Cellular and Molecular Differences between HFpEF and HFrEF: A Step Ahead in an Improved Pathological Understanding

Steven J Simmonds, Ilona Cuijpers, Stephane Heymans, Elizabeth A V Jones, Steven J Simmonds, Ilona Cuijpers, Stephane Heymans, Elizabeth A V Jones

Abstract

Heart failure (HF) is the most rapidly growing cardiovascular health burden worldwide. HF can be classified into three groups based on the percentage of the ejection fraction (EF): heart failure with reduced EF (HFrEF), heart failure with mid-range-also called mildly reduced EF- (HFmrEF), and heart failure with preserved ejection fraction (HFpEF). HFmrEF can progress into either HFrEF or HFpEF, but its phenotype is dominated by coronary artery disease, as in HFrEF. HFrEF and HFpEF present with differences in both the development and progression of the disease secondary to changes at the cellular and molecular level. While recent medical advances have resulted in efficient and specific treatments for HFrEF, these treatments lack efficacy for HFpEF management. These differential response rates, coupled to increasing rates of HF, highlight the significant need to understand the unique pathogenesis of HFrEF and HFpEF. In this review, we summarize the differences in pathological development of HFrEF and HFpEF, focussing on disease-specific aspects of inflammation and endothelial function, cardiomyocyte hypertrophy and death, alterations in the giant spring titin, and fibrosis. We highlight the areas of difference between the two diseases with the aim of guiding research efforts for novel therapeutics in HFrEF and HFpEF.

Keywords: cardiomyocyte alterations; endothelial dysfunction; heart failure with preserved ejection fraction; heart failure with reduced ejection fraction; inflammation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Risk factors and comorbidities involved in the development of either heart failure with reduced ejection fraction, heart failure with preserved ejection fraction or both. Image created using artwork from Servier medical art.
Figure 2
Figure 2
Schematic of sterile-, metabolic risk-, and non-sterile-induced inflammation in the development of heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. HFpEF (heart failure with preserved ejection fraction), HFrEF (heart failure with reduced ejection fraction), HSC (haemopoietic stem cell), IFN1 (interferon 1), IL-10 (interleukin 10), MAPK (mitogen-activated protein kinase), NFκB (nuclear factor kappa B), PRR (pathogen recognition receptor), T2DM (type 2 diabetes mellitus), ROS (reactive oxygen species), TGFβ (transforming growth factor beta) Image created using artwork from Servier medical art.
Figure 3
Figure 3
The role of titin in left ventricular stiffness. (A) Diagram of the alternative isoforms of titin. (B) Post-translational modifications of Titin and their effect on left ventricular stiffness in HFrEF and HFpEF.

References

    1. Ambrosy A.P., Fonarow G.C., Butler J., Chioncel O., Greene S.J., Vaduganathan M., Nodari S., Lam C.S., Sato N., Shah A.N., et al. The global health and economic burden of hospitalizations for heart failure: Lessons learned from hospitalized heart failure registries. J. Am. Coll. Cardiol. 2014;63:1123–1133. doi: 10.1016/j.jacc.2013.11.053.
    1. Vedin O., Lam C.S.P., Koh A.S., Benson L., Teng T.H.K., Tay W.T., Braun O.O., Savarese G., Dahlstrom U., Lund L.H. Significance of Ischemic Heart Disease in Patients With Heart Failure and Preserved, Midrange, and Reduced Ejection Fraction: A Nationwide Cohort Study. Circ. Heart Fail. 2017;10 doi: 10.1161/CIRCHEARTFAILURE.117.003875.
    1. Koh A.S., Tay W.T., Teng T.H.K., Vedin O., Benson L., Dahlstrom U., Savarese G., Lam C.S.P., Lund L.H. A comprehensive population-based characterization of heart failure with mid-range ejection fraction. Eur. J. Heart Fail. 2017;19:1624–1634. doi: 10.1002/ejhf.945.
    1. Kapoor J.R., Kapoor R., Ju C., Heidenreich P.A., Eapen Z.J., Hernandez A.F., Butler J., Yancy C.W., Fonarow G.C. Precipitating Clinical Factors, Heart Failure Characterization, and Outcomes in Patients Hospitalized With Heart Failure With Reduced, Borderline, and Preserved Ejection Fraction. JACC Heart Fail. 2016;4:464–472. doi: 10.1016/j.jchf.2016.02.017.
    1. He J., Ogden L.G., Bazzano L.A., Vupputuri S., Loria C., Whelton P.K. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch. Intern. Med. 2001;161:996–1002. doi: 10.1001/archinte.161.7.996.
    1. Borlaug B.A., Melenovsky V., Russell S.D., Kessler K., Pacak K., Becker L.C., Kass D.A. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation. 2006;114:2138–2147. doi: 10.1161/CIRCULATIONAHA.106.632745.
    1. Kass D.A., Bronzwaer J.G., Paulus W.J. What mechanisms underlie diastolic dysfunction in heart failure? Circ. Res. 2004;94:1533–1542. doi: 10.1161/01.RES.0000129254.25507.d6.
    1. Tsao C.W., Lyass A., Enserro D., Larson M.G., Ho J.E., Kizer J.R., Gottdiener J.S., Psaty B.M., Vasan R.S. Temporal Trends in the Incidence of and Mortality Associated With Heart Failure With Preserved and Reduced Ejection Fraction. JACC Heart Fail. 2018;6:678–685. doi: 10.1016/j.jchf.2018.03.006.
    1. Paulus W.J., Tschope C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013;62:263–271. doi: 10.1016/j.jacc.2013.02.092.
    1. Jeong E.M., Dudley S.C., Jr. Diastolic dysfunction. Circ. J. 2015;79:470–477. doi: 10.1253/circj.CJ-15-0064.
    1. Ho J.E., Lyass A., Lee D.S., Vasan R.S., Kannel W.B., Larson M.G., Levy D. Predictors of new-onset heart failure: Differences in preserved versus reduced ejection fraction. Circ. Heart Fail. 2013;6:279–286. doi: 10.1161/CIRCHEARTFAILURE.112.972828.
    1. Lee D.S., Gona P., Vasan R.S., Larson M.G., Benjamin E.J., Wang T.J., Tu J.V., Levy D. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: Insights from the framingham heart study of the national heart, lung, and blood institute. Circulation. 2009;119:3070–3077. doi: 10.1161/CIRCULATIONAHA.108.815944.
    1. Krumholz H.M., Larson M., Levy D. Sex differences in cardiac adaptation to isolated systolic hypertension. Am. J. Cardiol. 1993;72:310–313. doi: 10.1016/0002-9149(93)90678-6.
    1. Ergatoudes C., Schaufelberger M., Andersson B., Pivodic A., Dahlstrom U., Fu M. Non-cardiac comorbidities and mortality in patients with heart failure with reduced vs. preserved ejection fraction: A study using the Swedish Heart Failure Registry. Clin. Res. Cardiol. 2019;108:1025–1033. doi: 10.1007/s00392-019-01430-0.
    1. Ather S., Chan W., Bozkurt B., Aguilar D., Ramasubbu K., Zachariah A.A., Wehrens X.H., Deswal A. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J. Am. Coll. Cardiol. 2012;59:998–1005. doi: 10.1016/j.jacc.2011.11.040.
