Assessment of sublingual microcirculation in critically ill patients: consensus and debate

Olcay Dilken, Bulent Ergin, Can Ince, Olcay Dilken, Bulent Ergin, Can Ince

Abstract

The main concern in shock and resuscitation is whether the microcirculation can carry adequate oxygen to the tissues and remove waste. Identification of an intact coherence between macro- and microcirculation during states of shock and resuscitation shows a functioning regulatory mechanism. However, loss of hemodynamic coherence between the macro and microcirculation can be encountered frequently in sepsis, cardiogenic shock, or any hemodynamically compromised patient. This loss of hemodynamic coherence results in an improvement in macrohemodynamic parameters following resuscitation without a parallel improvement in microcirculation resulting in tissue hypoxia and tissue compromise. Hand-held vital microscopes (HVMs) can visualize the microcirculation and help to diagnose the nature of microcirculatory shock. Although treatment with the sole aim of recruiting the microcirculation is as yet not realized, interventions can be tailored to the needs of the patient while monitoring sublingual microcirculation. With the help of the newly introduced software, called MicroTools, we believe sublingual microcirculation monitoring and diagnosis will be an essential point-of-care tool in managing shock patients.

Keywords: Crit Care; coherence; microcirculation; sepsis; shock.

Conflict of interest statement

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/atm.2020.03.222). The series “Hemodynamic Monitoring in Critically Ill Patients” was commissioned by the editorial office without any funding or sponsorship. CI has received a grant from CytoSorb to commence a randomized controlled trial on the effect of the adsorber on the microcirculation of critically ill patients at the department of Intensive Care of the Erasmus Medical Center Rotterdam. CI and his team provide services and training with regard to clinical microcirculation. To this purpose, he runs an internet site called https://www.microcirculationacademy.org. The internet site and its activities are run by a company called Active Medical BV of which he owns shares. The other authors have no other conflicts of interest to declare.

2020 Annals of Translational Medicine. All rights reserved.

Figures

Figure 1
Figure 1
Sublingual microcirculation images of (I): healthy patient; (II): fluid resuscitated shock patient. (I) Normal visualization of capillary network in the sublingual area. Capillaries in (II) are denoted by A, B and C, in hemodilution. Also, the total number of vessels are considerably reduced in (II) compared to (I).
Figure 2
Figure 2
Type 1: flow heterogeneity. Heterogeneous perfusion as encountered in septic patients. Glycocalyx destruction is evident in the lower capillary. Leukocytes migrate through the endothelial cells and induce tissue damage via cytokines and other various mechanisms.
Figure 3
Figure 3
Type 2: hemodilution. Increased distance between red blood cells in the capillary. Capillary hematocrit is decreased and tissue oxygenation is impaired albeit an unimpeded blood flow in the capillary.
Figure 4
Figure 4
Type 3: stasis. Increased vascular resistance by excess use of vasopressors, or increased venous pressures impede or totally occlude the blood flow (R: resistance).
Figure 5
Figure 5
Type 4: edema. Tissue edema caused by increased capillary leak result into increased oxygen diffusion distance and reduced oxygen transport.

