Emerging role of 18F-FDG PET/CT in Castleman disease: a review

Benjamin Koa, Austin J Borja, Mahmoud Aly, Sayuri Padmanabhan, Joseph Tran, Vincent Zhang, Chaitanya Rojulpote, Sheila K Pierson, Mark-Avery Tamakloe, Johnson S Khor, Thomas J Werner, David C Fajgenbaum, Abass Alavi, Mona-Elisabeth Revheim, Benjamin Koa, Austin J Borja, Mahmoud Aly, Sayuri Padmanabhan, Joseph Tran, Vincent Zhang, Chaitanya Rojulpote, Sheila K Pierson, Mark-Avery Tamakloe, Johnson S Khor, Thomas J Werner, David C Fajgenbaum, Abass Alavi, Mona-Elisabeth Revheim

Abstract

Castleman disease (CD) describes a group of rare hematologic conditions involving lymphadenopathy with characteristic histopathology and a spectrum of clinical abnormalities. CD is divided into localized or unicentric CD (UCD) and multicentric CD (MCD) by imaging. MCD is further divided based on etiological driver into human herpesvirus-8-associated MCD, POEMS-associated MCD, and idiopathic MCD. There is notable heterogeneity across MCD, but increased level of pro-inflammatory cytokines, particularly interleukin-6, is an established disease driver in a portion of patients. FDG-PET/CT can help determine UCD versus MCD, evaluate for neoplastic conditions that can mimic MCD clinico-pathologically, and monitor therapy responses. CD requires more robust characterization, earlier diagnosis, and an accurate tool for both monitoring and treatment response evaluation; FDG-PET/CT is particularly suited for this. Moving forward, future prospective studies should further characterize the use of FDG-PET/CT in CD and specifically explore the utility of global disease assessment and dual time point imaging.Trial registration ClinicalTrials.gov, NCT02817997, Registered 29 June 2016, https://ichgcp.net/clinical-trials-registry/NCT02817997.

Keywords: Castleman disease; Fluorodeoxyglucose F18; HIV; Interleukin-6; Positron emission tomography/computed tomography.

Conflict of interest statement

DCF has received research funding from EUSA Pharma for the ACCELERATE Registry (formerly sponsored by Janssen Pharmaceuticals). The rest of the authors declare no conflicts of interest.

Figures

Fig. 1
Fig. 1
Summary of the main types of Castleman disease [–22]. UCD, unicentric Castleman disease; MCD, multicentric Castleman disease; HHV-8, human herpesvirus-8; iMCD, idiopathic multicentric Castleman disease; POEMS, polyneuropathy, organomegaly, endocrinopathy, monoclonal protein, skin changes
Fig. 2
Fig. 2
a displays the PET scan of a subject with multicentric Castleman disease (MCD) in the coronal view. Enlarged axillary and cervical lymph nodes and an enlarged spleen are seen in a, demonstrating the systemic nature of MCD. b–d display the CT, PET, and PET/CT cross-sectional scans of the subject’s thorax, respectively. d displays high uptake of lymph nodes in the right and left axillary regions as shown in a
Fig. 3
Fig. 3
a–c consist of the CT, PET, and PET/CT scans, respectively, of a subject with multicentric Castleman Disease (MCD). High FDG uptake of lymph nodes can be visualized in the neck in b and c. d–f were taken 8 months after (a–c) and demonstrate decreased FDG-uptake in the same neck region, indicating that the subject’s Castleman disease treatment has been successful
Fig. 4
Fig. 4
FDG-PET images of a multicentric Castleman disease (MCD) subject over 8 months. a and b demonstrate cervical, axillary, and pelvic lesions, while c and d show decrease in FDG-uptake in accordance to treatment. Total lesion glycolysis (TLG) was calculated to be 934.7, 1001.7, 17.5, and 16.4 for a–d respectively. TLG was calculated by multiplying the metabolic volume with FDG uptake segmented by fixed threshold methods at 41% of maximum SUV in the volume of interest (VOI) [75] by the mean standardized uptake value (SUVmean) and them summing all the intensity-volume product values from all lesions
Fig. 5
Fig. 5
A subject with multicentric Castleman disease (MCD) with lesions in the axillary, neck, and abdomen is shown over the course of 10 months. a indicated the initial lesions seen in PET before treatment. b was taken after 4 months from the initial scan, and a decrease of lesions in the axillary, neck, and abdomen is seen. However, the disease seemed to reappear in the axillary and cervical lesions despite treatment as visualized in c, which was taken 6 months after the scan for b. Total lesion glycolysis (TLG) was calculated to be 365.9, 204.5, and 601.6 for a–c, respectively. TLG was calculated by multiplying the metabolic volume with FDG uptake segmented by fixed threshold methods at 41% of maximum SUV in the volume of interest (VOI) [75] by the mean standardized uptake value (SUVmean) and then summing all the intensity-volume product values from all lesions

