The challenge of prostate biopsy guidance in the era of mpMRI detected lesion: ultrasound-guided versus in-bore biopsy

Auke Jager, Joan C Vilanova, Massimo Michi, Hessel Wijkstra, Jorg R Oddens, Auke Jager, Joan C Vilanova, Massimo Michi, Hessel Wijkstra, Jorg R Oddens

Abstract

The current recommendation in patients with a clinical suspicion for prostate cancer is to perform systematic biopsies extended with targeted biopsies, depending on mpMRI results. Following a positive mpMRI [i.e. Prostate Imaging Reporting and Data System (PI-RADS) ≥3], three targeted biopsy approaches can be performed: visual registration of the MRI images with real-time ultrasound imaging; software-assisted fusion of the MRI images and real-time ultrasound images, and in-bore biopsy within the MR scanner. This collaborative review discusses the advantages and disadvantages of each targeting approach and elaborates on future developments. Cancer detection rates seem to mostly depend on practitioner experience and selection criteria (biopsy naïve, previous negative biopsy, prostate-specific antigen (PSA) selection criteria, presence of a lesion on MRI), and to a lesser extent dependent on biopsy technique. There is no clear consensus on the optimal targeting approach. The choice of technique depends on local experience and availability of equipment, individual patient characteristics, and onsite cost-benefit analysis. Innovations in imaging techniques and software-based algorithms may lead to further improvements in this field.

Figures

Figure 1.
Figure 1.
(a) Robotic MRI in-bore-targeted biopsy (SoteriaTM). 62-year-old male with a PSA value of 16.6 ng ml−1. Axial T2 WI shows a 6 mm focal, PIRADS four lesion on the right peripheral zone (arrow). (b) The desired and planned target for the nodule is shown with restricted diffusion on DWI image (arrow). (c) Oblique axial Fast Imaging Employing Steady-State Acquisition (FIESTA) sequence shows the current position of the needle guide, represented by the orange line overlay from the needle guide with the optimal path after the remote movement of the guide. The needle track and sample core are represented by red line. (d) After the desired target for biopsy has been selected, the robotic device (arrow) is moved remotely to the target as shown (c); the table is moved out of the bore and a biopsy sample is taken with a standard compatible biopsy gun. Biopsy histopathology results showed a Gleason Score 4 + 3=7 adenocarcinoma.
Figure 2.
Figure 2.
Cognitive-targeted biopsy. (a/b) Visual registration of a 1.1 cm lesion (PIRADS 4) in the right dorsolateral periferal zone of the midprostate. (c) Targeting of the matching anatomical location of the lesion on real-time ultrasound imaging. Histopathology showed a Gleason score 4 + 3=7 adenocarcinoma in both targeted and systematic biopsies.
Figure 3.
Figure 3.
Example of MRI/TRUS fusion-targeted biopsy (ArtemisTM) (a) Identification and delineation of lesion on MRI. (b) MRI lesion is superimposed on US imaging. (c) Prostate biopsies are acquired with real-time ultrasound guidance. (d) Targeted biopsy locations are stored.