References

    1. Ince C, Boerma EC, Cecconi M, et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Med. Intensive Care Med 2018;44:281-99. 10.1007/s00134-018-5070-7
    1. Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care 2015;19 Suppl 3:S8. 10.1186/cc14726
    1. Buijs EA, Reiss IK, Kraemer U, et al. Increasing mean arterial blood pressure and heart rate with catecholaminergic drugs does not improve the microcirculation in children with congenital diaphragmatic hernia: a prospective cohort study. Pediatr Crit Care Med 2014;15:343-54. 10.1097/PCC.0000000000000105
    1. Corstiaan A, Lagrand WK, van der Ent M, et al. Conventional hemodynamic resuscitation may fail to optimize tissue perfusion: an observational study on the effects of dobutamine, enoximone, and norepinephrine in patients with acute myocardial infarction complicated by cardiogenic shock. PLoS One 2014;9:e103978. 10.1371/journal.pone.0103978
    1. Ait-Oufella H, Bourcier S, Lehoux S, et al. Microcirculatory disorders during septic shock. Curr Opin Crit Care 2015;21:271-5. 10.1097/MCC.0000000000000217
    1. Ince C, Mayeux PR, Nguyen T, et al. The endothelium in sepsis. Shock (Augusta, Ga) 2016;45:259. 10.1097/SHK.0000000000000473
    1. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 2007;9:121-67. 10.1146/annurev.bioeng.9.060906.151959
    1. Curry FE, Adamson RH. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 2012;40:828-39. 10.1007/s10439-011-0429-8
    1. Becker BF, Chappell D, Bruegger D, et al. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res 2010;87:300-10. 10.1093/cvr/cvq137
    1. Tarbell JM, Pahakis MY. Mechanotransduction and the glycocalyx. J Intern Med 2006;259:339-50. 10.1111/j.1365-2796.2006.01620.x
    1. Rubio-Gayosso I, Platts SH, Duling BR. Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2006;290:H2247-56. 10.1152/ajpheart.00796.2005
    1. Schmidt EP, Yang Y, Janssen WJ, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 2012;18:1217-23. 10.1038/nm.2843
    1. Aksu U, Bezemer R, Yavuz B, et al. Balanced vs unbalanced crystalloid resuscitation in a near-fatal model of hemorrhagic shock and the effects on renal oxygenation, oxidative stress, and inflammation. Resuscitation 2012;83:767-73. 10.1016/j.resuscitation.2011.11.022
    1. Marechal X, Favory R, Joulin O, et al. Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock 2008;29:572-6.
    1. Shapiro NI, Schuetz P, Yano K, et al. The association of endothelial cell signaling, severity of illness, and organ dysfunction in sepsis. Crit Care 2010;14:R182. 10.1186/cc9290
    1. Lima A, Bakker J. Noninvasive monitoring of peripheral perfusion. Intensive Care Med 2005;31:1316-26. 10.1007/s00134-005-2790-2
    1. Ait-Oufella H, Bourcier S, Alves M, et al. Alteration of skin perfusion in mottling area during septic shock. Ann Intensive Care 2013;3:31. 10.1186/2110-5820-3-31
    1. Bourcier S, Joffre J, Dubée V, et al. Marked regional endothelial dysfunction in mottled skin area in patients with severe infections. Crit Care 2017;21:155. 10.1186/s13054-017-1742-x
    1. Becker L, Prado K, Foppa M, et al. Endothelial dysfunction assessed by brachial artery ultrasound in severe sepsis and septic shock. J Crit Care 2012;27:316.e9-14. 10.1016/j.jcrc.2011.08.002
    1. Lima A, Jansen TC, van Bommel J, et al. The prognostic value of the subjective assessment of peripheral perfusion in critically ill patients. Crit Care Med 2009;37:934-8. 10.1097/CCM.0b013e31819869db
    1. Hernandez G, Pedreros C, Veas E, et al. Evolution of peripheral vs metabolic perfusion parameters during septic shock resuscitation. A clinical-physiologic study. J Crit Care 2012;27:283-8. 10.1016/j.jcrc.2011.05.024
