Effects of Acute Sleep Loss on Physical Performance: A Systematic and Meta-Analytical Review

Jonathan Craven, Danielle McCartney, Ben Desbrow, Surendran Sabapathy, Phillip Bellinger, Llion Roberts, Christopher Irwin, Jonathan Craven, Danielle McCartney, Ben Desbrow, Surendran Sabapathy, Phillip Bellinger, Llion Roberts, Christopher Irwin

Abstract

Background: Sleep loss may influence subsequent physical performance. Quantifying the impact of sleep loss on physical performance is critical for individuals involved in athletic pursuits.

Design: Systematic review and meta-analysis.

Search and inclusion: Studies were identified via the Web of Science, Scopus, and PsycINFO online databases. Investigations measuring exercise performance under 'control' (i.e., normal sleep, > 6 h in any 24 h period) and 'intervention' (i.e., sleep loss, ≤ 6 h sleep in any 24 h period) conditions were included. Performance tasks were classified into different exercise categories (anaerobic power, speed/power endurance, high-intensity interval exercise (HIIE), strength, endurance, strength-endurance, and skill). Multi-level random-effects meta-analyses and meta-regression analyses were conducted, including subgroup analyses to explore the influence of sleep-loss protocol (e.g., deprivation, restriction, early [delayed sleep onset] and late restriction [earlier than normal waking]), time of day the exercise task was performed (AM vs. PM) and body limb strength (upper vs. lower body).

Results: Overall, 227 outcome measures (anaerobic power: n = 58; speed/power endurance: n = 32; HIIE: n = 27; strength: n = 66; endurance: n = 22; strength-endurance: n = 9; skill: n = 13) derived from 69 publications were included. Results indicated a negative impact of sleep loss on the percentage change (%Δ) in exercise performance (n = 959 [89%] male; mean %Δ = - 7.56%, 95% CI - 11.9 to - 3.13, p = 0.001, I2 = 98.1%). Effects were significant for all exercise categories. Subgroup analyses indicated that the pattern of sleep loss (i.e., deprivation, early and late restriction) preceding exercise is an important factor, with consistent negative effects only observed with deprivation and late-restriction protocols. A significant positive relationship was observed between time awake prior to the exercise task and %Δ in performance for both deprivation and late-restriction protocols (~ 0.4% decrease for every hour awake prior to exercise). The negative effects of sleep loss on different exercise tasks performed in the PM were consistent, while tasks performed in the AM were largely unaffected.

Conclusions: Sleep loss appears to have a negative impact on exercise performance. If sleep loss is anticipated and unavoidable, individuals should avoid situations that lead to experiencing deprivation or late restriction, and prioritise morning exercise in an effort to maintain performance.

Conflict of interest statement

Jonathan Craven, Danielle McCartney, Ben Desbrow, Surendran Sabapathy, Phillip Bellinger, Llion Roberts and Christopher Irwin have no conflicts of interest to declare that are directly relevant to the contents of this article.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Types of sleep loss encountered
Fig. 2
Fig. 2
PRISMA flow chart (study selection methodology). Some publications contained multiple participant pools. In these instances, the individual participant pools were termed ‘studies’. Some studies investigated the influence of more than one sleep-loss protocol (i.e., deprivation, early or late restriction). In these instances, the separate study arms were treated as individual investigations, and termed ‘trials’. Each individual task from a given trial was termed ‘outcome measure’. ESM Table S1 provides the original search breakdown; ESM Table S2 provides the origin of included publications; and ESM Table S3 provides the reference and reason for exclusion of full-text publications. HIIE high-intensity interval exercise, ESM electronic supplementary material
Fig. 3
Fig. 3
Relationship between time awake and the mean percentage change (95% CIs shown by the grey shaded area) in exercise performance for all tasks (combined exercise categories). Circle diameter corresponds to the weight of the outcome measure from each trial. a Sleep restriction (n = 121): mean %Δ =  − 0.36, 95% CI − 0.52 to − 0.19; p < 0.001. Green circles represent ‘sleep restriction’ (not further defined); blue circles represent ‘early restriction’; and orange circles represent ‘late restriction’. b Sleep deprivation (n = 97): mean %Δ =  − 0.30, 95% CI − 0.59 to 0.01; p = 0.051. Deprivation: participants did not sleep for an extended period of time (i.e., whole night); early restriction: participants delayed sleep (i.e., went to sleep at a later time); late restriction: participants awakened earlier than normal. CIs confidence intervals

References

    1. Leong RLF, Cheng GH, Chee MWL, Lo JC. The effects of sleep on prospective memory: a systematic review and meta-analysis. Sleep Med Rev. 2019;47:18–27. doi: 10.1016/j.smrv.2019.05.006.
    1. Baglioni C, Spiegelhalder K, Lombardo C, Riemann D. Sleep and emotions: a focus on insomnia. Sleep Med Rev. 2010;14(4):227–238. doi: 10.1016/j.smrv.2009.10.007.
    1. Morselli LL, Guyon A, Spiegel K. Sleep and metabolic function. Pflugers Arch. 2012;463(1):139–160. doi: 10.1007/s00424-011-1053-z.
    1. Besedovsky L, Lange T, Born J. Sleep and immune function. Pflugers Arch. 2012;463(1):121–137. doi: 10.1007/s00424-011-1044-0.
