The Effects of a 12-Week-Long Sand Exercise Training Program on Neuromechanical and Functional Parameters in Type II Diabetic Patients with Neuropathy

Judit Prókai, Zsolt Murlasits, Miklós Bánhidi, László Csóka, Viktória Gréci, Tamás Atlasz, Márk Váczi, Judit Prókai, Zsolt Murlasits, Miklós Bánhidi, László Csóka, Viktória Gréci, Tamás Atlasz, Márk Váczi

Abstract

Studies have proven the effectiveness of different weight-bearing exercise interventions for diabetic patients with neuropathy; however, several adverse effects were reported using solid surfaces. Thus, in the present study, we investigated the effects of a novel sand exercise training intervention on biomechanical and functional parameters in seven diabetic patients (age = 62.7 ± 9.7 years) with neuropathy. Patients underwent a 12-week sand exercise training program, using strengthening, stretching, balance, and gait exercises. They were tested for ankle plantar- and dorsiflexion peak torque, active range of motion (ROM), timed up and go (TUG), and bilateral static balance. EMG activity of tibialis anterior (TA), gastrocnemius medialis (GM), and lateralis (GL) muscles were measured during unilateral isometric contraction in plantar- and dorsiflexion. In the intervention period, plantarflexion peak torque improved significantly (p = 0.033), while dorsiflexion torque remained unchanged. Plantar- and dorsiflexion ROM increased (p = 0.032) and (p = 0.021), respectively. EMG activity of GM (p = 0.005) and GL (p = 0.002) measured during dorsiflexion and postural sway in the balance test, as well as time to complete the TUG test, decreased significantly (p = 0.021) and (p = 0.002), respectively. No adverse effect was reported during the intervention period. We concluded that sand exercise training can be a safe and effective method to improve plantarflexion strength, ankle flexibility, and balance, which is reflected in better gait function in patients with diabetic peripheral neuropathy (DPN).

Keywords: EMG; balance; co-activation; gait; physical therapy; unstable surface.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of the protocol steps.
Figure 2
Figure 2
Foot position for testing MVIC plantar- and dorsiflexion on Multicont II isokinetic device.
Figure 3
Figure 3
Representative raw EMG signals (RMS) obtained from TA, GM, and GL muscles during plantarflexion (a) and dorsiflexion (b).