    1. Felker G.M., Shaw L.K., Stough W.G., O’Connor C.M. Anemia in patients with heart failure and preserved systolic function. Am. Heart J. 2006;151:457–462. doi: 10.1016/j.ahj.2005.03.056.
    1. Smith D.H., Thorp M.L., Gurwitz J.H., McManus D.D., Goldberg R.J., Allen L.A., Hsu G., Sung S.H., Magid D.J., Go A.S. Chronic kidney disease and outcomes in heart failure with preserved versus reduced ejection fraction: The Cardiovascular Research Network PRESERVE Study. Circ. Cardiovasc. Qual. Outcomes. 2013;6:333–342. doi: 10.1161/CIRCOUTCOMES.113.000221.
    1. Streng K.W., Nauta J.F., Hillege H.L., Anker S.D., Cleland J.G., Dickstein K., Filippatos G., Lang C.C., Metra M., Ng L.L., et al. Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction. Int. J. Cardiol. 2018;271:132–139. doi: 10.1016/j.ijcard.2018.04.001.
    1. Chen G.Y., Nunez G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010;10:826–837. doi: 10.1038/nri2873.
    1. Yajima T. Viral myocarditis: Potential defense mechanisms within the cardiomyocyte against virus infection. Future Microbiol. 2011;6:551–566. doi: 10.2217/fmb.11.40.
    1. Pollack A., Kontorovich A.R., Fuster V., Dec G.W. Viral myocarditis--diagnosis, treatment options, and current controversies. Nat. Rev. Cardiol. 2015;12:670–680. doi: 10.1038/nrcardio.2015.108.
    1. Tromp J., Lim S.L., Tay W.T., Teng T.K., Chandramouli C., Ouwerkerk W., Wander G.S., Sawhney J.P.S., Yap J., MacDonald M.R., et al. Microvascular Disease in Patients With Diabetes With Heart Failure and Reduced Ejection Versus Preserved Ejection Fraction. Diabetes Care. 2019;42:1792–1799. doi: 10.2337/dc18-2515.
    1. Mohammed S.F., Hussain S., Mirzoyev S.A., Edwards W.D., Maleszewski J.J., Redfield M.M. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation. 2015;131:550–559. doi: 10.1161/CIRCULATIONAHA.114.009625.
    1. Seferovic P.M., Paulus W.J. Clinical diabetic cardiomyopathy: A two-faced disease with restrictive and dilated phenotypes. Eur. Heart J. 2015;36:1718–1727. doi: 10.1093/eurheartj/ehv134.
    1. Franssen C., Chen S., Unger A., Korkmaz H.I., De Keulenaer G.W., Tschope C., Leite-Moreira A.F., Musters R., Niessen H.W., Linke W.A., et al. Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure With Preserved Ejection Fraction. JACC Heart Fail. 2016;4:312–324. doi: 10.1016/j.jchf.2015.10.007.
    1. Janicki J.S., Brower G.L., Gardner J.D., Chancey A.L., Stewart J.A., Jr. The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling. Heart Fail Rev. 2004;9:33–42. doi: 10.1023/B:HREV.0000011392.03037.7e.
    1. Gonzalez A., Ravassa S., Beaumont J., Lopez B., Diez J. New targets to treat the structural remodeling of the myocardium. J. Am. Coll. Cardiol. 2011;58:1833–1843. doi: 10.1016/j.jacc.2011.06.058.
    1. Gurusamy N., Das D.K. Autophagy, redox signaling, and ventricular remodeling. Antioxid Redox Signal. 2009;11:1975–1988. doi: 10.1089/ars.2009.2524.
    1. Tsutsui H., Kinugawa S., Matsushima S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol. 2011;301:H2181–H2190. doi: 10.1152/ajpheart.00554.2011.
    1. Penn M.S. The role of leukocyte-generated oxidants in left ventricular remodeling. Am. J. Cardiol. 2008;101:30D–33D. doi: 10.1016/j.amjcard.2008.02.005.
    1. Zile M.R., Gaasch W.H., Carroll J.D., Feldman M.D., Aurigemma G.P., Schaer G.L., Ghali J.K., Liebson P.R. Heart failure with a normal ejection fraction: Is measurement of diastolic function necessary to make the diagnosis of diastolic heart failure? Circulation. 2001;104:779–782. doi: 10.1161/hc3201.094226.
    1. Zile M.R., Gottdiener J.S., Hetzel S.J., McMurray J.J., Komajda M., McKelvie R., Baicu C.F., Massie B.M., Carson P.E., Investigators I.P. Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation. 2011;124:2491–2501. doi: 10.1161/CIRCULATIONAHA.110.011031.
    1. Niessner A., Hohensinner P.J., Rychli K., Neuhold S., Zorn G., Richter B., Hulsmann M., Berger R., Mortl D., Huber K., et al. Prognostic value of apoptosis markers in advanced heart failure patients. Eur. Heart J. 2009;30:789–796. doi: 10.1093/eurheartj/ehp004.
    1. Jiang L., Huang Y., Hunyor S., dos Remedios C.G. Cardiomyocyte apoptosis is associated with increased wall stress in chronic failing left ventricle. Eur. Heart J. 2003;24:742–751. doi: 10.1016/S0195-668X(02)00655-3.
    1. Xu R.Y., Zhu X.F., Yang Y., Ye P. High-sensitive cardiac troponin T. J. Geriatr. Cardiol. 2013;10:102–109. doi: 10.3969/j.issn.1671-5411.2013.01.015.
    1. Dorn G.W., 2nd Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc. Res. 2009;81:465–473. doi: 10.1093/cvr/cvn243.
    1. Brouwers F.P., de Boer R.A., van der Harst P., Voors A.A., Gansevoort R.T., Bakker S.J., Hillege H.L., van Veldhuisen D.J., van Gilst W.H. Incidence and epidemiology of new onset heart failure with preserved vs. reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVEND. Eur. Heart J. 2013;34:1424–1431. doi: 10.1093/eurheartj/eht066.
    1. Dai Z., Aoki T., Fukumoto Y., Shimokawa H. Coronary perivascular fibrosis is associated with impairment of coronary blood flow in patients with non-ischemic heart failure. J. Cardiol. 2012;60:416–421. doi: 10.1016/j.jjcc.2012.06.009.
    1. Roy C., Slimani A., de Meester C., Amzulescu M., Pasquet A., Vancraeynest D., Beauloye C., Vanoverschelde J.L., Gerber B.L., Pouleur A.C. Associations and prognostic significance of diffuse myocardial fibrosis by cardiovascular magnetic resonance in heart failure with preserved ejection fraction. J. Cardiovasc. Magn. Reson. 2018;20:55. doi: 10.1186/s12968-018-0477-4.
    1. Kasner M., Westermann D., Lopez B., Gaub R., Escher F., Kuhl U., Schultheiss H.P., Tschope C. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J. Am. Coll. Cardiol. 2011;57:977–985. doi: 10.1016/j.jacc.2010.10.024.
    1. Aoki T., Fukumoto Y., Sugimura K., Oikawa M., Satoh K., Nakano M., Nakayama M., Shimokawa H. Prognostic impact of myocardial interstitial fibrosis in non-ischemic heart failure. -Comparison between preserved and reduced ejection fraction heart failure. Circ J. 2011;75:2605–2613. doi: 10.1253/circj.CJ-11-0568.