    1. van Dalfsen JH, Markus CR. The influence of sleep on human hypothalamic-pituitary-adrenal (HPA) axis reactivity: a systematic review. Sleep Med Rev. 2018;39:187–194. doi: 10.1016/j.smrv.2017.10.002.
    1. Adams RJ, Appleton SL, Taylor AW, Gill TK, Lang C, McEvoy RD, et al. Sleep health of Australian adults in 2016: results of the 2016 Sleep Health Foundation national survey. Sleep Health. 2017;3(1):35–42. doi: 10.1016/j.sleh.2016.11.005.
    1. Walsh NP, Halson SL, Sargent C, Roach GD, Nedelec M, Gupta L, et al. Sleep and the athlete: narrative review and 2021 expert consensus recommendations. Br J Sports Med. 2020;55:356–368. doi: 10.1136/bjsports-2020-102025.
    1. Cho Y, Ryu SH, Lee BR, Kim KH, Lee E, Choi J. Effects of artificial light at night on human health: a literature review of observational and experimental studies applied to exposure assessment. Chronobiol Int. 2015;32(9):1294–1310. doi: 10.3109/07420528.2015.1073158.
    1. Lohsoonthorn V, Khidir H, Casillas G, Lertmaharit S, Tadesse MG, Pensuksan WC, et al. Sleep quality and sleep patterns in relation to consumption of energy drinks, caffeinated beverages, and other stimulants among Thai college students. Sleep Breath. 2013;17(3):1017–1028. doi: 10.1007/s11325-012-0792-1.
    1. Wetter DW, Young TB. The relation between cigarette smoking and sleep disturbance. Prev Med. 1994;23:328–334. doi: 10.1006/pmed.1994.1046.
    1. Fuller KH, Waters WF, Binks PG, Anderson T. Generalized anxiety and sleep architecture—a polysomnographic investigation. Sleep. 1997;20(5):370–376. doi: 10.1093/sleep/20.5.370.
    1. Prather AA, Carroll JE. Associations between sleep duration, shift work, and infectious illness in the United States: Data from the National Health Interview Survey. Sleep Health. 2021;7(5):638–643. doi: 10.1016/j.sleh.2021.05.004.
    1. Sehgal A, Mignot E. Genetics of sleep and sleep disorders. Cell. 2011;146(2):194–207. doi: 10.1016/j.cell.2011.07.004.
    1. De Gennaro L, Marzano C, Fratello F, Moroni F, Pellicciari MC, Ferlazzo F, et al. The electroencephalographic fingerprint of sleep is genetically determined: a twin study. Ann Neurol. 2008;64(4):455–460. doi: 10.1002/ana.21434.
    1. Sargent C, Lastella M, Halson SL, Roach GD. How much sleep does an elite athlete need? Int J Sports Physiol Perform. 2021;16(12):1746–1757. doi: 10.1123/ijspp.2020-0896.
    1. Hoshikawa M, Uchida S, Hirano Y. A subjective assessment of the prevalence and factors associated with poor sleep quality amongst elite Japanese athletes. Sports Med Open. 2018;4(1):10. doi: 10.1186/s40798-018-0122-7.
    1. Andrade A, Bevilacqua GG, Casagrande PO, Brandt R, Coimbra D. Prevalence of poor sleep quality in athletes before competition. Physician Sportsmed. 2021;49(2):137–142. doi: 10.1080/00913847.2020.1784688.
    1. Drew M, Vlahovich N, Hughes D, Appaneal R, Burke LM, Lundy B, et al. Prevalence of illness, poor mental health and sleep quality and low energy availability prior to the 2016 Summer Olympic Games. Br J Sports Med. 2018;52(1):47–53. doi: 10.1136/bjsports-2017-098208.
    1. Swinbourne R, Gill N, Vaile J, Smart D. Prevalence of poor sleep quality, sleepiness and obstructive sleep apnoea risk factors in athletes. Eur J Sport Sci. 2016;16(7):850–858. doi: 10.1080/17461391.2015.1120781.
    1. Leeder J, Glaister M, Pizzoferro K, Dawson J, Pedlar C. Sleep duration and quality in elite athletes measured using wristwatch actigraphy. J Sports Sci. 2012;30(6):541–545. doi: 10.1080/02640414.2012.660188.
    1. de Souza Bleyer FT, Barbosa DG, Andrade RD, Teixeira CS, Felden EPG. Sleep and musculoskeletal complaints among elite athletes of Santa Catarina. Rev Dor. 2015;16(2):102–108.
    1. George CFP, Kab V, Kab P, Villa JJ, Levy AM. Sleep and breathing in professional football players. Sleep Med. 2003;4(4):317–325. doi: 10.1016/S1389-9457(03)00113-8.
    1. Gupta L, Morgan K, Gilchrist S. Does elite sport degrade sleep quality? A systematic review. Sports Med. 2017;47(7):1317–1333. doi: 10.1007/s40279-016-0650-6.
    1. Juliff LE, Halson SL, Peiffer JJ. Understanding sleep disturbance in athletes prior to important competitions. J Sci Med Sport. 2015;18(1):13–18. doi: 10.1016/j.jsams.2014.02.007.
    1. Kecklund G, Axelsson J. Health consequences of shift work and insufficient sleep. BMJ. 2016;355:i5210. doi: 10.1136/bmj.i5210.
    1. Grandou C, Wallace L, Fullagar HHK, Duffield R, Burley S. The effects of sleep loss on military physical performance. Sports Med. 2019;49(8):1159–1172. doi: 10.1007/s40279-019-01123-8.
