet. Orthot. Int. 2004;28:245–253. doi: 10.3109/03093640409167756.
    1. Oh C., Carlsen B.T. New Innovations in Targeted Muscle Reinnervation: A Critical Analysis Review. JBJS Rev. 2019;7:e3. doi: 10.2106/JBJS.RVW.18.00138.
    1. Kuiken T.A., Marasco P.D., Lock B.A., Harden R.N., Dewald J.P. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proc. Natl. Acad. Sci. USA. 2007;104:20061–20066. doi: 10.1073/pnas.0706525104.
    1. Hebert J.S., Olson J.L., Morhart M.J., Dawson M.R., Marasco P.D., Kuiken T.A., Chan K.M. Novel targeted sensory reinnervation technique to restore functional hand sensation after transhumeral amputation. IEEE Trans. Neural. Syst. Rehabil. Eng. 2014;22:765–773. doi: 10.1109/TNSRE.2013.2294907.
    1. Miller L.A., Stubblefield K.A., Lipschutz R.D., Lock B.A., Kuiken T.A. Improved myoelectric prosthesis control using targeted reinnervation surgery: A case series. IEEE Trans. Neural. Syst. Rehabil. Eng. 2008;16:46–50. doi: 10.1109/TNSRE.2007.911817.
    1. Nghiem B.T., Sando I.C., Gillespie R.B., McLaughlin B.L., Gerling G.J., Langhals N.B., Urbanchek M.G., Cederna P.S. Providing a sense of touch to prosthetic hands. Plast. Reconstr. Surg. 2015;135:1652–1663. doi: 10.1097/PRS.0000000000001289.
    1. Petrini F.M., Valle G., Strauss I., Granata G., Di Iorio R., D’Anna E., Cvancara P., Mueller M., Carpaneto J., Clemente F., et al. Six-Month Assessment of a Hand Prosthesis with Intraneural Tactile Feedback. Ann. Neurol. 2019;85:137–154. doi: 10.1002/ana.25384.
    1. Svensson P., Wijk U., Bjorkman A., Antfolk C. A review of invasive and non-invasive sensory feedback in upper limb prostheses. Expert. Rev. Med. Devices. 2017;14:439–447. doi: 10.1080/17434440.2017.1332989.
    1. Crea S., Cipriani C., Donati M., Carrozza M.C., Vitiello N. Providing time-discrete gait information by wearable feedback apparatus for lower-limb amputees: Usability and functional validation. IEEE Trans. Neural. Syst. Rehabil. Eng. 2015;23:250–257. doi: 10.1109/TNSRE.2014.2365548.
    1. Dietrich C., Nehrdich S., Seifert S., Blume K.R., Miltner W.H.R., Hofmann G.O., Weiss T. Leg Prosthesis With Somatosensory Feedback Reduces Phantom Limb Pain and Increases Functionality. Front. Neurol. 2018;9:270. doi: 10.3389/fneur.2018.00270.
    1. Raspopovic S., Valle G., Petrini F.M. Sensory feedback for limb prostheses in amputees. Nat. Mater. 2021;20:925–939. doi: 10.1038/s41563-021-00966-9.
    1. Petrini F.M., Bumbasirevic M., Valle G., Ilic V., Mijovic P., Cvancara P., Barberi F., Katic N., Bortolotti D., Andreu D., et al. Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nat. Med. 2019;25:1356–1363. doi: 10.1038/s41591-019-0567-3.
    1. Zelechowski M., Valle G., Raspopovic S. A computational model to design neural interfaces for lower-limb sensory neuroprostheses. J. Neuroeng. Rehabil. 2020;17:24. doi: 10.1186/s12984-020-00657-7.
    1. Jay S.J. Reference equations for the six-minute walk in healthy adults. Am. J. Respir. Crit. Care Med. 2000;161:1396. doi: 10.1164/ajrccm.161.4.16147a.
    1. Moore M., Barker K. The validity and reliability of the four square step test in different adult populations: A systematic review. Syst. Rev. 2017;6:187. doi: 10.1186/s13643-017-0577-5.
    1. Podsiadlo D., Richardson S. The timed ″Up & Go″: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991;39:142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x.
    1. Bartusch S.L., Sanders B.J., D’Alessio J.G., Jernigan J.R. Clonazepam for the treatment of lancinating phantom limb pain. Clin. J. Pain. 1996;12:59–62. doi: 10.1097/00002508-199603000-00011.