    1. Forte E., Furtado M.B., Rosenthal N. The interstitium in cardiac repair: Role of the immune-stromal cell interplay. Nat. Rev. Cardiol. 2018;15:601–616. doi: 10.1038/s41569-018-0077-x.
    1. Bielecka-Dabrowa A., Sakowicz A., Misztal M., von Haehling S., Ahmed A., Pietrucha T., Rysz J., Banach M. Differences in biochemical and genetic biomarkers in patients with heart failure of various etiologies. Int. J. Cardiol. 2016;221:1073–1080. doi: 10.1016/j.ijcard.2016.07.150.
    1. Collier P., Watson C.J., Voon V., Phelan D., Jan A., Mak G., Martos R., Baugh J.A., Ledwidge M.T., McDonald K.M. Can emerging biomarkers of myocardial remodelling identify asymptomatic hypertensive patients at risk for diastolic dysfunction and diastolic heart failure? Eur. J. Heart Fail. 2011;13:1087–1095. doi: 10.1093/eurjhf/hfr079.
    1. Boyle A.J., Yeghiazarians Y., Shih H., Hwang J., Ye J., Sievers R., Zheng D., Palasubramaniam J., Palasubramaniam D., Karschimkus C., et al. Myocardial production and release of MCP-1 and SDF-1 following myocardial infarction: Differences between mice and man. J. Transl. Med. 2011;9:150. doi: 10.1186/1479-5876-9-150.
    1. Kobayashi M., Nakamura K., Kusano K.F., Nakamura Y., Ohta-Ogo K., Nagase S., Sakuragi S., Ohe T. Expression of monocyte chemoattractant protein-1 in idiopathic dilated cardiomyopathy. Int. J. Cardiol. 2008;126:427–429. doi: 10.1016/j.ijcard.2007.01.109.
    1. Broder M.I., Cohn J.N. Evolution of abnormalities in left ventricular function after acute myocardial infarction. Circulation. 1972;46:731–743. doi: 10.1161/01.CIR.46.4.731.
    1. Diamond G., Forrester J.S. Effect of coronary artery disease and acute myocardial infarction on left ventricular compliance in man. Circulation. 1972;45:11–19. doi: 10.1161/01.CIR.45.1.11.
    1. Russell R.O., Jr., Hunt D., Rackley C.E. Left ventricular hemodynamics in anterior and inferior myocardial infarction. Am. J. Cardiol. 1973;32:8–16. doi: 10.1016/S0002-9149(73)80080-3.
    1. Aoyagi T., Pouleur H., Van Eyll C., Rousseau M.F., Mirsky I. Wall motion asynchrony is a major determinant of impaired left ventricular filling in patients with healed myocardial infarction. Am. J. Cardiol. 1993;72:268–272. doi: 10.1016/0002-9149(93)90671-X.
    1. Smith M., Ratshin R.A., Harrell F.E., Jr., Russell R.O., Jr., Rackley C.E. Early sequential changes in left ventricular dimensions and filling pressure in patients after myocardial infarction. Am. J. Cardiol. 1974;33:363–369. doi: 10.1016/0002-9149(74)90317-8.
    1. Bertrand M.E., Rousseau M.F., Lefebvre J.M., Lablanche J.M., Asseman P.H., Carre A.G., Lekieffre J.P. Left ventricular compliance in acute transmural myocardial infarction in man. Eur. J. Cardiol. 1978;7:179–193.
    1. Paulus W.J., Dal Canto E. Distinct Myocardial Targets for Diabetes Therapy in Heart Failure With Preserved or Reduced Ejection Fraction. JACC Heart Fail. 2018;6:1–7. doi: 10.1016/j.jchf.2017.07.012.
    1. van Heerebeek L., Borbely A., Niessen H.W., Bronzwaer J.G., van der Velden J., Stienen G.J., Linke W.A., Laarman G.J., Paulus W.J. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation. 2006;113:1966–1973. doi: 10.1161/CIRCULATIONAHA.105.587519.
    1. Roe A.T., Aronsen J.M., Skardal K., Hamdani N., Linke W.A., Danielsen H.E., Sejersted O.M., Sjaastad I., Louch W.E. Increased passive stiffness promotes diastolic dysfunction despite improved Ca2+ handling during left ventricular concentric hypertrophy. Cardiovasc. Res. 2017;113:1161–1172. doi: 10.1093/cvr/cvx087.
    1. Nagueh S.F., Shah G., Wu Y., Torre-Amione G., King N.M., Lahmers S., Witt C.C., Becker K., Labeit S., Granzier H.L. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation. 2004;110:155–162. doi: 10.1161/.
    1. Franssen C., Kole J., Musters R., Hamdani N., Paulus W.J. alpha-B Crystallin Reverses High Diastolic Stiffness of Failing Human Cardiomyocytes. Circ Heart Fail. 2017;10:e003626. doi: 10.1161/CIRCHEARTFAILURE.116.003626.
    1. Verdonschot J.A.J., Hazebroek M.R., Derks K.W.J., Barandiaran Aizpurua A., Merken J.J., Wang P., Bierau J., van den Wijngaard A., Schalla S.M., Abdul Hamid M.A., et al. Titin cardiomyopathy leads to altered mitochondrial energetics, increased fibrosis and long-term life-threatening arrhythmias. Eur. Heart J. 2018;39:864–873. doi: 10.1093/eurheartj/ehx808.
    1. Ali M.A., Cho W.J., Hudson B., Kassiri Z., Granzier H., Schulz R. Titin is a target of matrix metalloproteinase-2: Implications in myocardial ischemia/reperfusion injury. Circulation. 2010;122:2039–2047. doi: 10.1161/CIRCULATIONAHA.109.930222.
    1. Pieske B., Maier L.S., Piacentino V., 3rd, Weisser J., Hasenfuss G., Houser S. Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium. Circulation. 2002;106:447–453. doi: 10.1161/01.CIR.0000023042.50192.F4.
    1. Limas C.J., Olivari M.T., Goldenberg I.F., Levine T.B., Benditt D.G., Simon A. Calcium uptake by cardiac sarcoplasmic reticulum in human dilated cardiomyopathy. Cardiovasc. Res. 1987;21:601–605. doi: 10.1093/cvr/21.8.601.
    1. Hasenfuss G., Reinecke H., Studer R., Meyer M., Pieske B., Holtz J., Holubarsch C., Posival H., Just H., Drexler H. Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ. Res. 1994;75:434–442. doi: 10.1161/01.RES.75.3.434.
    1. Mercadier J.J., Lompre A.M., Duc P., Boheler K.R., Fraysse J.B., Wisnewsky C., Allen P.D., Komajda M., Schwartz K. Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure. J. Clin. Investig. 1990;85:305–309. doi: 10.1172/JCI114429.
    1. Meyer M., Schillinger W., Pieske B., Holubarsch C., Heilmann C., Posival H., Kuwajima G., Mikoshiba K., Just H., Hasenfuss G., et al. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation. 1995;92:778–784. doi: 10.1161/01.CIR.92.4.778.
    1. Schwinger R.H., Munch G., Bolck B., Karczewski P., Krause E.G., Erdmann E. Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J. Mol. Cell. Cardiol. 1999;31:479–491. doi: 10.1006/jmcc.1998.0897.