References

    1. Munshi N, Mehra M, van de Velde H, Desai A, Potluri R, Vermeulen J. Use of a claims database to characterize and estimate the incidence rate for Castleman disease. Leuk Lymphoma. 2015;56:1252–1260. doi: 10.3109/10428194.2014.953145.
    1. Cervantes CE, Correa R. Castleman disease: a rare condition with endocrine manifestations. Cureus. 2015;7:e380.
    1. Bonekamp D, Horton KM, Hruban RH, Fishman EK. Castleman disease: the great mimic. Radiographics. 2011;31:1793–1807. doi: 10.1148/rg.316115502.
    1. Fajgenbaum DC, Uldrick TS, Bagg A, et al. International, evidence-based consensus diagnostic criteria for HHV-8-negative/idiopathic multicentric Castleman disease. Blood. 2017;129:1646–1657. doi: 10.1182/blood-2016-10-746933.
    1. Jiang J-P, Shen X-F, Du J-F, Guan W-X. A retrospective study of 34 patients with unicentric and multicentric Castleman’s disease: experience from a single institution. Oncol Lett. 2018;15:2407–2412.
    1. Yu JY, Oh IJ, Kim KS, et al. Castleman’s disease presenting as a tracheal mass. Ann Thorac Surg. 2014;97:1798–1800. doi: 10.1016/j.athoracsur.2013.07.124.
    1. Ye B, Gao S-G, Li W, et al. A retrospective study of unicentric and multicentric Castleman’s disease: a report of 52 patients. Med Oncol. 2010;27:1171–1178. doi: 10.1007/s12032-009-9355-0.
    1. Luo JM, Li S, Huang H, et al. Clinical spectrum of intrathoracic Castleman disease: a retrospective analysis of 48 cases in a single Chinese hospital. BMC Pulm Med. 2015;15:34. doi: 10.1186/s12890-015-0019-x.
    1. Kligerman SJ, Auerbach A, Franks TJ, Galvin JR. Castleman disease of the thorax: clinical, radiologic, and pathologic correlation: from the radiologic pathology archives. Radiographics. 2016;36:1309–1332. doi: 10.1148/rg.2016160076.
    1. Cronin DMP, Warnke RA. Castleman disease: an update on classification and the spectrum of associated lesions. Adv Anat Pathol. 2009;16:236. doi: 10.1097/PAP.0b013e3181a9d4d3.
    1. Madan R, Chen JH, Trotman-Dickenson B, Jacobson F, Hunsaker A. The spectrum of Castleman’s disease: Mimics, radiologic pathologic correlation and role of imaging in patient management. Eur J Radiol. 2012;81:123–131. doi: 10.1016/j.ejrad.2010.06.018.
    1. Delaney SW, Zhou S, Maceri D. Castleman’s disease presenting as a parotid mass in the pediatric population: a report of 2 cases. Case Rep Otolaryngol. 2015;2015:691701.
    1. Oksenhendler E, Boutboul D, Fajgenbaum D, et al. The full spectrum of Castleman disease: 273 patients studied over 20 years. Br J Haematol. 2018;180:206–216. doi: 10.1111/bjh.15019.
    1. Chen LYC, Mattman A, Seidman MA, Carruthers MN. IgG4-related disease: what a hematologist needs to know. Haematologica. 2019;104:444–455. doi: 10.3324/haematol.2018.205526.
    1. Fajgenbaum DC, van Rhee F, Nabel CS. HHV-8-negative, idiopathic multicentric Castleman disease: novel insights into biology, pathogenesis, and therapy. Blood. 2014;123:2924–2933. doi: 10.1182/blood-2013-12-545087.
    1. Powles T, Stebbing J, Bazeos A, et al. The role of immune suppression and HHV-8 in the increasing incidence of HIV-associated multicentric Castleman’s disease. Ann Oncol. 2009;20:775–779. doi: 10.1093/annonc/mdn697.
    1. Zhang X, Rao H, Xu X, et al. Clinical characteristics and outcomes of Castleman disease: a multicenter study of 185 Chinese patients. Cancer Sci. 2018;109:199–206. doi: 10.1111/cas.13439.