    1. Ait-Oufella H, Bige N, Boelle PY, et al. Capillary refill time exploration during septic shock. Intensive Care Med 2014;40:958-64. 10.1007/s00134-014-3326-4
    1. Ait-Oufella H, Bakker J. Understanding clinical signs of poor tissue perfusion during septic shock. Intensive Care Med 2016;42:2070-2. 10.1007/s00134-016-4250-6
    1. Dubin A, Henriquez E, Hernández G. Monitoring peripheral perfusion and microcirculation. Curr Opin Crit Care 2018;24:173-80. 10.1097/MCC.0000000000000495
    1. Hernández G, Ospina-Tascón GA, Damiani LP, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial. JAMA 2019;321:654-64. 10.1001/jama.2019.0071
    1. Brunauer A, Koköfer A, Bataar O, et al. Changes in peripheral perfusion relate to visceral organ perfusion in early septic shock: a pilot study. J Crit Care 2016;35:105-9. 10.1016/j.jcrc.2016.05.007
    1. de Moura EB, Amorim FF, da Cruz Santana AN, et al. Skin mottling score as a predictor of 28-day mortality in patients with septic shock. Intensive Care Med 2016;42:479-80. 10.1007/s00134-015-4184-4
    1. Ait-Oufella H, Lemoinne S, Boelle PY, et al. Mottling score predicts survival in septic shock. Intensive Care Med 2011;37:801-7. 10.1007/s00134-011-2163-y
    1. Lipcsey M, Woinarski NC, Bellomo R. Near infrared spectroscopy (NIRS) of the thenar eminence in anesthesia and intensive care. Ann Intensive Care 2012;2:11. 10.1186/2110-5820-2-11
    1. Neto AS, Pereira VGM, Manetta JA, et al. Association between static and dynamic thenar near-infrared spectroscopy and mortality in patients with sepsis: a systematic review and meta-analysis. J Trauma Acute Care Surg 2014;76:226-33. 10.1097/TA.0b013e3182a9221f
    1. Lima A, van Bommel J, Sikorska K, et al. The relation of near-infrared spectroscopy with changes in peripheral circulation in critically ill patients. Crit Care Med 2011;39:1649-54. 10.1097/CCM.0b013e3182186675
    1. Verdant CL, De Backer D, Bruhn A, et al. Evaluation of sublingual and gut mucosal microcirculation in sepsis: a quantitative analysis. Crit Care Med 2009;37:2875-81. 10.1097/CCM.0b013e3181b029c1
    1. Pranskunas A, Pilvinis V, Dambrauskas Z, et al. Early course of microcirculatory perfusion in eye and digestive tract during hypodynamic sepsis. Crit Care 2012;16:R83. 10.1186/cc11341
    1. Jacquet-Lagreze M, Allaouchiche B, Restagno D, et al. Gut and sublingual microvascular effect of esmolol during septic shock in a porcine model. Crit Care 2015;19:241. 10.1186/s13054-015-0960-3
    1. Sui F, Zheng Y, Li WX, et al. Renal circulation and microcirculation during intra-abdominal hypertension in a porcine model. Eur Rev Med Pharmacol Sci 2016;20:452-61.
    1. Lima A, van Rooij T, Ergin B, et al. Dynamic contrast-enhanced ultrasound identifies microcirculatory alterations in sepsis-induced acute kidney injury. Crit Care Med 2018;46:1284-92. 10.1097/CCM.0000000000003209
    1. Aykut G, Veenstra G, Scorcella C, et al. Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation. Intensive Care Med Exp 2015;3:40. 10.1186/s40635-015-0040-7
    1. Van Elteren HA, Ince C, Tibboel D, et al. Cutaneous microcirculation in preterm neonates: comparison between sidestream dark field (SDF) and incident dark field (IDF) imaging. J Clin Monit Comput 2015;29:543-8. 10.1007/s10877-015-9708-5
    1. Dobbe JGG, Streekstra GJ, Atasever B, et al. Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Med Biol Eng Comput 2008;46:659. 10.1007/s11517-008-0349-4
    1. Hilty MP, Guerci P, Ince Y, et al. MicroTools enables automated quantification of capillary density and red blood cell velocity in handheld vital microscopy. Commun Biol 2019;2:217. 10.1038/s42003-019-0473-8