    1. Westermann D., Kasner M., Steendijk P., Spillmann F., Riad A., Weitmann K., Hoffmann W., Poller W., Pauschinger M., Schultheiss H.P., et al. Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation. 2008;117:2051–2060. doi: 10.1161/CIRCULATIONAHA.107.716886.
    1. Kruger M., Babicz K., von Frieling-Salewsky M., Linke W.A. Insulin signaling regulates cardiac titin properties in heart development and diabetic cardiomyopathy. J. Mol. Cell. Cardiol. 2010;48:910–916. doi: 10.1016/j.yjmcc.2010.02.012.
    1. Warren C.M., Jordan M.C., Roos K.P., Krzesinski P.R., Greaser M.L. Titin isoform expression in normal and hypertensive myocardium. Cardiovasc. Res. 2003;59:86–94. doi: 10.1016/S0008-6363(03)00328-6.
    1. Hamdani N., Bishu K.G., von Frieling-Salewsky M., Redfield M.M., Linke W.A. Deranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction. Cardiovasc. Res. 2013;97:464–471. doi: 10.1093/cvr/cvs353.
    1. Zhu C., Odhiambo J.F., Ghnesis A., Ford S.P., Nathanielsz P.W., Ren J.F., Guo W. Maternal Obesity (OB) Increases the Stiffer, Shorter Titin Isoform in the Maternal and Fetal Heart. Reprod. Sci. 2016;23:146–147.
    1. Hopf A.E., Andresen C., Kotter S., Isic M., Ulrich K., Sahin S., Bongardt S., Roll W., Drove F., Scheerer N., et al. Diabetes-Induced Cardiomyocyte Passive Stiffening Is Caused by Impaired Insulin-Dependent Titin Modification and Can Be Modulated by Neuregulin-1. Circ. Res. 2018;123:342–355. doi: 10.1161/CIRCRESAHA.117.312166.
    1. Borbely A., Falcao-Pires I., van Heerebeek L., Hamdani N., Edes I., Gavina C., Leite-Moreira A.F., Bronzwaer J.G., Papp Z., van der Velden J., et al. Hypophosphorylation of the Stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circ. Res. 2009;104:780–786. doi: 10.1161/CIRCRESAHA.108.193326.
    1. Hamdani N., Franssen C., Lourenco A., Falcao-Pires I., Fontoura D., Leite S., Plettig L., Lopez B., Ottenheijm C.A., Becher P.M., et al. Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circ. Heart Fail. 2013;6:1239–1249. doi: 10.1161/CIRCHEARTFAILURE.113.000539.
    1. Zile M.R., Baicu C.F., Ikonomidis J.S., Stroud R.E., Nietert P.J., Bradshaw A.D., Slater R., Palmer B.M., Van Buren P., Meyer M., et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: Contributions of collagen and titin. Circulation. 2015;131:1247–1259. doi: 10.1161/CIRCULATIONAHA.114.013215.
    1. Runte K.E., Bell S.P., Selby D.E., Haussler T.N., Ashikaga T., LeWinter M.M., Palmer B.M., Meyer M. Relaxation and the Role of Calcium in Isolated Contracting Myocardium From Patients With Hypertensive Heart Disease and Heart Failure With Preserved Ejection Fraction. Circ. Heart Fail. 2017;10 doi: 10.1161/CIRCHEARTFAILURE.117.004311.
    1. Van Linthout S., Tschope C. Inflammation - Cause or Consequence of Heart Failure or Both? Curr. Heart Fail Rep. 2017;14:251–265. doi: 10.1007/s11897-017-0337-9.
    1. Bezbradica J.S., Coll R.C., Schroder K. Sterile signals generate weaker and delayed macrophage NLRP3 inflammasome responses relative to microbial signals. Cell Mol. Immunol. 2017;14:118–126. doi: 10.1038/cmi.2016.11.
    1. Nahrendorf M., Swirski F.K. Innate immune cells in ischaemic heart disease: Does myocardial infarction beget myocardial infarction? Eur. Heart J. 2016;37:868–872. doi: 10.1093/eurheartj/ehv453.
    1. Katayama Y., Battista M., Kao W.M., Hidalgo A., Peired A.J., Thomas S.A., Frenette P.S. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124:407–421. doi: 10.1016/j.cell.2005.10.041.
    1. Nunez J., Nunez E., Bodi V., Sanchis J., Minana G., Mainar L., Santas E., Merlos P., Rumiz E., Darmofal H., et al. Usefulness of the neutrophil to lymphocyte ratio in predicting long-term mortality in ST segment elevation myocardial infarction. Am. J. Cardiol. 2008;101:747–752. doi: 10.1016/j.amjcard.2007.11.004.
    1. Dutta P., Nahrendorf M. Monocytes in myocardial infarction. Arter. Thromb. Vasc. Biol. 2015;35:1066–1070. doi: 10.1161/ATVBAHA.114.304652.
    1. Swirski F.K., Nahrendorf M., Etzrodt M., Wildgruber M., Cortez-Retamozo V., Panizzi P., Figueiredo J.L., Kohler R.H., Chudnovskiy A., Waterman P., et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325:612–616. doi: 10.1126/science.1175202.
    1. van der Laan A.M., Nahrendorf M., Piek J.J. Republished: Healing and adverse remodelling after acute myocardial infarction: Role of the cellular immune response. Postgrad Med. J. 2013;89:52–58. doi: 10.1136/postgradmedj-2012-301623rep.
    1. Lindsey M.L., Mann D.L., Entman M.L., Spinale F.G. Extracellular matrix remodeling following myocardial injury. Ann. Med. 2003;35:316–326. doi: 10.1080/07853890310001285.
    1. Zouggari Y., Ait-Oufella H., Bonnin P., Simon T., Sage A.P., Guerin C., Vilar J., Caligiuri G., Tsiantoulas D., Laurans L., et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med. 2013;19:1273–1280. doi: 10.1038/nm.3284.
    1. Tang T.T., Yuan J., Zhu Z.F., Zhang W.C., Xiao H., Xia N., Yan X.X., Nie S.F., Liu J., Zhou S.F., et al. Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res. Cardiol. 2012;107:232. doi: 10.1007/s00395-011-0232-6.
    1. Amin M.N., Mosa A.A., El-Shishtawy M.M. Clinical study of advanced glycation end products in egyptian diabetic obese and non-obese patients. Int. J. Biomed Sci. 2011;7:191–200.
    1. Beyan H., Riese H., Hawa M.I., Beretta G., Davidson H.W., Hutton J.C., Burger H., Schlosser M., Snieder H., Boehm B.O., et al. Glycotoxin and autoantibodies are additive environmentally determined predictors of type 1 diabetes: A twin and population study. Diabetes. 2012;61:1192–1198. doi: 10.2337/db11-0971.
    1. Chao P.C., Huang C.N., Hsu C.C., Yin M.C., Guo Y.R. Association of dietary AGEs with circulating AGEs, glycated LDL, IL-1alpha and MCP-1 levels in type 2 diabetic patients. Eur. J. Nutr. 2010;49:429–434. doi: 10.1007/s00394-010-0101-3.