    1. Pria AD, Pinato D, Roe J, Naresh K, Nelson M, Bower M. Relapse of HHV8-positive multicentric Castleman disease following rituximab-based therapy in HIV-positive patients. Blood. 2017;129:2143–2147. doi: 10.1182/blood-2016-10-747477.
    1. Gérard L, Michot J-M, Burcheri S, et al. Rituximab decreases the risk of lymphoma in patients with HIV-associated multicentric Castleman disease. Blood Am Soc Hematol. 2012;119:2228–2233.
    1. Yu L, Tu M, Cortes J, et al. Clinical and pathological characteristics of HIV- and HHV-8–negative Castleman disease. Blood. 2017;129:1658–1668. doi: 10.1182/blood-2016-11-748855.
    1. Sitenga J, Aird G, Ahmed A, Silberstein PT. Impact of siltuximab on patient-related outcomes in multicentric Castleman’s disease. Patient Relat Outcome Meas. 2018;9:35–41. doi: 10.2147/PROM.S140011.
    1. Suichi T, Misawa S, Sekiguchi Y, et al. Treatment response and prognosis of POEMS syndrome coexisting with Castleman disease. J Neurol Sci. 2020;413:116771. doi: 10.1016/j.jns.2020.116771.
    1. Szalat R, Munshi NC. Diagnosis of Castleman disease. Hematol Oncol Clin North Am. 2018;32:53–64. doi: 10.1016/j.hoc.2017.09.005.
    1. Műzes G, Sipos F, Csomor J, Sréter L. Multicentric Castleman’s disease: a challenging diagnosis. Pathol Oncol Res. 2013;19:345–351. doi: 10.1007/s12253-013-9619-z.
    1. Dispenzieri A. POEMS syndrome: 2019 update on diagnosis, risk-stratification, and management. Am J Hematol. 2019;94:812–827.
    1. Li Z, Lan X, Li C, et al. Recurrent PDGFRB mutations in unicentric Castleman disease. Leukemia. 2019;33:1035–1038. doi: 10.1038/s41375-018-0323-6.
    1. van Rhee F, Stone K, Szmania S, Barlogie B, Singh Z. Castleman disease in the 21st century: an update on diagnosis, assessment, and therapy. Clin Adv Hematol Oncol. 2010;8:486–498.
    1. Polizzotto MN, Uldrick TS, Wang V, et al. Human and viral interleukin-6 and other cytokines in Kaposi sarcoma herpesvirus-associated multicentric Castleman disease. Blood. 2013;122:4189–4198. doi: 10.1182/blood-2013-08-519959.
    1. Suthaus J, Stuhlmann-Laeisz C, Tompkins VS, et al. HHV-8-encoded viral IL-6 collaborates with mouse IL-6 in the development of multicentric Castleman disease in mice. Blood. 2012;119:5173–5181. doi: 10.1182/blood-2011-09-377705.
    1. Stebbing J, Pantanowitz L, Dayyani F, Sullivan RJ, Bower M, Dezube BJ. HIV-associated multicentric Castleman’s disease. Am J Hematol. 2008;83:498–503. doi: 10.1002/ajh.21137.
    1. El-Osta HE, Kurzrock R. Castleman’s disease: from basic mechanisms to molecular therapeutics. Oncologist. 2011;16:497–511. doi: 10.1634/theoncologist.2010-0212.
    1. Zhao S, Wan Y, Huang Z, Song B, Yu J. Imaging and clinical features of Castleman disease. Cancer Imaging. 2019;19:53. doi: 10.1186/s40644-019-0238-0.
    1. Waterston A, Bower M. Fifty years of multicentric Castleman’s disease. Acta Oncol. 2004;43:698–704. doi: 10.1080/02841860410002752.
    1. Hill AJ, Tirumani SH, Rosenthal MH, et al. Multimodality imaging and clinical features in Castleman disease: single institute experience in 30 patients. Br J Radiol. 2015;88:20140670. doi: 10.1259/bjr.20140670.
    1. Savelli G, Muni A, Falchi R, Giuffrida F. Pre- and post-therapy 18F-FDG PET/CT of a patient affected by non-HIV multicentric IgG4-related Castleman disease. Blood Res. 2015;50:260–262. doi: 10.5045/br.2015.50.4.260.
    1. van Rhee F, Voorhees P, Dispenzieri A, et al. International, evidence-based consensus treatment guidelines for idiopathic multicentric Castleman disease. Blood. 2018;132:2115–2124. doi: 10.1182/blood-2018-07-862334.