References

    1. Drost F-JH, Osses D, Nieboer D, Bangma CH, Steyerberg EW, Roobol MJ, et al. . Prostate magnetic resonance imaging, with or without magnetic resonance Imaging-targeted biopsy, and systematic biopsy for detecting prostate cancer: a Cochrane systematic review and meta-analysis. Eur Urol 2020; 77: 78–94. Epub 2019 Jul 18 PMID. doi: 10.1016/j.eururo.2019.06.023
    1. Rouvière O, Puech P, Renard-Penna R, Claudon M, Roy C, Mège-Lechevallier F, et al. . Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol 2019; 20: 100–9. doi: 10.1016/S1470-2045(18)30569-2
    1. van der Leest M, Cornel E, Israël B, Hendriks R, Padhani AR, Hoogenboom M, et al. . Head-To-Head comparison of transrectal ultrasound-guided prostate biopsy versus multiparametric prostate resonance imaging with subsequent magnetic resonance-guided biopsy in Biopsy-naïve men with elevated prostate-specific antigen: a large prospective multicenter clinical study. Eur Urol 2019; 75: 570–8. doi: 10.1016/j.eururo.2018.11.023
    1. Mottet N, Bellmunt J, Briers E, Bolla M, Bourke L, Cornford P. Members of the EAU – ESTRO – ESUR –SIOG prostate cancer guidelines panel. EAU – ESTRO – ESUR – SIOG guidelines on prostate cancer. EDN. Presented at the EAU annual Congress Milan 2021. 978-94-92671-13-4. Arnhem, The Netherlands: EAU guidelines office; 2021.
    1. Sathianathen NJ, Omer A, Harriss E, Davies L, Kasivisvanathan V, Punwani S, et al. . Negative predictive value of multiparametric magnetic resonance imaging in the detection of clinically significant prostate cancer in the prostate imaging reporting and data system era: a systematic review and meta-analysis. Eur Urol 2020; 78: 402–14. Epub 2020 May 20 PMID. doi: 10.1016/j.eururo.2020.03.048
    1. SWOP. The prostate cancer risk calculators – including the ‘future risk’ calculator. 2021. Available from: .
    1. Vilanova JC, Pérez de Tudela A, Puig J, Hoogenboom M, Barceló J, Planas M, et al. . Robotic-Assisted transrectal MRI-guided biopsy. technical feasibility and role in the current diagnosis of prostate cancer: an initial single-center experience. Abdom Radiol 2020; 45: 4150–9. doi: 10.1007/s00261-020-02665-6
    1. Arsov C, Rabenalt R, Blondin D, Quentin M, Hiester A, Godehardt E, et al. . Prospective randomized trial comparing magnetic resonance imaging (MRI)-guided in-bore biopsy to MRI-ultrasound fusion and transrectal ultrasound-guided prostate biopsy in patients with prior negative biopsies. Eur Urol 2015; 68: 713–20. doi: 10.1016/j.eururo.2015.06.008
    1. Kasabwala K, Patel N, Cricco-Lizza E, Shimpi AA, Weng S, Buchmann RM, et al. . The learning curve for magnetic resonance Imaging/Ultrasound Fusion-guided prostate biopsy. Eur Urol Oncol 2019; 2: 135–40. doi: 10.1016/j.euo.2018.07.005
    1. Pahwa S, Schiltz NK, Ponsky LE, Lu Z, Griswold MA, Gulani V. Cost-Effectiveness of Mr imaging-guided strategies for detection of prostate cancer in Biopsy-Naive men. Radiology 2017; 285: 157–66. doi: 10.1148/radiol.2017162181
    1. Panebianco V, Valerio MC, Giuliani A, Pecoraro M, Ceravolo I, Barchetti G, et al. . Clinical utility of multiparametric magnetic resonance imaging as the first-line tool for men with high clinical suspicion of prostate cancer. Eur Urol Oncol 2018; 1: 208–14. doi: 10.1016/j.euo.2018.03.008
    1. de Rooij M, Crienen S, Witjes JA, Barentsz JO, Rovers MM, Grutters JPC. Cost-Effectiveness of magnetic resonance (Mr) imaging and MR-guided targeted biopsy versus systematic transrectal ultrasound-guided biopsy in diagnosing prostate cancer: a modelling study from a health care perspective. Eur Urol 2014; 66: 430–6. doi: 10.1016/j.eururo.2013.12.012
    1. Altok M, Kim B, Patel BB, Shih Y-CT, Ward JF, McRae SE, et al. . Cost and efficacy comparison of five prostate biopsy modalities: a platform for integrating cost into novel-platform comparative research. Prostate Cancer Prostatic Dis 2018; 21: 524–32. doi: 10.1038/s41391-018-0056-7