    1. Miyata T., Inagi R., Iida Y., Sato M., Yamada N., Oda O., Maeda K., Seo H. Involvement of beta 2-microglobulin modified with advanced glycation end products in the pathogenesis of hemodialysis-associated amyloidosis. Induction of human monocyte chemotaxis and macrophage secretion of tumor necrosis factor-alpha and interleukin-1. J. Clin. Investig. 1994;93:521–528. doi: 10.1172/JCI117002.
    1. Kalogeropoulos A., Georgiopoulou V., Psaty B.M., Rodondi N., Smith A.L., Harrison D.G., Liu Y., Hoffmann U., Bauer D.C., Newman A.B., et al. Inflammatory markers and incident heart failure risk in older adults: The Health ABC (Health, Aging, and Body Composition) study. J. Am. Coll Cardiol. 2010;55:2129–2137. doi: 10.1016/j.jacc.2009.12.045.
    1. DuBrock H.M., AbouEzzeddine O.F., Redfield M.M. High-sensitivity C-reactive protein in heart failure with preserved ejection fraction. PLoS ONE. 2018;13:e0201836. doi: 10.1371/journal.pone.0201836.
    1. Hulsmans M., Sager H.B., Roh J.D., Valero-Munoz M., Houstis N.E., Iwamoto Y., Sun Y., Wilson R.M., Wojtkiewicz G., Tricot B., et al. Cardiac macrophages promote diastolic dysfunction. J. Exp. Med. 2018;215:423–440. doi: 10.1084/jem.20171274.
    1. Glezeva N., Voon V., Watson C., Horgan S., McDonald K., Ledwidge M., Baugh J. Exaggerated inflammation and monocytosis associate with diastolic dysfunction in heart failure with preserved ejection fraction: Evidence of M2 macrophage activation in disease pathogenesis. J. Card Fail. 2015;21:167–177. doi: 10.1016/j.cardfail.2014.11.004.
    1. Haraldsen G., Kvale D., Lien B., Farstad I.N., Brandtzaeg P. Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human microvascular endothelial cells. J. Immunol. 1996;156:2558–2565.
    1. Bonfanti R., Furie B.C., Furie B., Wagner D.D. PADGEM (GMP140) is a component of Weibel-Palade bodies of human endothelial cells. Blood. 1989;73:1109–1112. doi: 10.1182/blood.V73.5.1109.1109.
    1. Cabandugama P.K., Gardner M.J., Sowers J.R. The Renin Angiotensin Aldosterone System in Obesity and Hypertension: Roles in the Cardiorenal Metabolic Syndrome. Med. Clin. North. Am. 2017;101:129–137. doi: 10.1016/j.mcna.2016.08.009.
    1. Pastore L., Tessitore A., Martinotti S., Toniato E., Alesse E., Bravi M.C., Ferri C., Desideri G., Gulino A., Santucci A. Angiotensin II stimulates intercellular adhesion molecule-1 (ICAM-1) expression by human vascular endothelial cells and increases soluble ICAM-1 release in vivo. Circulation. 1999;100:1646–1652. doi: 10.1161/01.CIR.100.15.1646.
    1. Grafe M., Auch-Schwelk W., Zakrzewicz A., Regitz-Zagrosek V., Bartsch P., Graf K., Loebe M., Gaehtgens P., Fleck E. Angiotensin II-induced leukocyte adhesion on human coronary endothelial cells is mediated by E-selectin. Circ. Res. 1997;81:804–811. doi: 10.1161/01.RES.81.5.804.
    1. Tummala P.E., Chen X.L., Sundell C.L., Laursen J.B., Hammes C.P., Alexander R.W., Harrison D.G., Medford R.M. Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature: A potential link between the renin-angiotensin system and atherosclerosis. Circulation. 1999;100:1223–1229. doi: 10.1161/01.CIR.100.11.1223.
    1. Bierhaus A., Humpert P.M., Morcos M., Wendt T., Chavakis T., Arnold B., Stern D.M., Nawroth P.P. Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. (Berl) 2005;83:876–886. doi: 10.1007/s00109-005-0688-7.
    1. Westermann D., Lindner D., Kasner M., Zietsch C., Savvatis K., Escher F., von Schlippenbach J., Skurk C., Steendijk P., Riad A., et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ. Heart Fail. 2011;4:44–52. doi: 10.1161/CIRCHEARTFAILURE.109.931451.
    1. Pinto A.R., Ilinykh A., Ivey M.J., Kuwabara J.T., D’Antoni M.L., Debuque R., Chandran A., Wang L., Arora K., Rosenthal N.A., et al. Revisiting Cardiac Cellular Composition. Circ. Res. 2016;118:400–409. doi: 10.1161/CIRCRESAHA.115.307778.
    1. Widlansky M.E., Gokce N., Keaney J.F., Jr., Vita J.A. The clinical implications of endothelial dysfunction. J. Am. Coll. Cardiol. 2003;42:1149–1160. doi: 10.1016/S0735-1097(03)00994-X.
    1. Katz S.D., Hryniewicz K., Hriljac I., Balidemaj K., Dimayuga C., Hudaihed A., Yasskiy A. Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation. 2005;111:310–314. doi: 10.1161/.
    1. Alem M.M. Endothelial Dysfunction in Chronic Heart Failure: Assessment, Findings, Significance, and Potential Therapeutic Targets. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20133198.
    1. Fischer D., Rossa S., Landmesser U., Spiekermann S., Engberding N., Hornig B., Drexler H. Endothelial dysfunction in patients with chronic heart failure is independently associated with increased incidence of hospitalization, cardiac transplantation, or death. Eur. Heart J. 2005;26:65–69. doi: 10.1093/eurheartj/ehi001.
    1. Katz S.D., Biasucci L., Sabba C., Strom J.A., Jondeau G., Galvao M., Solomon S., Nikolic S.D., Forman R., LeJemtel T.H. Impaired endothelium-mediated vasodilation in the peripheral vasculature of patients with congestive heart failure. J. Am. Coll. Cardiol. 1992;19:918–925. doi: 10.1016/0735-1097(92)90271-N.
    1. Kubo S.H., Rector T.S., Bank A.J., Williams R.E., Heifetz S.M. Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation. 1991;84:1589–1596. doi: 10.1161/01.CIR.84.4.1589.
    1. Witman M.A., Fjeldstad A.S., McDaniel J., Ives S.J., Zhao J., Barrett-O’Keefe Z., Nativi J.N., Stehlik J., Wray D.W., Richardson R.S. Vascular function and the role of oxidative stress in heart failure, heart transplant, and beyond. Hypertension. 2012;60:659–668. doi: 10.1161/HYPERTENSIONAHA.112.193318.
    1. Treasure C.B., Vita J.A., Cox D.A., Fish R.D., Gordon J.B., Mudge G.H., Colucci W.S., Sutton M.G., Selwyn A.P., Alexander R.W., et al. Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation. 1990;81:772–779. doi: 10.1161/01.CIR.81.3.772.
    1. Torre-Amione G., Kapadia S., Benedict C., Oral H., Young J.B., Mann D.L. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: A report from the Studies of Left Ventricular Dysfunction (SOLVD) J. Am. Coll. Cardiol. 1996;27:1201–1206. doi: 10.1016/0735-1097(95)00589-7.
    1. Marti C.N., Gheorghiade M., Kalogeropoulos A.P., Georgiopoulou V.V., Quyyumi A.A., Butler J. Endothelial dysfunction, arterial stiffness, and heart failure. J. Am. Coll. Cardiol. 2012;60:1455–1469. doi: 10.1016/j.jacc.2011.11.082.