    1. Kwon S, Lee KS, Ahn S, Song I, Kim TS. Thoracic Castleman disease: computed tomography and clinical findings. J Comput Assist Tomogr. 2013;37:1–8. doi: 10.1097/RCT.0b013e318270658b.
    1. Lee ES, Paeng JC, Park CM, et al. Metabolic characteristics of castleman disease on 18F-FDG PET in relation to clinical implication. Clin Nucl Med. 2013;38:339–342. doi: 10.1097/RLU.0b013e3182816730.
    1. Barker R, Kazmi F, Stebbing J, et al. FDG-PET/CT imaging in the management of HIV-associated multicentric Castleman’s disease. Eur J Nucl Med Mol Imaging. 2009;36:648–652. doi: 10.1007/s00259-008-0998-4.
    1. Balamoutoff N, Serrano B, Hugonnet F, Garnier N, Paulmier B, Faraggi M. Added value of a single fast 20-second deep-inspiration breath-hold acquisition in FDG PET/CT in the assessment of lung nodules. Radiology. 2018;286:260–270. doi: 10.1148/radiol.2017160534.
    1. Flavell RR, Behr SC, Mabray MC, Hernandez-Pampaloni M, Naeger DM. Detecting pulmonary nodules in lung cancer patients using whole body FDG PET/CT, high-resolution lung reformat of FDG PET/CT, or diagnostic breath hold chest CT. Acad Radiol. 2016;23:1123–1129. doi: 10.1016/j.acra.2016.04.007.
    1. Liu C, Alessio AM, Kinahan PE. Respiratory motion correction for quantitative PET/CT using all detected events with internal-external motion correlation. Med Phys. 2011;38:2715–2723. doi: 10.1118/1.3582692.
    1. Büther F, Jones J, Seifert R, Stegger L, Schleyer P, Schäfers M. Clinical evaluation of a data-driven respiratory gating algorithm for whole-body PET with continuous bed motion. J Nucl Med. 2020;61:1520–1527. doi: 10.2967/jnumed.119.235770.
    1. Kim JS, Lim ST, Jeong YJ, Kim DW, Jeong HJ, Sohn MH. F-18 FDG PET/CT for the characterization of Castleman’s disease according to clinical subtype. J Nucl Med. 2010;51:1614–1614.
    1. Rassouli N, Obmann VC, Sandhaus LM, Herrmann KA. (18F)-FDG-PET/MRI of unicentric retroperitoneal Castleman disease in a pediatric patient. Clin Imaging. 2018;50:175–180. doi: 10.1016/j.clinimag.2018.03.010.
    1. Høilund-Carlsen PF, Edenbrandt L, Alavi A. Global disease score (GDS) is the name of the game! Eur J Nucl Med Mol Imaging. 2019;46:1768–1772. doi: 10.1007/s00259-019-04383-8.
    1. Raynor WY, Borja AJ, Rojulpote C, Høilund-Carlsen PF, Alavi A. 18F-sodium fluoride: An emerging tracer to assess active vascular microcalcification. J Nucl Cardiol. 2020;
    1. Boellaard R, Delgado-Bolton R, Oyen WJG, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–354. doi: 10.1007/s00259-014-2961-x.
    1. Graham MM, Wahl RL, Hoffman JM, et al. Summary of the UPICT protocol for 18F-FDG PET/CT imaging in oncology clinical trials. J Nucl Med. 2015;56:955–961. doi: 10.2967/jnumed.115.158402.
    1. Ding Q, Zhang J, Yang L. (18)F-FDG PET/CT in multicentric Castleman disease: a case report. Ann Transl Med. 2016;4:58. doi: 10.21037/atm.2016.10.66.
    1. Fu Z, Zhang X, Fan Y, Di L, Zhang J, Wang RF. Clinical value of 18F-FDG PET/CT in the management of Castleman’s disease. J Nucl Med. 2013;54:1560–1560.
    1. Murphy SP, Nathan MA, Karwal MW. FDG-PET appearance of pelvic Castleman’s disease. J Nucl Med. 1997;38:1211–1212.
    1. Haap M, Wiefels J, Horger M, Hoyer A, Müssig K. Clinical, laboratory and imaging findings in Castleman’s disease—the subtype decides. Blood Rev. 2018;32:225–234. doi: 10.1016/j.blre.2017.11.005.