References

    1. Sun H., Saeedi P., Karuranga S., Pinkepank M., Ogurtsova K., Duncan B.B., Stein C., Basit A., Chan J.C.N., Mbanya J.C., et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119.
    1. Dyck P.J., Kratz K.M., Karnes J.L., Litchy W.J., Klein R., Pach J.M., Wilson D.M., O’Brien P.C., Melton L.J., Service F.J. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: The Rochester Diabetic Neuropathy Study. Neurology. 1993;43:817–824. doi: 10.1212/WNL.43.4.817.
    1. Young M.J., Boulton A.J., MacLeod A.F., Williams D.R., Sonksen P.H. A multicentre study of the prevalence of diabetic peripheral neuropathy in the United Kingdom hospital clinic population. Diabetologia. 1993;36:150–154. doi: 10.1007/BF00400697.
    1. Kumar S., Ashe H.A., Parnell L.N., Fernando D.J., Tsigos C., Young R.J., Ward J.D., Boulton A.J. The prevalence of foot ulceration and its correlates in type 2 diabetic patients: A population-based study. Diabet. Med. J. Br. Diabet. Assoc. 1994;11:480–484. doi: 10.1111/j.1464-5491.1994.tb00310.x.
    1. Cabezas-Cerrato J. The prevalence of clinical diabetic polyneuropathy in Spain: A study in primary care and hospital clinic groups. Neuropathy Spanish Study Group of the Spanish Diabetes Society (SDS) Diabetologia. 1998;41:1263–1269. doi: 10.1007/s001250051063.
    1. Sartor C.D., Watari R., Pássaro A.C., Picon A.P., Hasue R.H., Sacco I.C.N. Effects of a combined strengthening, stretching and functional training program versus usual-care on gait biomechanics and foot function for diabetic neuropathy: A randomized controlled trial. BMC Musculoskelet. Disord. 2012;13:36. doi: 10.1186/1471-2474-13-36.
    1. Boulton A.J.M. The diabetic foot: From art to science. The 18th Camillo Golgi lecture. Diabetologia. 2004;47:1343–1353. doi: 10.1007/s00125-004-1463-y.
    1. Goldsmith J.R., Lidtke R.H., Shott S. The effects of range-of-motion therapy on the plantar pressures of patients with diabetes mellitus. J. Am. Podiatr. Med. Assoc. 2002;92:483–490. doi: 10.7547/87507315-92-9-483.
    1. Zimny S., Schatz H., Pfohl M. The role of limited joint mobility in diabetic patients with an at-risk foot. Diabetes Care. 2004;27:942–946. doi: 10.2337/diacare.27.4.942.
    1. Sartor C.D., Hasue R.H., Cacciari L.P., Butugan M.K., Watari R., Pássaro A.C., Giacomozzi C., Sacco I.C.N. Effects of strengthening, stretching and functional training on foot function in patients with diabetic neuropathy: Results of a randomized controlled trial. BMC Musculoskelet. Disord. 2014;15:137. doi: 10.1186/1471-2474-15-137.
    1. Sawacha Z., Cristoferi G., Guarneri G., Corazza S., Donà G., Denti P., Facchinetti A., Avogaro A., Cobelli C. Characterizing multisegment foot kinematics during gait in diabetic foot patients. J. Neuroeng. Rehabil. 2009;6:37. doi: 10.1186/1743-0003-6-37.
    1. Sawacha Z., Spolaor F., Guarneri G., Contessa P., Carraro E., Venturin A., Avogaro A., Cobelli C. Abnormal muscle activation during gait in diabetes patients with and without neuropathy. Gait Posture. 2012;35:101–105. doi: 10.1016/j.gaitpost.2011.08.016.
    1. Tuttle L.J., Hastings M.K., Mueller M.J. A moderate-intensity weight-bearing exercise program for a person with type 2 diabetes and peripheral neuropathy. Phys. Ther. 2012;92:133–141. doi: 10.2522/ptj.20110048.
    1. Praet S.F.E., Jonkers R.A.M., Schep G., Stehouwer C.D.A., Kuipers H., Keizer H.A., van Loon L.J. Long-standing, insulin-treated type 2 diabetes patients with complications respond well to short-term resistance and interval exercise training. Eur. J. Endocrinol. 2008;158:163–172. doi: 10.1530/EJE-07-0169.
    1. Savelberg H.H.C.M., Ilgin D., Angin S., Willems P.J.B., Schaper N.C., Meijer K. Prolonged activity of knee extensors and dorsal flexors is associated with adaptations in gait in diabetes and diabetic polyneuropathy. Clin. Biomech. Bristol Avon. 2010;25:468–475. doi: 10.1016/j.clinbiomech.2010.02.005.
    1. Ahmad I., Verma S., Noohu M.M., Shareef M.Y., Hussain M.E. Sensorimotor and gait training improves proprioception, nerve function, and muscular activation in patients with diabetic peripheral neuropathy: A randomized control trial. J. Musculoskelet. Neuronal Interact. 2020;20:234–248.
    1. Monteiro R.L., Ferreira J.S.S.P., Silva É.Q., Cruvinel-Júnior R.H., Veríssimo J.L., Bus S.A., Sacco I.C.N. Foot-ankle therapeutic exercise program can improve gait speed in people with diabetic neuropathy: A randomized controlled trial. Sci. Rep. 2022;12:7561. doi: 10.1038/s41598-022-11745-0.
    1. Kruse R.L., Lemaster J.W., Madsen R.W. Fall and balance outcomes after an intervention to promote leg strength, balance, and walking in people with diabetic peripheral neuropathy: “feet first” randomized controlled trial. Phys. Ther. 2010;90:1568–1579. doi: 10.2522/ptj.20090362.
    1. Ahn S., Song R. Effects of Tai Chi Exercise on glucose control, neuropathy scores, balance, and quality of life in patients with type 2 diabetes and neuropathy. J. Altern. Complement. Med. 2012;18:1172–1178. doi: 10.1089/acm.2011.0690.