    1. Hare J.M. Nitroso-redox balance in the cardiovascular system. N. Engl. J. Med. 2004;351:2112–2114. doi: 10.1056/NEJMe048269.
    1. Karantalis V., Schulman I.H., Hare J.M. Nitroso-redox imbalance affects cardiac structure and function. J. Am. Coll. Cardiol. 2013;61:933–935. doi: 10.1016/j.jacc.2012.12.016.
    1. Taddei S., Virdis A., Ghiadoni L., Mattei P., Sudano I., Bernini G., Pinto S., Salvetti A. Menopause is associated with endothelial dysfunction in women. Hypertension. 1996;28:576–582. doi: 10.1161/01.HYP.28.4.576.
    1. Kawano H., Motoyama T., Kugiyama K., Hirashima O., Ohgushi M., Yoshimura M., Ogawa H., Okumura K., Yasue H. Menstrual cyclic variation of endothelium-dependent vasodilation of the brachial artery: Possible role of estrogen and nitric oxide. Proc. Assoc. Am. Physicians. 1996;108:473–480.
    1. David F.L., Carvalho M.H., Cobra A.L., Nigro D., Fortes Z.B., Reboucas N.A., Tostes R.C. Ovarian hormones modulate endothelin-1 vascular reactivity and mRNA expression in DOCA-salt hypertensive rats. Hypertension. 2001;38:692–696. doi: 10.1161/01.HYP.38.3.692.
    1. Nevzati E., Shafighi M., Bakhtian K.D., Treiber H., Fandino J., Fathi A.R. Estrogen induces nitric oxide production via nitric oxide synthase activation in endothelial cells. Acta Neurochir. Suppl. 2015;120:141–145. doi: 10.1007/978-3-319-04981-6_24.
    1. Pedersen S.H., Nielsen L.B., Mortensen A., Nilas L., Ottesen B. Progestins oppose the effects of estradiol on the endothelin-1 receptor type B in coronary arteries from ovariectomized hyperlipidemic rabbits. Menopause. 2008;15:503–510. doi: 10.1097/gme.0b013e318156f803.
    1. Du X.J., Riemersma R.A., Dart A.M. Cardiovascular protection by oestrogen is partly mediated through modulation of autonomic nervous function. Cardiovasc. Res. 1995;30:161–165. doi: 10.1016/S0008-6363(95)00030-5.
    1. Matthews K.A., Crawford S.L., Chae C.U., Everson-Rose S.A., Sowers M.F., Sternfeld B., Sutton-Tyrrell K. Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition? J. Am. Coll. Cardiol. 2009;54:2366–2373. doi: 10.1016/j.jacc.2009.10.009.
    1. Sivritas D., Becher M.U., Ebrahimian T., Arfa O., Rapp S., Bohner A., Mueller C.F., Umemura T., Wassmann S., Nickenig G., et al. Antiproliferative effect of estrogen in vascular smooth muscle cells is mediated by Kruppel-like factor-4 and manganese superoxide dismutase. Basic Res. Cardiol. 2011;106:563–575. doi: 10.1007/s00395-011-0174-z.
    1. Gros R., Hussain Y., Chorazyczewski J., Pickering J.G., Ding Q., Feldman R.D. Extent of Vascular Remodeling Is Dependent on the Balance Between Estrogen Receptor alpha and G-Protein-Coupled Estrogen Receptor. Hypertension. 2016;68:1225–1235. doi: 10.1161/HYPERTENSIONAHA.116.07859.
    1. Song J.Y., Kim M.J., Jo H.H., Hwang S.J., Chae B., Chung J.E., Kwon D.J., Lew Y.O., Lim Y.T., Kim J.H., et al. Antioxidant effect of estrogen on bovine aortic endothelial cells. J. Steroid Biochem Mol. Biol. 2009;117:74–80. doi: 10.1016/j.jsbmb.2009.07.006.
    1. Jankowska E.A., Rozentryt P., Ponikowska B., Hartmann O., Kustrzycka-Kratochwil D., Reczuch K., Nowak J., Borodulin-Nadzieja L., Polonski L., Banasiak W., et al. Circulating estradiol and mortality in men with systolic chronic heart failure. JAMA. 2009;301:1892–1901. doi: 10.1001/jama.2009.639.
    1. Xu Y., Arenas I.A., Armstrong S.J., Plahta W.C., Xu H., Davidge S.T. Estrogen improves cardiac recovery after ischemia/reperfusion by decreasing tumor necrosis factor-alpha. Cardiovasc. Res. 2006;69:836–844. doi: 10.1016/j.cardiores.2005.11.031.
    1. Alecrin I.N., Aldrighi J.M., Caldas M.A., Gebara O.C., Lopes N.H., Ramires J.A. Acute and chronic effects of oestradiol on left ventricular diastolic function in hypertensive postmenopausal women with left ventricular diastolic dysfunction. Heart. 2004;90:777–781. doi: 10.1136/hrt.2003.016493.
    1. Dhot J., Prat V., Stevant D., Ferron M., Aillerie V., Erraud E., Erfanian M., De Waard M., Rozec B., Trochu J., et al. Phytoestrogen: Protective effect in HFpEF through ageing? Arch. Cardiovasc. Dis. Suppl. 2019;11:226. doi: 10.1016/j.acvdsp.2019.02.098.
    1. van Heerebeek L., Hamdani N., Falcao-Pires I., Leite-Moreira A.F., Begieneman M.P., Bronzwaer J.G., van der Velden J., Stienen G.J., Laarman G.J., Somsen A., et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation. 2012;126:830–839. doi: 10.1161/CIRCULATIONAHA.111.076075.
    1. Faxen U.L., Hage C., Benson L., Zabarovskaja S., Andreasson A., Donal E., Daubert J.C., Linde C., Brismar K., Lund L.H. HFpEF and HFrEF Display Different Phenotypes as Assessed by IGF-1 and IGFBP-1. J. Card Fail. 2017;23:293–303. doi: 10.1016/j.cardfail.2016.06.008.
    1. Vinciguerra M., Santini M.P., Claycomb W.C., Ladurner A.G., Rosenthal N. Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity. Aging. 2009;2:43–62. doi: 10.18632/aging.100107.
    1. Kostin S., Pool L., Elsasser A., Hein S., Drexler H.C., Arnon E., Hayakawa Y., Zimmermann R., Bauer E., Klovekorn W.P., et al. Myocytes die by multiple mechanisms in failing human hearts. Circ. Res. 2003;92:715–724. doi: 10.1161/01.RES.0000067471.95890.5C.
    1. Umansky S.R., Cuenco G.M., Khutzian S.S., Barr P.J., Tomei L.D. Post-ischemic apoptotic death of rat neonatal cardiomyocytes. Cell Death Differ. 1995;2:235–241.
    1. Cheng W., Li B., Kajstura J., Li P., Wolin M.S., Sonnenblick E.H., Hintze T.H., Olivetti G., Anversa P. Stretch-induced programmed myocyte cell death. J. Clin. Investig. 1995;96:2247–2259. doi: 10.1172/JCI118280.