    1. Bateman RM, Sharpe MD, Ellis CG. Bench-to-bedside review: microvascular dysfunction in sepsis–hemodynamics, oxygen transport, and nitric oxide. Crit Care 2003;7:359. 10.1186/cc2353
    1. Massey MJ, LaRochelle E, Najarro G, et al. The microcirculation image quality score: development and preliminary evaluation of a proposed approach to grading quality of image acquisition for bedside videomicroscopy. J Crit Care 2013;28:913-7. 10.1016/j.jcrc.2013.06.015
    1. Massey MJ, Shapiro NI. A guide to human in vivo microcirculatory flow image analysis. Crit Care 2016;20:35. 10.1186/s13054-016-1213-9
    1. Tanaka S, Harrois A, Nicolaï C, et al. Qualitative real-time analysis by nurses of sublingual microcirculation in intensive care unit: the MICRONURSE study. Crit Care 2015;19:388. 10.1186/s13054-015-1106-3
    1. Arnold RC, Parrillo JE, Dellinger RP, et al. Point-of-care assessment of microvascular blood flow in critically ill patients. Intensive Care Med 2009;35:1761-6. 10.1007/s00134-009-1517-1
    1. Cerny V, Abdo I, George RB, et al. Analysis of microcirculation measurements by novice users trained by a standardized interactive tutorial: An inter-observer variability study. Clin Hemorheol Microcirc 2016;62:123-8. 10.3233/CH-151958
    1. Scorcella C, Damiani E, Domizi R, et al. MicroDAIMON study: Microcirculatory DAIly MONitoring in critically ill patients: a prospective observational study. 2018;8:64.
    1. De Backer D, Creteur J, Preiser JC, et al. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 2002;166:98-104. 10.1164/rccm.200109-016OC
    1. Pranskunas A, Tamosuitis T, Balciuniene N, et al. Alterations of conjunctival glycocalyx and microcirculation in non-septic critically ill patients. Microvasc Res 2018;118:44-8. 10.1016/j.mvr.2018.02.004
    1. Akin S, Dos Reis Miranda D, Caliskan K, et al. Functional evaluation of sublingual microcirculation indicates successful weaning from VA-ECMO in cardiogenic shock. Crit Care 2017;21:265. 10.1186/s13054-017-1855-2
    1. Hudetz AG, Wood JD, Biswal BB, et al. Effect of hemodilution on RBC velocity, supply rate, and hematocrit in the cerebral capillary network. J Appl Physiol (1985) 1999;87:505-9. 10.1152/jappl.1999.87.2.505
    1. Edul VSK, Ince C, Vazquez AR, et al. Similar microcirculatory alterations in patients with normodynamic and hyperdynamic septic shock. Ann Am Thorac Soc 2016;13:240-7.
    1. Edul VSK, Enrico C, Laviolle B, et al. Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Crit Care Med 2012;40:1443-8. 10.1097/CCM.0b013e31823dae59
    1. Nakagawa NK, Nogueira RA, Correia CJ, et al. Leukocyte-endothelium interactions after hemorrhagic shock/reperfusion and cecal ligation/puncture: an intravital microscopic study in rat mesentery. Shock 2006;26:180-6. 10.1097/01.shk.0000223133.10254.82
    1. Uz Z, van Gulik TM, Aydemirli MD, et al. Identification and quantification of human microcirculatory leukocytes using handheld video microscopes at the bedside. J Appl Physiol (1985) 2018;124:1550-7. 10.1152/japplphysiol.00962.2017
    1. Pottecher J, Deruddre S, Teboul JL, et al. Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients. Intensive Care Med 2010;36:1867-74. 10.1007/s00134-010-1966-6
    1. Ospina-Tascon G, Neves AP, Occhipinti G, et al. Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med 2010;36:949-55. 10.1007/s00134-010-1843-3
    1. Dubin A, Pozo MO, Casabella CA, et al. Comparison of 6% hydroxyethyl starch 130/0.4 and saline solution for resuscitation of the microcirculation during the early goal-directed therapy of septic patients. J Crit Care 2010;25:659.e1-8. 10.1016/j.jcrc.2010.04.007