    1. Sargent C, Lastella M, Halson SL, Roach GD. The impact of training schedules on the sleep and fatigue of elite athletes. Chronobiol Int. 2014;31(10):1160–1168. doi: 10.3109/07420528.2014.957306.
    1. Sargent C, Halson S, Roach GD. Sleep or swim? Early-morning training severely restricts the amount of sleep obtained by elite swimmers. Eur J Sport Sci. 2014;14:S310–S315. doi: 10.1080/17461391.2012.696711.
    1. Buguet A. Sleep under extreme environments: effects of heat and cold exposure, altitude, hyperbaric pressure and microgravity in space. J Neurol Sci. 2007;262(1–2):145–152. doi: 10.1016/j.jns.2007.06.040.
    1. Fowler P, Duffield R, Howle K, Waterson A, Vaile J. Effects of northbound long-haul international air travel on sleep quantity and subjective jet lag and wellness in professional Australian soccer players. Int J Sports Physiol Perform. 2015;10(5):648–654. doi: 10.1123/ijspp.2014-0490.
    1. Fullagar HHK, Duffield R, Skorski S, White D, Bloomfield J, Kolling S, et al. Sleep, travel, and recovery responses of national footballers during and after long-haul international air travel. Int J Sports Physiol Perform. 2016;11(1):86–95. doi: 10.1123/ijspp.2015-0012.
    1. Pickering C, Kiely J. What should we do about habitual caffeine use in athletes? Sports Med. 2019;49(6):833–842. doi: 10.1007/s40279-018-0980-7.
    1. Haack M, Mullington JM. Sustained sleep restriction reduces emotional and physical well-being. Pain. 2005;119(1–3):56–64. doi: 10.1016/j.pain.2005.09.011.
    1. Gingerich SB, Seaverson ELD, Anderson DR. Association between sleep and productivity loss among 598 676 employees from multiple industries. Am J Health Promot. 2018;32(4):1091–1094. doi: 10.1177/0890117117722517.
    1. Engle-Friedman M. The effects of sleep loss on capacity and effort. Sleep Sci. 2014;7(4):213–224. doi: 10.1016/j.slsci.2014.11.001.
    1. Fullagar HHK, Skorski S, Duffield R, Hammes D, Coutts AJ, Meyer T. Sleep and athletic performance: The effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med. 2015;45(2):161–186. doi: 10.1007/s40279-014-0260-0.
    1. Jones JJ, Kirschen GW, Kancharla S, Hale L. Association between late-night tweeting and next-day game performance among professional basketball players. Sleep Health. 2019;5(1):68–71. doi: 10.1016/j.sleh.2018.09.005.
    1. Dinges DF. An overview of sleepiness and accidents. J Sleep Res. 1995;4(2):4–14. doi: 10.1111/j.1365-2869.1995.tb00220.x.
    1. Mullins HM, Cortina JM, Drake CL, Dalal RS. Sleepiness at work: a review and framework of how the physiology of sleepiness impacts the workplace. J Appl Psychol. 2014;99(6):1096–1112. doi: 10.1037/a0037885.
    1. Reilly T, Piercy M. The effect of partial sleep deprivation on weight-lifting performance. Ergonomics. 1994;37(1):107–115. doi: 10.1080/00140139408963628.
    1. Chase JD, Roberson PA, Saunders MJ, Hargens TA, Womack CJ, Luden ND. One night of sleep restriction following heavy exercise impairs 3-km cycling time-trial performance in the morning. Appl Physiol Nutr Metab. 2017;42(9):909–915. doi: 10.1139/apnm-2016-0698.
    1. Axelsson J, Ingre M, Kecklund G, Lekander M, Wright KP, Sundelin T. Sleepiness as motivation: a potential mechanism for how sleep deprivation affects behavior. Sleep. 2020;43(6):1–6. doi: 10.1093/sleep/zsz291.
    1. Khemila S, Abedelmalek S, Romdhani M, Souissi A, Chtourou H, Souissi N. Listening to motivational music during warming-up attenuates the negative effects of partial sleep deprivation on cognitive and short-term maximal performance: effect of time of day. Chronobiol Int. 2021;38(7):1052–1063. doi: 10.1080/07420528.2021.1904971.
    1. Romdhani M, Hammouda O, Chaabouni Y, Mahdouani K, Driss T, Chamari K, et al. Sleep deprivation affects post-lunch dip performances, biomarkers of muscle damage and antioxidant status. Biol Sport. 2019;36(1):55–65. doi: 10.5114/biolsport.2018.78907.
    1. Edwards BJ, Waterhouse J. Effects of one night of partial sleep deprivation upon diurnal rhythms of accuracy and consistency in throwing darts. Chronobiol. 2009;26(4):756–768. doi: 10.1080/07420520902929037.
    1. Kosmadopoulos A, Sargent C, Darwent D, Zhou X, Roach GD. Alternatives to polysomnography (PSG): a validation of wrist actigraphy and a partial-PSG system. Behav Res Methods. 2014;46(4):1032–1041. doi: 10.3758/s13428-013-0438-7.
    1. Reynolds AC, Banks S. Total sleep deprivation, chronic sleep restriction and sleep disruption. Prog Brain Res. 2010;185:91–103. doi: 10.1016/B978-0-444-53702-7.00006-3.
    1. Luboshitzky R, Zabari Z, Shen-Orr Z, Herer P, Lavie P. Disruption of the nocturnal testosterone rhythm by sleep fragmentation in normal men. J Clin Endocrinol Metab. 2001;86(3):1134–1139. doi: 10.1210/jcem.86.3.7296.