    1. Allet L., Armand S., Aminian K., Pataky Z., Golay A., de Bie R.A., de Bruin E.D. An exercise intervention to improve diabetic patients’ gait in a real-life environment. Gait Posture. 2010;32:185–190. doi: 10.1016/j.gaitpost.2010.04.013.
    1. Andersen H. Motor function in diabetic neuropathy. Acta Neurol. Scand. 1999;100:211–220. doi: 10.1111/j.1600-0404.1999.tb00383.x.
    1. Impellizzeri F.M., Rampinini E., Castagna C., Martino F., Fiorini S., Wisloff U. Effect of plyometric training on sand versus grass on muscle soreness and jumping and sprinting ability in soccer players. Br. J. Sport. Med. 2008;42:42–46. doi: 10.1136/bjsm.2007.038497.
    1. Miyama M., Nosaka K. Influence of surface on muscle damage and soreness induced by consecutive drop jumps. J. Strength Cond. Res. 2004;18:206–211. doi: 10.1519/R-13353.1.
    1. American Diabetes Assocation Steps to Prevent or Delay Nerve Damage. 2022. [(accessed on 10 November 2022)]. Available online: .
    1. Mueller M.J., Tuttle L.J., Lemaster J.W., Strube M.J., McGill J.B., Hastings M.K., Sinacore D.R. Weight-bearing versus nonweight-bearing exercise for persons with diabetes and peripheral neuropathy: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2013;94:829–838. doi: 10.1016/j.apmr.2012.12.015.
    1. Javorek I. EQUIPMENT DESIGN: Sand boxes (sand stairs) and their use in developing explosive response. Strength Cond. J. 1991;13:84–87. doi: 10.1519/0744-0049(1991)013<0084:SBSSAT>;2.
    1. Colberg S.R., Sigal R.J., Yardley J.E., Riddell M.C., Dunstan D.W., Dempsey P.C., Horton E.S., Castorino K., Tate D.F. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care. 2016;39:2065–2079. doi: 10.2337/dc16-1728.
    1. Arazi H., Mohammadi M., Asadi A. Muscular adaptations to depth jump plyometric training: Comparison of sand vs. land surface. Interv. Med. Appl. Sci. 2014;6:125–130. doi: 10.1556/imas.6.2014.3.5.
    1. Shin H.-J., Kim S.-H., Jeon E.-T., Lee M.-G., Lee S.-J., Cho H.-Y. Effects of therapeutic exercise on sea sand on pain, fatigue, and balance in patients with chronic ankle instability: A feasibility study. J. Sport. Med. Phys. Fit. 2019;59:1200–1205. doi: 10.23736/S0022-4707.19.09405-2.
    1. The Effects of Sand Exercise Program on Balance Capability, Extremity Muscle Activity, and Inflammatory Markers in Older Women. [(accessed on 14 October 2022)]. Available online: .
    1. Schneiders A.G., Sullivan S.J., O’Malley K.J., Clarke S.V., Knappstein S.A., Taylor L.J. A valid and reliable clinical determination of footedness. Phys. Med. Rehabil. 2010;2:835–841. doi: 10.1016/j.pmrj.2010.06.004.
    1. Prókai J., Geszler C., Lukácsi B., Váczi M. Rövidtávú TRX edzés izommechanikai és funkcionális hatása edzetlen személyeknél. Magy. Sport. Szle. 2016;17:17–22.
    1. Moreira B.D.S., Dos Anjos D.M.D.C., Pereira D.S., Sampaio R.F., Pereira L.S.M., Dias R.C., Kirkwood R.N. The geriatric depression scale and the timed up and go test predict fear of falling in community-dwelling elderly women with type 2 diabetes mellitus: A cross-sectional study. BMC Geriatr. 2016;16:56. doi: 10.1186/s12877-016-0234-1.
    1. Podsiadlo D., Richardson S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991;39:142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x.
    1. Pados G. Up-to-date treatment of obesity. Orv. Hetil. 2010;151:501–504. doi: 10.1556/oh.2010.28828.
    1. Allet L., Armand S., de Bie R.A., Golay A., Monnin D., Aminian K., Staal J.B., de Bruin E.D. The gait and balance of patients with diabetes can be improved: A randomised controlled trial. Diabetologia. 2010;53:458–466. doi: 10.1007/s00125-009-1592-4.
    1. Katics L. Kondicionális és Koordinációs Képességek Fejlesztése (a Testnevelésben, Szabadidő-és Versenysportban) PTE TTK; Pécs, Hungary: 2015.
    1. Venkataraman K., Tai B.C., Khoo E.Y.H., Tavintharan S., Chandran K., Hwang S.W., Phua M.S.L.A., Wee H.L., Koh G.C.H., Tai E.S. Short-term strength and balance training does not improve quality of life but improves functional status in individuals with diabetic peripheral neuropathy: A randomised controlled trial. Diabetologia. 2019;62:2200–2210. doi: 10.1007/s00125-019-04979-7.
    1. Andersen H., Nielsen S., Mogensen C.E., Jakobsen J. Muscle strength in type 2 diabetes. Diabetes. 2004;53:1543–1548. doi: 10.2337/diabetes.53.6.1543.
    1. Alter M.J. Science of Flexibility. Human Kinetics; Champaign, IL, USA: 1996.
    1. Lee K., Lee S., Song C. Whole-body vibration training improves balance, muscle strength and glycosylated hemoglobin in elderly patients with diabetic neuropathy. Tohoku J. Exp. Med. 2013;231:305–314. doi: 10.1620/tjem.231.305.
    1. Song C.H., Petrofsky J.S., Lee S.W., Lee K.J., Yim J.E. Effects of an exercise program on balance and trunk proprioception in older adults with diabetic neuropathies. Diabetes Technol. Ther. 2011;13:803–811. doi: 10.1089/dia.2011.0036.
    1. Hirase T., Inokuchi S., Matsusaka N., Okita M. Effects of a balance training program using a foam rubber pad in community-based older adults: A randomized controlled trial. J. Geriatr. Phys. Ther. 2015;38:62–70. doi: 10.1519/JPT.0000000000000023.

Source: PubMed

3
Tilaa