    1. Tanaka S, Escudier E, Hamada S, et al. Effect of RBC transfusion on sublingual microcirculation in hemorrhagic shock patients: a pilot study. Crit Care Med 2017;45:e154-60. 10.1097/CCM.0000000000002064
    1. Sakr Y, Chierego M, Piagnerelli M, et al. Microvascular response to red blood cell transfusion in patients with severe sepsis. Crit Care Med 2007;35:1639-44. 10.1097/01.CCM.0000269936.73788.32
    1. Yuruk K, Almac E, Bezemer R, et al. Blood transfusions recruit the microcirculation during cardiac surgery. Transfusion 2011;51:961-7. 10.1111/j.1537-2995.2010.02971.x
    1. Atasever B, van der Kuil M, Boer C, et al. Red blood cell transfusion compared with gelatin solution and no infusion after cardiac surgery: effect on microvascular perfusion, vascular density, hemoglobin, and oxygen saturation. Transfusion 2012;52:2452-8. 10.1111/j.1537-2995.2012.03802.x
    1. De Backer D, Creteur J, Dubois MJ, et al. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 2006;34:403-8. 10.1097/01.CCM.0000198107.61493.5A
    1. Hernandez G, Bruhn A, Luengo C, et al. Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study. Intensive Care Med 2013;39:1435-43. 10.1007/s00134-013-2982-0
    1. Büchele GL, Silva E, Ospina-Tascon GA, et al. Effects of hydrocortisone on microcirculatory alterations in patients with septic shock. Crit Care Med 2009;37:1341-7. 10.1097/CCM.0b013e3181986647
    1. De Backer D, Donadello K, Sakr Y, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med 2013;41:791-9. 10.1097/CCM.0b013e3182742e8b
    1. Meinders A-J, Nieuwenhuis L, Ince C, et al. Haemodialysis impairs the human microcirculation independent from macrohemodynamic parameters. Blood Purif 2015;40:38-44. 10.1159/000380902
    1. Dubin A, Pozo MO, Casabella CA, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care 2009;13:R92. 10.1186/cc7922
    1. Arnold RC, Dellinger RP, Parrillo JE, et al. Discordance between microcirculatory alterations and arterial pressure in patients with hemodynamic instability. J Crit Care 2012;27:531.e1-7. 10.1016/j.jcrc.2012.02.007
    1. Sakr Y, Dubois MJ, De Backer D, et al. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 2004;32:1825-31. 10.1097/01.CCM.0000138558.16257.3F
    1. De Backer D, Orbegozo Cortes D, Donadello K, et al. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence 2014;5:73-9. 10.4161/viru.26482
    1. Vincent JL, De Backer D. Circulatory shock. N Engl J Med 2013;369:1726-34. 10.1056/NEJMra1208943
    1. Doerschug KC, Delsing AS, Schmidt GA, et al. Impairments in microvascular reactivity are related to organ failure in human sepsis. Am J Physiol Heart Circ Physiol 2007;293:H1065-71. 10.1152/ajpheart.01237.2006
    1. Shapiro NI, Arnold R, Sherwin R, et al. The association of near-infrared spectroscopy-derived tissue oxygenation measurements with sepsis syndromes, organ dysfunction and mortality in emergency department patients with sepsis. Crit Care 2011;15:R223. 10.1186/cc10463
    1. Trzeciak S, McCoy JV, Dellinger RP, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med 2008;34:2210-7. 10.1007/s00134-008-1193-6
    1. Shih CC, Liu CM, Chao A, et al. Matched Comparison of Microcirculation Between Healthy Volunteers and Patients with Sepsis. Asian J Anesthesiol 2018;56:14-22.
    1. Uz Z, Ince C, Guerci P, et al. Recruitment of sublingual microcirculation using handheld incident dark field imaging as a routine measurement tool during the postoperative de-escalation phase—a pilot study in post ICU cardiac surgery patients. Perioper Med (Lond) 2018;7:18. 10.1186/s13741-018-0091-x