    1. Mougin F. Effects of sleep disturbances on subsequent physical performance. Eur J Appl Physiol. 1991;63:77–82. doi: 10.1007/BF00235173.
    1. Rae DE, Chin T, Dikgomo K, Hill L, McKune AJ, Kohn TA, et al. One night of partial sleep deprivation impairs recovery from a single exercise training session. Eur J Appl Physiol. 2017;117(4):699–712. doi: 10.1007/s00421-017-3565-5.
    1. Roberts SSH, Teo WP, Aisbett B, Warmington SA. Extended sleep maintains endurance performance better than normal or restricted sleep. Med Sci Sports Exerc. 2019;51(12):2516–2523. doi: 10.1249/MSS.0000000000002071.
    1. Roberts SSH, Teo WP, Aisbett B, Warmington SA. Effects of total sleep deprivation on endurance cycling performance and heart rate indices used for monitoring athlete readiness. J Sports Sci. 2019;37(23):2691–2701. doi: 10.1080/02640414.2019.1661561.
    1. Bambaeichi E, Reilly T, Cable NT, Giacomoni M. The influence of time of day and partial sleep loss on muscle strength in eumenorrheic females. Ergonomics. 2005;48(11–14):1499–1511. doi: 10.1080/00140130500101437.
    1. Goto K, Mamiya A, Ito H, Maruyama T, Hayashi N, Badenhorst CE. Partial sleep deprivation after an acute exercise session does not augment hepcidin levels the following day. Physiol Rep. 2020;8(10).
    1. Goh VHH, Tong TYY, Lim CL, Low ECT, Lee LKH. Effects of one night of sleep deprivation on hormone profiles and performance efficiency. Mil Med. 2001;166(5):427–431. doi: 10.1093/milmed/166.5.427.
    1. Ajjimaporn A, Ramyarangsi P, Siripornpanich V. Effects of a 20-min nap after sleep deprivation on brain activity and soccer performance. Int J Sports Med. 2020;41(14):1009–1016. doi: 10.1055/a-1192-6187.
    1. Cullen T, Thomas G, Wadley AJ, Myers T. The effects of a single night of complete and partial sleep deprivation on physical and cognitive performance: a Bayesian analysis. J Sports Sci. 2019;37(23):2726–2734. doi: 10.1080/02640414.2019.1662539.
    1. Daaloul H, Souissi N, Davenne D. Effects of napping on alertness, cognitive, and physical outcomes of karate athletes. Med Sci Sports Exerc. 2019;51(2):338–345. doi: 10.1249/MSS.0000000000001786.
    1. Moore J, McDonald C, McIntyre A, Carmody K, Donne B. Effects of acute sleep deprivation and caffeine supplementation on anaerobic performance. Sleep Sci. 2018;11(1):2–7. doi: 10.5935/1984-0063.20180002.
    1. Skurvydas A, Zlibinaite L, Solianik R, Brazaitis M, Valanciene D, Baranauskiene N, et al. One night of sleep deprivation impairs executive function but does not affect psychomotor or motor performance. Biol Sport. 2020;37(1):7–14. doi: 10.5114/biolsport.2020.89936.
    1. Sweeney EL, Peart DJ, Kyza I, Harkes T, Ellis JG, Walshe IH. Impaired insulin profiles following a single night of sleep restriction: the impact of acute sprint interval exercise. Int J Sport Nutr Exerc Metab. 2020;30(2):139–144. doi: 10.1123/ijsnem.2019-0235.
    1. Abedelmalek S, Chtourou H, Aloui A, Aouichaoui C, Souissi N, Tabka Z. Effect of time of day and partial sleep deprivation on plasma concentrations of IL-6 during a short-term maximal performance. Eur J Appl Physiol. 2013;113(1):241–248. doi: 10.1007/s00421-012-2432-7.
    1. Cook CJ, Crewther BT, Kilduff LP, Drawer S, Gaviglio CM. Skill execution and sleep deprivation: effects of acute caffeine or creatine supplementation—a randomized placebo-controlled trial. J Int Soc Sports Nutr. 2011;8(2).
    1. Souissi N, Chtourou H, Aloui A, Hammouda O, Dogui M, Chaouachi A, et al. Effects of time-of-day and partial sleep deprivation on short-term maximal performances of judo competitors. J Strength Cond Res. 2013;27(9):2473–2480. doi: 10.1519/JSC.0b013e31827f4792.
    1. Vardar SA, Öztürk L, Kurt C, Bulut E, Sut N, Vardar E. Sleep deprivation induced anxiety and anaerobic performance. J Sports Sci Med. 2007;6:532–537.
    1. Mejri MA, Hammouda O, Zouaoui K, Chaouachi A, Chamari K, Rayana MCB, et al. Effect of two types of partial sleep deprivation on Taekwondo players’ performance during intermittent exercise. Biol Rhythm Res. 2013;45(1):17–26. doi: 10.1080/09291016.2013.787686.
    1. Mougin F, Bourdin H, Simon-Rigaud ML, Nguyen NU, Kantelip JP, Davenne D. Hormonal responses to exercise after partial sleep deprivation and after a hypnotic drug-induced sleep. J Sports Sci. 2001;19(2):89–97. doi: 10.1080/026404101300036253.