    1. Mohammed A, Janku F, Qi M, Kurzrock R. Castleman’s disease and sarcoidosis, a rare association resulting in a “mixed” response: a case report. J Med Case Rep. 2015;9:45. doi: 10.1186/s13256-015-0517-8.
    1. Mohseni S, Shojaiefard A, Khorgami Z, Alinejad S, Ghorbani A, Ghafouri A. Peripheral lymphadenopathy: approach and diagnostic tools. Iran J Med Sci. 2014;39:158–170.
    1. Wang W, Medeiros LJ. Castleman Disease. Surg Pathol Clin. 2019;12:849–863. doi: 10.1016/j.path.2019.03.003.
    1. Barua A, Vachlas K, Milton R, Thorpe JAC. Castleman’s disease- a diagnostic dilemma. J Cardiothorac Surg. 2014;9:170. doi: 10.1186/s13019-014-0170-0.
    1. Fajgenbaum DC, Langan R-A, Japp AS, et al. Identifying and targeting pathogenic PI3K/AKT/mTOR signaling in IL-6-blockade-refractory idiopathic multicentric Castleman disease. J Clin Invest. 2019;129:4451–4463. doi: 10.1172/JCI126091.
    1. Elboga U, Narin Y, Urhan M, Sahin E. FDG PET/CT appearance of multicentric Castleman’s disease mimicking lymphoma. Rev Esp Med Nucl Imagen Mol. 2012;31:142–144.
    1. Akosman C, Selcuk NA, Ordu C, Ercan S, Ekici ID, Oyan B. Unicentric mixed variant Castleman disease associated with Hashimoto disease: the role of PET/CT in staging and evaluating response to the treatment. Cancer Imaging. 2011;11:52–55.
    1. Casper C. The aetiology and management of Castleman disease at 50 years: translating pathophysiology to patient care. Br J Haematol. 2005;129:3–17. doi: 10.1111/j.1365-2141.2004.05311.x.
    1. Ren N, Ding L, Jia E, Xue J. Recurrence in unicentric castleman’s disease postoperatively: a case report and literature review. BMC Surg. 2018;18:1. doi: 10.1186/s12893-017-0334-7.
    1. van Rhee F, Greenway A, Stone K. Treatment of idiopathic Castleman disease. Hematol Oncol Clin North Am. 2018;32:89–106. doi: 10.1016/j.hoc.2017.09.008.
    1. American Cancer Society. Castleman Disease [Internet]. 2018 [cited 2020 Mar 15]. Available from:
    1. Pelosi E, Skanjeti A, Cistaro A, Arena V. Fluorodeoxyglucose-positron emission tomography/computed tomography in the staging and evaluation of treatment response in a patient with Castleman’s disease: a case report. J Med Case Rep. 2008;2:99. doi: 10.1186/1752-1947-2-99.
    1. Jain L, Mackenzie S, Bomanji JB, et al. 18F-Fluorodeoxyglucose positron emission tomography-computed tomography imaging in HIV-infected patients with lymphadenopathy, with or without fever and/or splenomegaly. Int J STD AIDS. 2018;29:691–694. doi: 10.1177/0956462417745960.
    1. Diéval C, Bonnet DF, Mauclère S, et al. Multicentric Castleman disease: Use of HHV8 viral load monitoring and positron emission tomography during follow-up. Leuk Lymphoma. 2007;48:1881–1883. doi: 10.1080/10428190701509798.
    1. Sanz-Viedma S, Torigian DA, Parsons M, Basu S, Alavi A. Potential clinical utility of dual time point FDG-PET for distinguishing benign from malignant lesions: implications for oncological imaging. Rev Esp Med Nucl. 2009;28:159–166. doi: 10.1016/S0212-6982(09)71360-6.
    1. Borja A, Aly M, Seraj SM, et al. Role of FDG in the management of metastatic hepatic tumors treated with chemoembolization. J Nucl Med Soc Nuclear Med. 2020;61:1181–1181.
    1. Cheng G, Torigian DA, Zhuang H, Alavi A. When should we recommend use of dual time-point and delayed time-point imaging techniques in FDG PET? Eur J Nucl Med Mol Imaging. 2013;40:779–787. doi: 10.1007/s00259-013-2343-9.