    1. Hamblin M., Friedman D.B., Hill S., Caprioli R.M., Smith H.M., Hill M.F. Alterations in the diabetic myocardial proteome coupled with increased myocardial oxidative stress underlies diabetic cardiomyopathy. J. Mol. Cell Cardiol. 2007;42:884–895. doi: 10.1016/j.yjmcc.2006.12.018.
    1. Fuentes-Antras J., Picatoste B., Ramirez E., Egido J., Tunon J., Lorenzo O. Targeting metabolic disturbance in the diabetic heart. Cardiovasc Diabetol. 2015;14:17. doi: 10.1186/s12933-015-0173-8.
    1. Wei J., Nelson M.D., Szczepaniak E.W., Smith L., Mehta P.K., Thomson L.E., Berman D.S., Li D., Bairey Merz C.N., Szczepaniak L.S. Myocardial steatosis as a possible mechanistic link between diastolic dysfunction and coronary microvascular dysfunction in women. Am. J. Physiol. Heart Circ. Physiol. 2016;310:H14–H19. doi: 10.1152/ajpheart.00612.2015.
    1. Sparagna G.C., Hickson-Bick D.L., Buja L.M., McMillin J.B. A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am. J. Physiol. Heart Circ. Physiol. 2000;279:2124–2132. doi: 10.1152/ajpheart.2000.279.5.H2124.
    1. Yagyu H., Chen G., Yokoyama M., Hirata K., Augustus A., Kako Y., Seo T., Hu Y., Lutz E.P., Merkel M., et al. Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J. Clin. Investig. 2003;111:419–426. doi: 10.1172/JCI16751.
    1. Chiu H.C., Kovacs A., Ford D.A., Hsu F.F., Garcia R., Herrero P., Saffitz J.E., Schaffer J.E. A novel mouse model of lipotoxic cardiomyopathy. J. Clin. Investig. 2001;107:813–822. doi: 10.1172/JCI10947.
    1. Chiu H.C., Kovacs A., Blanton R.M., Han X., Courtois M., Weinheimer C.J., Yamada K.A., Brunet S., Xu H., Nerbonne J.M., et al. Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ. Res. 2005;96:225–233. doi: 10.1161/01.RES.0000154079.20681.B9.
    1. Corsetti G., Chen-Scarabelli C., Romano C., Pasini E., Dioguardi F.S., Onorati F., Knight R., Patel H., Saravolatz L., Faggian G., et al. Autophagy and Oncosis/Necroptosis Are Enhanced in Cardiomyocytes from Heart Failure Patients. Med. Sci. Monit. Basic Res. 2019;25:33–44. doi: 10.12659/MSMBR.913436.
    1. Wencker D., Chandra M., Nguyen K., Miao W., Garantziotis S., Factor S.M., Shirani J., Armstrong R.C., Kitsis R.N. A mechanistic role for cardiac myocyte apoptosis in heart failure. J. Clin. Investig. 2003;111:1497–1504. doi: 10.1172/JCI17664.
    1. Chaanine A.H., Kohlbrenner E., Gamb S.I., Guenzel A.J., Klaus K., Fayyaz A.U., Nair K.S., Hajjar R.J., Redfield M.M. FOXO3a regulates BNIP3 and modulates mitochondrial calcium, dynamics, and function in cardiac stress. Am. J. Physiol. Heart Circ. Physiol. 2016;311:H1540–H1559. doi: 10.1152/ajpheart.00549.2016.
    1. Weber K.T. Cardiac interstitium in health and disease: The fibrillar collagen network. J. Am. Coll. Cardiol. 1989;13:1637–1652. doi: 10.1016/0735-1097(89)90360-4.
    1. Baicu C.F., Stroud J.D., Livesay V.A., Hapke E., Holder J., Spinale F.G., Zile M.R. Changes in extracellular collagen matrix alter myocardial systolic performance. Am. J. Physiol. Heart Circ. Physiol. 2003;284:H122–H132. doi: 10.1152/ajpheart.00233.2002.
    1. Wang J., Hoshijima M., Lam J., Zhou Z., Jokiel A., Dalton N.D., Hultenby K., Ruiz-Lozano P., Ross J., Jr., Tryggvason K., et al. Cardiomyopathy associated with microcirculation dysfunction in laminin alpha4 chain-deficient mice. J. Biol. Chem. 2006;281:213–220. doi: 10.1074/jbc.M505061200.
    1. Echegaray K., Andreu I., Lazkano A., Villanueva I., Saenz A., Elizalde M.R., Echeverria T., Lopez B., Garro A., Gonzalez A., et al. Role of Myocardial Collagen in Severe Aortic Stenosis With Preserved Ejection Fraction and Symptoms of Heart Failure. Rev. Esp. Cardiol. (Engl. Ed.) 2017;70:832–840. doi: 10.1016/j.recesp.2016.12.018.
    1. Fowlkes V., Clark J., Fix C., Law B.A., Morales M.O., Qiao X., Ako-Asare K., Goldsmith J.G., Carver W., Murray D.B., et al. Type II diabetes promotes a myofibroblast phenotype in cardiac fibroblasts. Life Sci. 2013;92:669–676. doi: 10.1016/j.lfs.2013.01.003.
    1. Willems I.E., Havenith M.G., De Mey J.G., Daemen M.J. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am. J. Pathol. 1994;145:868–875.
    1. Leslie K.O., Taatjes D.J., Schwarz J., vonTurkovich M., Low R.B. Cardiac myofibroblasts express alpha smooth muscle actin during right ventricular pressure overload in the rabbit. Am. J. Pathol. 1991;139:207–216.
    1. Szardien S., Nef H.M., Troidl C., Willmer M., Voss S., Liebetrau C., Hoffmann J., Rolf A., Rixe J., Elsasser A., et al. Bone marrow-derived cells contribute to cell turnover in aging murine hearts. Int. J. Mol. Med. 2012;30:283–287. doi: 10.3892/ijmm.2012.995.
    1. Sato Y., Rifkin D.B. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: Activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J. Cell Biol. 1989;109:309–315. doi: 10.1083/jcb.109.1.309.
    1. Yu Q., Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000;14:163–176.
    1. Crawford S.E., Stellmach V., Murphy-Ullrich J.E., Ribeiro S.M., Lawler J., Hynes R.O., Boivin G.P., Bouck N. Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell. 1998;93:1159–1170. doi: 10.1016/S0092-8674(00)81460-9.
    1. Asano Y., Ihn H., Yamane K., Jinnin M., Mimura Y., Tamaki K. Involvement of alphavbeta5 integrin-mediated activation of latent transforming growth factor beta1 in autocrine transforming growth factor beta signaling in systemic sclerosis fibroblasts. Arthritis Rheum. 2005;52:2897–2905. doi: 10.1002/art.21246.
    1. Morishita T., Uzui H., Mitsuke Y., Amaya N., Kaseno K., Ishida K., Fukuoka Y., Ikeda H., Tama N., Yamazaki T., et al. Association between matrix metalloproteinase-9 and worsening heart failure events in patients with chronic heart failure. ESC Heart Fail. 2017;4:321–330. doi: 10.1002/ehf2.12137.
    1. Sakai N., Wada T., Furuichi K., Shimizu K., Kokubo S., Hara A., Yamahana J., Okumura T., Matsushima K., Yokoyama H., et al. MCP-1/CCR2-dependent loop for fibrogenesis in human peripheral CD14-positive monocytes. J. Leukoc. Biol. 2006;79:555–563. doi: 10.1189/jlb.0305127.