    1. Nascente APM, Freitas FGR, Bakker J, et al. Microcirculation improvement after short-term infusion of vasopressin in septic shock is dependent on noradrenaline. Clinics (Sao Paulo) 2017;72:750-7. 10.6061/clinics/2017(12)06
    1. Vellinga NA, Ince C, Boerma EC. Elevated central venous pressure is associated with impairment of microcirculatory blood flow in sepsis: a hypothesis generating post hoc analysis. BMC Anesthesiol 2013;13:17. 10.1186/1471-2253-13-17
    1. Kanoore Edul VS, Ince C, Dubin A. What is microcirculatory shock? Curr Opin Crit Care 2015;21:245-52. 10.1097/MCC.0000000000000196
    1. Legrand M, Ait-Oufella H, Ince C. Could resuscitation be based on microcirculation data? Yes. Intensive Care Med 2018;44:944-6. 10.1007/s00134-018-5121-0
    1. Pranskunas A, Koopmans M, Koetsier PM, et al. Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy. Intensive Care Med 2013;39:612-9. 10.1007/s00134-012-2793-8
    1. Malbrain MLNG, Van Regenmortel N, Saugel B, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy. Ann Intensive Care 2018;8:66. 10.1186/s13613-018-0402-x
    1. Sadaka F, Juarez M, Naydenov S, et al. Fluid resuscitation in septic shock: the effect of increasing fluid balance on mortality. J Intensive Care Med 2014;29:213-7. 10.1177/0885066613478899
    1. Ferrara G, Kanoore Edul VS, Martins E, et al. Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage. J Appl Physiol (1985) 2016;120:1132-40.
    1. Dépret F, Sitbon A, Soussi S, et al. Intravenous iloprost to recruit the microcirculation in septic shock patients? Intensive Care Med 2018;44:121-2. 10.1007/s00134-017-4935-5
    1. Hilty MP, Pichler J, Ergin B, et al. Assessment of endothelial cell function and physiological microcirculatory reserve by video microscopy using a topical acetylcholine and nitroglycerin challenge. Intensive Care Med Exp 2017;5:26. 10.1186/s40635-017-0139-0
    1. Spronk PE, Ince C, Gardien MJ, et al. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 2002;360:1395-6. 10.1016/S0140-6736(02)11393-6
    1. Boerma EC, Koopmans M, Konijn A, et al. Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: a double-blind randomized placebo controlled trial. Crit Care Med 2010;38:93-100. 10.1097/CCM.0b013e3181b02fc1
    1. Morelli A, Donati A, Ertmer C, et al. Short-term effects of terlipressin bolus infusion on sublingual microcirculatory blood flow during septic shock. Intensive Care Med 2011;37:963-9. 10.1007/s00134-011-2148-x
    1. Morelli A, Donati A, Ertmer C, et al. Effects of vasopressinergic receptor agonists on sublingual microcirculation in norepinephrine-dependent septic shock. Crit Care 2011;15:R217. 10.1186/cc10453
    1. Boerma EC, van der Voort PH, Ince C. Sublingual microcirculatory flow is impaired by the vasopressin-analogue terlipressin in a patient with catecholamine-resistant septic shock. Acta Anaesthesiol Scand 2005;49:1387-90. 10.1111/j.1399-6576.2005.00752.x
    1. Ospina-Tascón GA, Umaña M, Bermúdez WF, et al. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med 2016;42:211-21. 10.1007/s00134-015-4133-2
    1. Weinberg JA, MacLennan PA, Vandromme–Cusick MJ, et al. Microvascular response to red blood cell transfusion in trauma patients. Shock (Augusta, Ga) 2012;37:276. 10.1097/SHK.0b013e318241b739
    1. Ayhan B, Yuruk K, Koene S, et al. The effects of non-leukoreduced red blood cell transfusions on microcirculation in mixed surgical patients. Transfusion and Apheresis Science 2013;49:212-22. 10.1016/j.transci.2013.01.016
    1. Marik PE. Steroids for sepsis: yes, no or maybe. J Thorac Dis 2018;10:S1070-3. 10.21037/jtd.2018.04.35

Source: PubMed

3
Tilaa