    1. Kredlow MA, Capozzoli MC, Hearon BA, Calkins AW, Otto MW. The effects of physical activity on sleep: a meta-analytic review. J Behav Med. 2015;38(3):427–449. doi: 10.1007/s10865-015-9617-6.
    1. Thomas C, Jones H, Whitworth-Turner C, Louis J. High-intensity exercise in the evening does not disrupt sleep in endurance runners. Eur J Appl Physiol. 2020;120(2):359–368. doi: 10.1007/s00421-019-04280-w.
    1. Thun E, Bjorvatn B, Flo E, Harris A, Pallesen S. Sleep, circadian rhythms, and athletic performance. Sleep Med Rev. 2015;23:1–9. doi: 10.1016/j.smrv.2014.11.003.
    1. Knowles OE, Drinkwater EJ, Urwin CS, Lamon S, Aisbett B. Inadequate sleep and muscle strength: Implications for resistance training. J Sci Med Sport. 2018;21(9):959–968. doi: 10.1016/j.jsams.2018.01.012.
    1. Pilcher JJ, Huffcutt AI. Effects of sleep deprivation on performance: a meta-analysis. Sleep. 1996;4:318–326. doi: 10.1093/sleep/19.4.318.
    1. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1. doi: 10.1186/2046-4053-4-1.
    1. Assink M, Wibbelink CJM. Fitting three-level meta-analytic models in R—a step-by-step tutorial. Tutor Quant Methods Psychol. 2016;12(3):154–174. doi: 10.20982/tqmp.12.3.p154.
    1. Blumert PA, Crum AJ, Ernsting M, Volek JS, Hollander DB, Haff EE, et al. The acute effects of twenty-four hours of sleep loss on the performance of national-caliber male collegiate weightlifters. J Strength Cond Res. 2007;21(4):1146–1154.
    1. Gonçalves A, Teodosio C, Pezarat-Correia P, Vila-Chã C, Mendonca VG. Effects of acute sleep deprivation on H reflex and V wave. J Sleep Res. 2021;30(6):e13118.
    1. Souissi M, Abedelmalek S, Dhiba DB, Nikolaidis PT, Ben Awicha H, Chtourou H, et al. Morning caffeine ingestion increases cognitive function and short-term maximal performance in footballer players after partial sleep deprivation. Biol Rhythm Res. 2015;46(5):617–629. doi: 10.1080/09291016.2015.1034975.
    1. Souissi M, Chtourou H, Abedelmalek S, Ben Ghozlane I, Sahnoun Z. The effects of caffeine ingestion on the reaction time and short-term maximal performance after 36 h of sleep deprivation. Physiol Behav. 2014;131:1–6. doi: 10.1016/j.physbeh.2014.04.012.
    1. Souissi M, Souissi Y, Mseddi E, Sahnoun Z. The effects of caffeine on the diurnal variation of the reaction time and short-term maximal performance after one night of sleep deprivation. Biol Rhythm Res. 2019;52(10):1–16.
    1. Souissi N, Sesboue B, Gauthier A, Larue J, Davenne D. Effects of one night's sleep deprivation on anaerobic performance the following day. Eur J Appl Physiol. 2003;89:359–366. doi: 10.1007/s00421-003-0793-7.
    1. Souissi N, Souissi M, Souissi H, Chamari K, Tabka Z, Dogui M, et al. Effect of time of day and partial sleep deprivation on short-term. High-Power Output Chronobiol Int. 2008;25(6):1062–1076. doi: 10.1080/07420520802551568.
    1. Kujawa K, Olpinska-Lischka M, Maciaszek J. The influence of 24-hour sleep deprivation on the strength of lower limb muscles in young and physically fit women and men. Sustainability. 2020;12(7).
    1. Bulbulian R, Heaney JH, Leake CN, Sucec AA, Sjoholm NT. The effect of sleep deprivation and exercise load on isokinetic leg strength and endurance. Eur J Appl Physiol Occup Physiol. 1996;73(3–4):273–277. doi: 10.1007/BF02425487.
    1. Cook C, Beaven CM, Kilduff LP, Drawer S. Acute caffeine ingestion's increase of voluntarily chosen resistance-training load after limited sleep. Int J Sport Nutr Exerc Metab. 2012;22(3):157–164. doi: 10.1123/ijsnem.22.3.157.
    1. Arazi H, Mehrabani J, Irandoost M, Khaleghimamaghani E. Effects of overnight sleep deprivation on appetite and physical performance in elite female soccer players. J Turk Sleep Med. 2019;6(3):93–97. doi: 10.4274/jtsm.galenos.2019.19480.
    1. Arnal PJ, Lapole T, Erblang M, Guillard M, Bourrilhon C, Leger D, et al. Sleep extension before sleep loss: effects on performance and neuromuscular function. Med Sci Sports Exerc. 2016;48(8):1595–1603. doi: 10.1249/MSS.0000000000000925.
    1. Baati H, Chtourou H, Moalla W, Jarraya M, Nikolaidis PT, Rosemann T, et al. Effect of angle of view and partial sleep deprivation on distance perception. Front Psychol. 2020;11:201. doi: 10.3389/fpsyg.2020.00201.
    1. Baati H, Hmani MS, Jarraya M, Chtourou H, Masmoudi L, Trabelsi K, et al. Effect of total sleep deprivation on egocentric distance estimation following a fatiguing task. Biol Rhythm Res. 2015;46(2):265–274. doi: 10.1080/09291016.2014.985003.