    1. Schalk SG, Demi L, Smeenge M, Mills DM, Wallace KD, de la Rosette JJMCH, et al. . 4-D spatiotemporal analysis of ultrasound contrast agent dispersion for prostate cancer localization: a feasibility study. IEEE Trans Ultrason Ferroelectr Freq Control 2015; 62: 839–51. doi: 10.1109/TUFFC.2014.006907
    1. Caglic I, Breznik S, Matela J, Barrett T. Lesion targeted CT-guided Transgluteal prostate biopsy in combination with Prebiopsy MRI in patients without rectal access. Urol Case Rep 2017; 10: 6–8. doi: 10.1016/j.eucr.2016.09.008
    1. Venderink W, de Rooij M, Sedelaar JPM, Huisman HJ, Fütterer JJ. Elastic versus rigid image registration in magnetic resonance Imaging-transrectal ultrasound fusion prostate biopsy: a systematic review and meta-analysis. Eur Urol Focus 2018; 4: 219–27. doi: 10.1016/j.euf.2016.07.003
    1. Pradere B, Veeratterapillay R, Dimitropoulos K, Yuan Y, Omar MI, MacLennan S, et al. . Nonantibiotic strategies for the prevention of infectious complications following prostate biopsy: a systematic review and meta-analysis. J Urol 2021; 205: 653–63. doi: 10.1097/JU.0000000000001399
    1. Tu X, Liu Z, Chang T, Qiu S, Xu H, Bao Y, et al. . Transperineal magnetic resonance Imaging-Targeted biopsy may perform better than transrectal route in the detection of clinically significant prostate cancer: systematic review and meta-analysis. Clin Genitourin Cancer 2019; 17: e860–70. doi: 10.1016/j.clgc.2019.05.006
    1. Wegelin O, van Melick HHE, Hooft L, Bosch JLHR, Reitsma HB, Barentsz JO, et al. . Comparing three different techniques for magnetic resonance Imaging-targeted prostate biopsies: a systematic review of In-bore versus magnetic resonance Imaging-transrectal ultrasound fusion versus cognitive registration. is there a preferred technique? Eur Urol 2017; 71: 517–31. doi: 10.1016/j.eururo.2016.07.041
    1. Watts KL, Frechette L, Muller B, Ilinksy D, Kovac E, Sankin A, et al. . Systematic review and meta-analysis comparing cognitive vs. image-guided fusion prostate biopsy for the detection of prostate cancer. Urol Oncol 2020; 38: 734.e19–734.e25. doi: 10.1016/j.urolonc.2020.03.020
    1. Costa DN, Goldberg K, Leon ADde, Lotan Y, Xi Y, Aziz M, et al. . Magnetic resonance imaging-guided In-bore and magnetic resonance Imaging-transrectal ultrasound fusion targeted prostate biopsies: an adjusted comparison of clinically significant prostate cancer detection rate. Eur Urol Oncol 2019; 2: 397–404. doi: 10.1016/j.euo.2018.08.022
    1. Costa DN, Cai Q, Xi Y, Recchimuzzi DZ, Subramanian N, Bagrodia A, et al. . Gleason grade group concordance between preoperative targeted biopsy and radical prostatectomy histopathologic analysis: a comparison between In-Bore MRI-guided and MRI-Transrectal us fusion prostate biopsies. Radiol Imaging Cancer 2021; 3: e200123. doi: 10.1148/rycan.2021200123
    1. Wegelin O, Exterkate L, van der Leest M, Kummer JA, Vreuls W, de Bruin PC, et al. . The future trial: a multicenter randomised controlled trial on target biopsy techniques based on magnetic resonance imaging in the diagnosis of prostate cancer in patients with prior negative biopsies. Eur Urol 2019; 75: 582–90. doi: 10.1016/j.eururo.2018.11.040
    1. Tadtayev S, Hussein A, Carpenter L, Vasdev N, Boustead G. The association of level of practical experience in transrectal ultrasonography guided prostate biopsy with its diagnostic outcome. Ann R Coll Surg Engl 2017; 99: 218–23. doi: 10.1308/rcsann.2016.0308
    1. Hansen NL, Barrett T, Lloyd T, Warren A, Samel C, Bratt O, et al. . Optimising the number of cores for magnetic resonance imaging-guided targeted and systematic transperineal prostate biopsy. BJU Int 2020; 125: 260–9. doi: 10.1111/bju.14865
    1. Tschirdewahn S, Wiesenfarth M, Bonekamp D, Püllen L, Reis H, Panic A, et al. . Detection of significant prostate cancer using target saturation in Transperineal magnetic resonance Imaging/Transrectal Ultrasonography-fusion biopsy. Eur Urol Focus 2020;10 Jul 2020. doi: 10.1016/j.euf.2020.06.020
    1. Miah S, Servian P, Patel A, Lovegrove C, Skelton L, Shah TT, et al. . A prospective analysis of robotic targeted MRI-US fusion prostate biopsy using the centroid targeting approach. J Robot Surg 2020; 14: 69–74. doi: 10.1007/s11701-019-00929-y