    1. Mucke M., Cuhls H., Radbruch L., Weigl T., Rolke R. Evidence of heterosynaptic LTD in the human nociceptive system: Superficial skin neuromodulation using a matrix electrode reduces deep pain sensitivity. PLoS ONE. 2014;9:e107718. doi: 10.1371/journal.pone.0107718.
    1. Souza J.M., Cheesborough J.E., Ko J.H., Cho M.S., Kuiken T.A., Dumanian G.A. Targeted muscle reinnervation: A novel approach to postamputation neuroma pain. Clin. Orthop. Relat. Res. 2014;472:2984–2990. doi: 10.1007/s11999-014-3528-7.
    1. Bowen J.B., Wee C.E., Kalik J., Valerio I.L. Targeted Muscle Reinnervation to Improve Pain, Prosthetic Tolerance, and Bioprosthetic Outcomes in the Amputee. Adv. Wound Care New Rochelle. 2017;6:261–267. doi: 10.1089/wound.2016.0717.
    1. Kubiak C.A., Kemp S.W.P., Cederna P.S., Kung T.A. Prophylactic Regenerative Peripheral Nerve Interfaces to Prevent Postamputation Pain. Plast. Reconstr. Surg. 2019;144:421e–430e. doi: 10.1097/PRS.0000000000005922.
    1. Alexander J.H., Jordan S.W., West J.M., Compston A., Fugitt J., Bowen J.B., Dumanian G.A., Pollock R., Mayerson J.L., Scharschmidt T.J., et al. Targeted muscle reinnervation in oncologic amputees: Early experience of a novel institutional protocol. J. Surg. Oncol. 2019;120:348–358. doi: 10.1002/jso.25586.
    1. Chappell A.G., Jordan S.W., Dumanian G.A. Targeted Muscle Reinnervation for Treatment of Neuropathic Pain. Clin. Plast. Surg. 2020;47:285–293. doi: 10.1016/j.cps.2020.01.002.
    1. Valerio I.L., Dumanian G.A., Jordan S.W., Mioton L.M., Bowen J.B., West J.M., Porter K., Ko J.H., Souza J.M., Potter B.K. Preemptive Treatment of Phantom and Residual Limb Pain with Targeted Muscle Reinnervation at the Time of Major Limb Amputation. J. Am. Coll Surg. 2019;228:217–226. doi: 10.1016/j.jamcollsurg.2018.12.015.
    1. Dumanian G.A., Potter B.K., Mioton L.M., Ko J.H., Cheesborough J.E., Souza J.M., Ertl W.J., Tintle S.M., Nanos G.P., Valerio I.L., et al. Targeted Muscle Reinnervation Treats Neuroma and Phantom Pain in Major Limb Amputees: A Randomized Clinical Trial. Ann. Surg. 2019;270:238–246. doi: 10.1097/SLA.0000000000003088.
    1. Arakeri T.J., Hasse B.A., Fuglevand A.J. Object discrimination using electrotactile feedback. J. Neural. Eng. 2018;15:046007. doi: 10.1088/1741-2552/aabc9a.
    1. Strbac M., Isakovic M., Belic M., Popovic I., Simanic I., Farina D., Keller T., Dosen S. Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees. IEEE Trans. Neural. Syst. Rehabil. Eng. 2017;25:2133–2145. doi: 10.1109/TNSRE.2017.2712287.
    1. Rokhmanova N., Rombokas E. Vibrotactile Feedback Improves Foot Placement Perception on Stairs for Lower-Limb Prosthesis Users. IEEE Int. Conf. Rehabil. Robot. 2019;2019:1215–1220. doi: 10.1109/ICORR.2019.8779518.
    1. Rusaw D., Hagberg K., Nolan L., Ramstrand N. Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss? J. Rehabil. Res. Dev. 2012;49:1239–1254. doi: 10.1682/JRRD.2011.05.0088.
    1. Antfolk C., D’Alonzo M., Controzzi M., Lundborg G., Rosen B., Sebelius F., Cipriani C. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: Vibrotactile versus mechanotactile sensory feedback. IEEE Trans. Neural. Syst. Rehabil. Eng. 2013;21:112–120. doi: 10.1109/TNSRE.2012.2217989.

Source: PubMed

3
Tilaa