    1. Kwee TC, Basu S, Saboury B, Ambrosini V, Torigian DA, Alavi A. A new dimension of FDG-PET interpretation: assessment of tumor biology. Eur J Nucl Med Mol Imaging. 2011;38:1158–1170. doi: 10.1007/s00259-010-1713-9.
    1. Sarikaya I, Sarikaya A. Assessing PET parameters in oncologic 18F-FDG studies. J Nucl Med Technol. 2020;48:278–282. doi: 10.2967/jnmt.119.236109.
    1. Kang F, Han Q, Zhou X, et al. Performance of the PET vascular activity score (PETVAS) for qualitative and quantitative assessment of inflammatory activity in Takayasu’s arteritis patients. Eur J Nucl Med Mol Imaging. 2020;47:3107–3117. doi: 10.1007/s00259-020-04871-2.
    1. Bai B, Bading J, Conti PS. Tumor quantification in clinical positron emission tomography. Theranostics. 2013;3:787. doi: 10.7150/thno.5629.
    1. Aide N, Lasnon C, Veit-Haibach P, Sera T, Sattler B, Boellaard R. EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging. 2017;44:17–31. doi: 10.1007/s00259-017-3740-2.
    1. Davis JC, Daw NC, Navid F, et al. 18F-FDG uptake during early adjuvant chemotherapy predicts histologic response in pediatric and young adult patients with osteosarcoma. J Nucl Med. 2018;59:25–30. doi: 10.2967/jnumed.117.190595.
    1. Im H-J, Zhang Y, Wu H, et al. Prognostic value of metabolic and volumetric parameters of FDG pet in pediatric osteosarcoma: a hypothesis-generating study. Radiology. 2018;287:303–312. doi: 10.1148/radiol.2017162758.
    1. Basu S, Zaidi H, Salavati A, Hess S, Høilund-Carlsen PF, Alavi A. FDG PET/CT methodology for evaluation of treatment response in lymphoma: from “graded visual analysis” and “semiquantitative SUVmax” to global disease burden assessment. Eur J Nucl Med Mol Imaging. 2014;41:2158–2160. doi: 10.1007/s00259-014-2826-3.
    1. Taghvaei R, Zadeh MZ, Oestergaard B, et al. PET imaging in hematological malignancies. J Nucl Med. 2017;58:1008–1008.
    1. Raynor WY, Zadeh MZ, Kothekar E, Yellanki DP, Alavi A. Evolving role of PET-based novel quantitative techniques in the management of hematological malignancies. PET Clin. 2019;14:331–340. doi: 10.1016/j.cpet.2019.03.003.
    1. Borja AJ, Hancin EC, Zhang V, Revheim M-E, Alavi A. Potential of PET/CT in assessing dementias with emphasis on cerebrovascular disorders. Eur J Nucl Med Mol Imaging. 2020;47:2493–2498. doi: 10.1007/s00259-020-04697-y.
    1. Kothekar E, Yellanki D, Borja AJ, et al. 18F-FDG-PET/CT in measuring volume and global metabolic activity of thigh muscles: a novel CT-based tissue segmentation methodology. Nucl Med Commun. 2020;41:162–168. doi: 10.1097/MNM.0000000000001127.
    1. Borja AJ, Hancin EC, Dreyfuss AD, et al. 18F-FDG-PET/CT in the quantification of photon radiation therapy-induced vasculitis. Am J Nucl Med Mol Imaging. 2020;10:66–73.
    1. Sun L, Sun X, Li Y, Xing L. The role of (18)F-FDG PET/CT imaging in patient with malignant PEComa treated with mTOR inhibitor. Onco Targets Ther. 2015;8:1967–1970. doi: 10.2147/OTT.S85444.
    1. Graf N, Li Z, Herrmann K, et al. Positron emission tomographic monitoring of dual phosphatidylinositol-3-kinase and mTOR inhibition in anaplastic large cell lymphoma. Onco Targets Ther. 2014;7:789–798.
    1. Owonikoko TK. Inhibitors of mTOR pathway for cancer therapy, moving on from rapalogs to TORKinibs. Cancer. 2015;121:3390–3392. doi: 10.1002/cncr.29424.
    1. Anwar H, Sachpekidis C, Schwarzbach M, Dimitrakopoulou-Strauss A. Fluorine-18-FDG PET/CT in a patient with angiomyolipoma: response to mammalian target of rapamycin inhibitor therapy. Hell J Nucl Med. 2017;20:169–171.

Source: PubMed

3
Tilaa