    1. HajSalem M, Chtourou H, Aloui A, Hammouda O, Souissi N. Effects of partial sleep deprivation at the end of the night on anaerobic performances in judokas. Biol Rhythm Res. 2013;44(5):815–821. doi: 10.1080/09291016.2012.756282.
    1. Romdhani M, Hammouda O, Smari K, Chaabouni Y, Mahdouani K, Driss T, et al. Total sleep deprivation and recovery sleep affect the diurnal variation of agility performance- the gender differences. J Strength Cond Res. 2021;35(1):132–140. doi: 10.1519/JSC.0000000000002614.
    1. Skein M, Duffield R, Edge J, Short MJ, Mundel T. Intermittent-sprint performance and muscle glycogen after 30 h of sleep deprivation. Med Sci Sports Exerc. 2011;43(7):1301–1311. doi: 10.1249/MSS.0b013e31820abc5a.
    1. Temesi J, Arnal PJ, Davranche K, Bonnefoy R, Levy P, Verges S, et al. Does central fatigue explain reduced cycling after complete sleep deprivation? Med Sci Sports Exerc. 2013;45(12):2243–2253. doi: 10.1249/MSS.0b013e31829ce379.
    1. Mougin F, Bourdin H, Simonrigaud ML, Didier JM, Toubin G, Kantelip JP. Effects of a selective sleep deprivation on subsequent anaerobic performance. Int J Sports Med. 1996;17(2):115–119. doi: 10.1055/s-2007-972818.
    1. Ozturk L, Bulut E, Vardar SA, Uzun C. Effects of sleep deprivation on anaerobic exercise-induced changes in auditory brainstem evoked potentials. Clin Physiol Funct Imaging. 2007;27(5):263–267. doi: 10.1111/j.1475-097X.2007.00746.x.
    1. Romdhani M, Souissi N, Chaabouni Y, Mahdouani K, Driss T, Chamari K, et al. Improved physical performance and decreased muscular and oxidative damage with postlunch napping after partial sleep deprivation in athletes. Int J Sports Physiol Perform. 2020;15(6):874–883. doi: 10.1123/ijspp.2019-0308.
    1. Skein M, Duffield R, Minett GM, Snape A, Murphy A. The effect of overnight sleep deprivation after competitive rugby league matches on postmatch physiological and perceptual recovery. Int J Sports Physiol Perform. 2013;8(5):556–564. doi: 10.1123/ijspp.8.5.556.
    1. Souissi M, Chikh N, Affes H, Sahnoun Z. Caffeine reversal of sleep deprivation effects on alertness, mood and repeated sprint performances in physical education students. Biol Rhythm Res. 2018;49(5):746–760. doi: 10.1080/09291016.2017.1413765.
    1. Souissi M, Souissi Y, Bayoudh A, Knechtle B, Nikolaidis PT, Chtourou H. Effects of a 30-min nap opportunity on cognitive and short-duration high-intensity performances and mood states after a partial sleep deprivation night. J Sports Sci. 2020;38(22):2553–2561. doi: 10.1080/02640414.2020.1793651.
    1. Taheri M, Arabameri E. The effect of sleep deprivation on choice reaction time and anaerobic power of college student athletes. Asian J Sports Med. 2012;3(1):15–20. doi: 10.5812/asjsm.34719.
    1. Daviaux Y, Mignardot JB, Cornu C, Deschamps T. Effects of total sleep deprivation on the perception of action capabilities. Exp Brain Res. 2014;232(7):2243–2253. doi: 10.1007/s00221-014-3915-z.
    1. Rodrigues R, de Azevedo FR, Teixeira B, Macedo R, Lopes A, Diefenthaeler F, et al. Combined and isolated effects of alcohol consumption and sleep deprivation on maximal strength, muscle endurance and aerobic exercise performance in healthy men: a cross-over randomized controlled trial. Sleep Biol Rhythms. 2021;19(4):433–441. doi: 10.1007/s41105-021-00333-w.
    1. Romdhani M, Souissi N, Moussa-Chamari I, Chaabouni Y, Mahdouani K, Sahnoun Z, et al. Caffeine use or napping to enhance repeated sprint performance after partial sleep deprivation: why not both? Int J Sports Physiol Perform. 2021;16(5):711–718. doi: 10.1123/ijspp.2019-0792.
    1. Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane handbook for systematic reviews of interventions. Oxford: Wiley; 2019.
    1. van Rosendal SP, Osborne MA, Fassett RG, Coombes JS. Guidelines for glycerol use in hyperhydration and rehydration associated with exercise. Sports Med. 2010;40(2):113–129. doi: 10.2165/11530760-000000000-00000.
    1. Jadad AR, Moore A, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials—is blinding necessary? Controll Clin Trials. 1996;17:1–12. doi: 10.1016/0197-2456(95)00134-4.
    1. Maher CG, Moseley AM, Sherrington C, Elkins MR, Herbert RD. A description of the trials, reviews, and practice guidelines indexed in the PEDro database. Phys Ther. 2008;88(9):1068–1077. doi: 10.2522/ptj.20080002.
    1. Verhagen AP, de Vet HC, de Bie RA, Kessels AG, Boers M, Bouter LM, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol. 1998;51:1235–1241. doi: 10.1016/S0895-4356(98)00131-0.
    1. Viechtbauer W. The metafor Package: A Meta-Analysis Package for R. 2021 [cited 24 Aug 2021].
    1. Filipas L, Ferioli D, Banfi G, La Torre A, Vitale JA. Single and combined effect of acute sleep restriction and mental fatigue on basketball free-throw performance. Int J Sports Physiol Perform. 2021;16(3):415–420. doi: 10.1123/ijspp.2020-0142.