    1. Gayet M, van der Aa A, Beerlage HP, Schrier BP, Mulders PFA, Wijkstra H. The value of magnetic resonance imaging and ultrasonography (MRI/US)-fusion biopsy platforms in prostate cancer detection: a systematic review. BJU Int 2016; 117: 392–400. doi: 10.1111/bju.13247
    1. Yamada Y, Shiraishi T, Ueno A, Ueda T, Fujihara A, Naitoh Y, et al. . Magnetic resonance imaging-guided targeted prostate biopsy: comparison between computer-software-based fusion versus cognitive fusion technique in biopsy-naïve patients. Int J Urol 2020; 27: 67–71. doi: 10.1111/iju.14127
    1. Monda SM, Vetter JM, Andriole GL, Fowler KJ, Shetty AS, Weese JR, et al. . Cognitive versus software fusion for MRI-targeted biopsy: experience before and after implementation of fusion. Urology 2018; 119: 115–20. doi: 10.1016/j.urology.2018.06.011
    1. Marra G, Ploussard G, Futterer J, Valerio M, .EAU-YAU Prostate Cancer Working Party . Controversies in MR targeted biopsy: alone or combined, cognitive versus software-based fusion, transrectal versus transperineal approach? World J Urol 2019; 37: 277–87. doi: 10.1007/s00345-018-02622-5
    1. Wiemer L, Hollenbach M, Heckmann R, Kittner B, Plage H, Reimann M, et al. . Evolution of targeted prostate biopsy by adding Micro-Ultrasound to the magnetic resonance imaging pathway. Eur Urol Focus 2020;09 Jul 2020. doi: 10.1016/j.euf.2020.06.022
    1. Klotz L, Lughezzani G, Maffei D, Sánchez A, Pereira JG, Staerman F, et al. . Comparison of micro-ultrasound and multiparametric magnetic resonance imaging for prostate cancer: a multicenter, prospective analysis. Can Urol Assoc J 2021; 15: E11–16. doi: 10.5489/cuaj.6712
    1. Bercoff J, Chaffai S, Tanter M, Sandrin L, Catheline S, Fink M, et al. . In vivo breast tumor detection using transient elastography. Ultrasound Med Biol 2003; 29: 1387–96. doi: 10.1016/S0301-5629(03)00978-5
    1. Boehm K, Salomon G, Beyer B, Schiffmann J, Simonis K, Graefen M, et al. . Shear wave elastography for localization of prostate cancer lesions and assessment of elasticity thresholds: implications for targeted biopsies and active surveillance protocols. J Urol 2015; 193: 794–800. doi: 10.1016/j.juro.2014.09.100
    1. Rouvière O, Melodelima C, Hoang Dinh A, Bratan F, Pagnoux G, Sanzalone T, et al. . Stiffness of benign and malignant prostate tissue measured by shear-wave elastography: a preliminary study. Eur Radiol 2017; 27: 1858–66. doi: 10.1007/s00330-016-4534-9
    1. Anbarasan T, Wei C, Bamber JC, Barr RG, Nabi G. Characterisation of prostate lesions using transrectal shear wave elastography (swe) ultrasound imaging: a systematic review. Cancers 2021; 13: 122. doi: 10.3390/cancers13010122
    1. Russo G, Mischi M, Scheepens W, De la Rosette JJ, Wijkstra H. Angiogenesis in prostate cancer: onset, progression and imaging. BJU Int 2012; 110(11 Pt C): E794–808. doi: 10.1111/j.1464-410X.2012.11444.x
    1. Mannaerts CK, Engelbrecht MRW, Postema AW, van Kollenburg RAA, Hoeks CMA, Savci Heijink CD. Detection of clinically significant prostate cancer in biopsy-naïve men: head-to-head comparison of systematic biopsy, multiparametric MRI- and contrast ultrasound dispersion imaging-targeted biopsy. BJU Int 2020; 378: 1767.
    1. Wildeboer RR, Van Sloun RJG, Schalk SG, Mannaerts CK, Van Der Linden JC, Huang P, et al. . Convective-Dispersion modeling in 3D Contrast-Ultrasound imaging for the localization of prostate cancer. IEEE Trans Med Imaging 2018; 37: 2593–602. doi: 10.1109/TMI.2018.2843396
    1. Wildeboer RR, Postema AW, Demi L, Kuenen MPJ, Wijkstra H, Mischi M. Multiparametric dynamic contrast-enhanced ultrasound imaging of prostate cancer. Eur Radiol 2017; 27: 3226–34. doi: 10.1007/s00330-016-4693-8
    1. Postema A, Mischi M, de la Rosette J, Wijkstra H. Multiparametric ultrasound in the detection of prostate cancer: a systematic review. World J Urol 2015; 33: 1651–9. doi: 10.1007/s00345-015-1523-6

Source: PubMed

3
Tilaa