    1. Oliver SJ, Costa RJ, Laing SJ, Bilzon JL, Walsh NP. One night of sleep deprivation decreases treadmill endurance performance. Eur J Appl Physiol. 2009;107(2):155–161. doi: 10.1007/s00421-009-1103-9.
    1. Holland GJ. Effects of limited sleep deprivation on performance of selected motor tasks. Res Q. 1968;39(2):285–294.
    1. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions; 2011.
    1. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. Introduction to meta-analysis. Oxford: Wiley; 2011.
    1. Pickett GF, Morris AF. Effects of acute sleep and food deprivation on total body response time and cardiovascular performance. J Sports Med Phys Fitness. 1975;15(1):49–56.
    1. Reilly T, Deykin T. Effects of partial sleep loss on subjective states, psychomotor and physical performance tests. J Hum Mov Stud. 1983;9(4):157–170.
    1. Abedelmalek S, Boussetta N, Chtourou H, Souissi N, Tabka Z. Effect of partial sleep deprivation and racial variation on short-term maximal performance. Biol Rhythm Res. 2014;45(5):699–708.
    1. Ricardo JSC, Cartner L, Oliver SJ, Laing SJ, Walters R, Bilzon JLJ, et al. No effect of a 30-h period of sleep deprivation on leukocyte trafficking, neutrophil degranulation and saliva IgA responses to exercise. Eur J Appl Physiol. 2009;105(3):499–504. doi: 10.1007/s00421-008-0931-3.
    1. Roberson PA, Chase JD, Bigman MB, Saunders MJ, Luden ND, Womack CJ. Time of day, but not sleep restriction, affects markers of hemostasis following heavy exercise. Appl Physiol Nutr Metab. 2019;44(2):148–152. doi: 10.1139/apnm-2018-0147.
    1. Cullen T, Thomas G, Wadley AJ. Sleep deprivation: cytokine and neuroendocrine effects on perception of effort. Med Sci Sports Exerc. 2020;52(4):909–918. doi: 10.1249/MSS.0000000000002207.
    1. Azboy O, Kaygisiz Z. Effects of sleep deprivation on cardiorespiratory functions of the runners and volleyball players during rest and exercise. Acta Physiol Hung. 2009;96(1):29–36. doi: 10.1556/APhysiol.96.2009.1.3.
    1. Froberg JE, Karlsson C, Levi L, Lidberg L. Circadian rhythms of catecholamine excretion, shooting range performance and self-ratings of fatigue during sleep deprivation. Biol Psychol. 1975;2:175–188. doi: 10.1016/0301-0511(75)90018-6.
    1. Hill DW, Borden DO, Darnaby KM, Hendricks DN. Aerobic and anaerobic contributions to exhaustive high-intensity exercise after sleep deprivation. J Sports Sci. 1994;12(5):455–461. doi: 10.1080/02640419408732195.
    1. Reyner LA, Horne JA. Sleep restriction and serving accuracy in performance tennis players, and effects of caffeine. Physiol Behav. 2013;120:93–96. doi: 10.1016/j.physbeh.2013.07.002.
    1. Mejri MA, Yousfi N, Mhenni T, Tayech A, Hammouda O, Driss T, et al. Does one night of partial sleep deprivation affect the evening performance during intermittent exercise in Taekwondo players? J Exerc Rehabil. 2016;12(1):47–53. doi: 10.12965/jer.150256.
    1. Paryab N, Taheri M, H'Mida C, Irandoust K, Mirmoezzi M, Trabelsi K, et al. Melatonin supplementation improves psychomotor and physical performance in collegiate student-athletes following a sleep deprivation night. Chronobiol Int. 2021;38(5):753–761. doi: 10.1080/07420528.2021.1889578.
    1. Chen H. Effects of 30-h sleep loss on cardiorespiratory functions at rest and in exercise. Med Sci Sports Exerc. 1991;23(2):193–198. doi: 10.1249/00005768-199102000-00008.
    1. Dáttilo M, Antunes HKM, Galbes NMN, Mônico-Neto M, De Sá SH, Dos Santos Quaresma MVL, et al. Effects of sleep deprivation on acute skeletal muscle recovery after exercise. Med Sci Sports Exerc. 2020;52(2):507–514. doi: 10.1249/MSS.0000000000002137.
    1. Omiya K, Akashi YJ, Yoneyama K, Osada N, Tanabe K, Miyake F. Heart-rate response to sympathetic nervous stimulation, exercise, and magnesium concentration in various sleep conditions. Int J Sport Nutr Exerc Metab. 2009;19:127–135. doi: 10.1123/ijsnem.19.2.127.
    1. Racinais S, Hue O, Blonc S, Le Gallais D. Effect of sleep deprivation on shuttle run score in middle-aged amateur athletes. Influence of initial score. J Sports Med Phys Fitness. 2004;44(3):246–8.
    1. Brodan V, Kuhn E. Physical performance in man during sleep deprivation. J Sports Med Phys Fitness. 1967;7(1):28–30.
    1. Khcharem A, Souissi M, Atheymen R, Ben Mahmoud L, Sahnoun Z. Effects of caffeine ingestion on 8-km run performance and cognitive function after 26 hours of sleep deprivation. Biol Rhythm Res. 2022;53(6).
    1. Martin BJ. Effect of sleep-deprivation on tolerance of prolonged exercise. Eur J Appl Physiol Occup Physiol. 1981;47(4):345–354. doi: 10.1007/BF02332962.
    1. Dumer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol. 2005;25(1):117–129. doi: 10.1055/s-2005-867080.
    1. Jarraya M, Jarraya S, Chtourou H, Souissi N, Chamari K. The effect of partial sleep deprivation on the reaction time and the attentional capacities of the handball goalkeeper. Biol Rhythm Res. 2013;44(3):503–510. doi: 10.1080/09291016.2012.721589.
    1. Smith ME, McEvoy LK, Gevins A. The impact of moderate sleep loss on neurophysiologic signals during working- memory task performance. Sleep. 2002;25(7):56–66. doi: 10.1093/sleep/25.7.56.
    1. Harrison Y, Horne JA. The impact of sleep deprivation on decision making: a review. J Exp Psychol Appl. 2000;6(3):236–249. doi: 10.1037/1076-898X.6.3.236.
    1. Harrison Y, Horne JA. One night of sleep loss impairs innovative thinking and flexible decision making. Organ Behav Hum Decis Process. 1999;78(2):128–145. doi: 10.1006/obhd.1999.2827.
    1. Walker MP. Cognitive consequences of sleep and sleep loss. Sleep Med. 2008;9(Suppl 1):S29–S34. doi: 10.1016/S1389-9457(08)70014-5.
    1. Mejri MA, Hammouda O, Zouaoui K, Chaouachi A, Chamari K, Rayana MCB, et al. Effect of two types of partial sleep deprivation on Taekwondo players’ performance during intermittent exercise. Biol Rhythm Res. 2014;45(1):17–26. doi: 10.1080/09291016.2013.787686.
    1. Edwards B, Waterhouse J, Reilly T. The effects of circadian rhythmicity and time-awake on a simple motor task. Chronobiol Int. 2007;24(6):1109–1124. doi: 10.1080/07420520701795316.
    1. Deschodt VJ, Arsac LM. Morning vs. evening maximal cycle power and technical swimming ability. J Strength Cond Res. 2004;18(1):149–154.
    1. Reilly T, Atkinson G, Edwards B, Waterhouse J, Farrelly K, Fairhurst E. Diurnal variation in temperature, mental and physical performance, and tasks specifically related to football (soccer) Chronobiol Int. 2007;24(3):507–519. doi: 10.1080/07420520701420709.
    1. Rahnama N, Sajjadi N, Bambaeichi E, Sadeghipour HR, Daneshjoo H, Nazary B. Diurnal variation on the performance of soccer-specific skills. World J Sport Sci. 2009;2(1):27–30.
    1. Coldwells A, Atkinson G, Reilly T. Sources of variation in back and leg dynamometry. Ergonomics. 1994;37(1):79–86. doi: 10.1080/00140139408963625.
    1. Squarcini CF, Pires ML, Lopes C, Benedito-Silva AA, Esteves AM, Cornelissen-Guillaume G, et al. Free-running circadian rhythms of muscle strength, reaction time, and body temperature in totally blind people. Eur J Appl Physiol. 2013;113(1):157–165. doi: 10.1007/s00421-012-2415-8.
    1. Reilly T, Down A. Circadian variation in the standing broad jump. Percept Mot Skills. 1986;62:830. doi: 10.2466/pms.1986.62.3.830.
    1. Bernard T, Giacomoni M, Gavarry O, Seymat M, Falgairette G. Time-of-day effects in maximal anaerobic leg exercise. Eur J Appl Physiol. 1998;77:133–138. doi: 10.1007/s004210050311.
    1. Souissi N, Gauthier A, Sesboue B, Larue J, Davenne D. Circadian rhythms in two types of anaerobic cycle leg exercise: force-velocity and 30-s wingate tests. Int J Sports Med. 2004;25:14–19. doi: 10.1055/s-2003-45226.
    1. Baxter C, Reilly T. Influence of time of day on all-out swimming. Br J Sports Med. 1983;17:122–127. doi: 10.1136/bjsm.17.2.122.
    1. Kline CE, Durstine JL, Davis JM, Moore TA, Devlin TM, Zielinski MR, et al. Circadian variation in swim performance. J Appl Physiol. 2007;102(2):641–649. doi: 10.1152/japplphysiol.00910.2006.
    1. Reilly T, Baxter C. Influence of time of day on reactions to cycling at a fixed high intensity. Br J Sports Med. 1983;17:128–130. doi: 10.1136/bjsm.17.2.128.
    1. Hill DW. Effect of time of day on aerobic power in exhaustive high-intensity exercise. J Sports Med Phys Fitness. 1996;36(3):155–160.
    1. Bessot N, Nicolas A, Moussay S, Gauthier A, Sesboue B, Davenne D. The effect of pedal rate and time of day on the time to exhaustion from high-intensity exercise. Chronobiol Int. 2006;23(5):1009–1024. doi: 10.1080/07420520600920726.
    1. Shibata S, Tahara Y. Circadian rhythm and exercise. J Sports Med Phys Fitness. 2014;3(1):65–72. doi: 10.7600/jpfsm.3.65.
    1. Landry GJ, Best JR, Liu-Ambrose T. Measuring sleep quality in older adults: a comparison using subjective and objective methods. Front Aging Neurosci. 2015;7:166. doi: 10.3389/fnagi.2015.00166.

Source: PubMed

3
Tilaa