    1. Kruglov E.A., Nathanson R.A., Nguyen T., Dranoff J.A. Secretion of MCP-1/CCL2 by bile duct epithelia induces myofibroblastic transdifferentiation of portal fibroblasts. Am. J. Physiol. Gastrointest Liver Physiol. 2006;290:G765–G771. doi: 10.1152/ajpgi.00308.2005.
    1. Haudek S.B., Xia Y., Huebener P., Lee J.M., Carlson S., Crawford J.R., Pilling D., Gomer R.H., Trial J., Frangogiannis N.G., et al. Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc. Natl. Acad. Sci. USA. 2006;103:18284–18289. doi: 10.1073/pnas.0608799103.
    1. Haudek S.B., Cheng J., Du J., Wang Y., Hermosillo-Rodriguez J., Trial J., Taffet G.E., Entman M.L. Monocytic fibroblast precursors mediate fibrosis in angiotensin-II-induced cardiac hypertrophy. J. Mol. Cell Cardiol. 2010;49:499–507. doi: 10.1016/j.yjmcc.2010.05.005.
    1. Jugdutt B.I. Aging and Heart Failure: Mechanisms and Management. Springer Science + Buisness Media; New York, NY, USA: 2014. pp. 360–362.
    1. Travers J.G., Kamal F.A., Robbins J., Yutzey K.E., Blaxall B.C. Cardiac Fibrosis: The Fibroblast Awakens. Circ. Res. 2016;118:1021–1040. doi: 10.1161/CIRCRESAHA.115.306565.
    1. Sun Y., Weber K.T. Infarct scar: A dynamic tissue. Cardiovasc. Res. 2000;46:250–256. doi: 10.1016/S0008-6363(00)00032-8.
    1. Little W.C., Zile M.R., Kitzman D.W., Hundley W.G., O’Brien T.X., Degroof R.C. The effect of alagebrium chloride (ALT-711), a novel glucose cross-link breaker, in the treatment of elderly patients with diastolic heart failure. J. Card Fail. 2005;11:191–195. doi: 10.1016/j.cardfail.2004.09.010.
    1. Hartog J.W., Willemsen S., van Veldhuisen D.J., Posma J.L., van Wijk L.M., Hummel Y.M., Hillege H.L., Voors A.A., investigators B. Effects of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure. Eur. J. Heart Fail. 2011;13:899–908. doi: 10.1093/eurjhf/hfr067.
    1. Tromp J., van der Pol A., Klip I.T., de Boer R.A., Jaarsma T., van Gilst W.H., Voors A.A., van Veldhuisen D.J., van der Meer P. Fibrosis marker syndecan-1 and outcome in patients with heart failure with reduced and preserved ejection fraction. Circ. Heart Fail. 2014;7:457–462. doi: 10.1161/CIRCHEARTFAILURE.113.000846.
    1. Bradshaw A.D., Baicu C.F., Rentz T.J., Van Laer A.O., Boggs J., Lacy J.M., Zile M.R. Pressure overload-induced alterations in fibrillar collagen content and myocardial diastolic function: Role of secreted protein acidic and rich in cysteine (SPARC) in post-synthetic procollagen processing. Circulation. 2009;119:269–280. doi: 10.1161/CIRCULATIONAHA.108.773424.
    1. Bradshaw A.D., Baicu C.F., Rentz T.J., Van Laer A.O., Bonnema D.D., Zile M.R. Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: Role of SPARC in post-synthetic procollagen processing. Am. J. Physiol. Heart Circ Physiol. 2010;298:H614–H622. doi: 10.1152/ajpheart.00474.2009.
    1. Zuo C., Li X., Huang J., Chen D., Ji K., Yang Y., Xu T., Zhu D., Yan C., Gao P. Osteoglycin attenuates cardiac fibrosis by suppressing cardiac myofibroblast proliferation and migration through antagonizing lysophosphatidic acid 3/matrix metalloproteinase 2/epidermal growth factor receptor signalling. Cardiovasc. Res. 2018;114:703–712. doi: 10.1093/cvr/cvy035.
    1. Stoddard M.F., Pearson A.C., Kern M.J., Ratcliff J., Mrosek D.G., Labovitz A.J. Left ventricular diastolic function: Comparison of pulsed Doppler echocardiographic and hemodynamic indexes in subjects with and without coronary artery disease. J. Am. Coll. Cardiol. 1989;13:327–336. doi: 10.1016/0735-1097(89)90507-X.
    1. Raya T.E., Gay R.G., Lancaster L., Aguirre M., Moffett C., Goldman S. Serial changes in left ventricular relaxation and chamber stiffness after large myocardial infarction in rats. Circulation. 1988;77:1424–1431. doi: 10.1161/01.CIR.77.6.1424.
    1. Zile M.R., Baicu C.F., Gaasch W.H. Diastolic heart failure--abnormalities in active relaxation and passive stiffness of the left ventricle. N. Engl. J. Med. 2004;350:1953–1959. doi: 10.1056/NEJMoa032566.
    1. van Heerebeek L., Paulus W.J. Understanding heart failure with preserved ejection fraction: Where are we today? Neth. Heart J. 2016;24:227–236. doi: 10.1007/s12471-016-0810-1.
    1. Borbely A., van der Velden J., Papp Z., Bronzwaer J.G., Edes I., Stienen G.J., Paulus W.J. Cardiomyocyte stiffness in diastolic heart failure. Circulation. 2005;111:774–781. doi: 10.1161/01.CIR.0000155257.33485.6D.
    1. Linke W.A., Hamdani N. Gigantic business: Titin properties and function through thick and thin. Circ. Res. 2014;114:1052–1068. doi: 10.1161/CIRCRESAHA.114.301286.
    1. He H., Giordano F.J., Hilal-Dandan R., Choi D.J., Rockman H.A., McDonough P.M., Bluhm W.F., Meyer M., Sayen M.R., Swanson E., et al. Overexpression of the rat sarcoplasmic reticulum Ca2+ ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J. Clin. Investig. 1997;100:380–389. doi: 10.1172/JCI119544.
    1. Flesch M., Schwinger R.H., Schiffer F., Frank K., Sudkamp M., Kuhn-Regnier F., Arnold G., Bohm M. Evidence for functional relevance of an enhanced expression of the Na(+)-Ca2+ exchanger in failing human myocardium. Circulation. 1996;94:992–1002. doi: 10.1161/01.CIR.94.5.992.
    1. Makino N., Panagia V., Gupta M.P., Dhalla N.S. Defects in sarcolemmal Ca2+ transport in hearts due to induction of calcium paradox. Circ. Res. 1988;63:313–321. doi: 10.1161/01.RES.63.2.313.
    1. Deluca H.F., Engstrom G.W. Calcium uptake by rat kidney mitochondria. Proc. Natl. Acad. Sci. USA. 1961;47:1744–1750. doi: 10.1073/pnas.47.11.1744.
    1. Nuss H.B., Houser S.R. Sodium-calcium exchange-mediated contractions in feline ventricular myocytes. Am. J. Physiol. 1992;263:H1161–H1169. doi: 10.1152/ajpheart.1992.263.4.H1161.

Source: PubMed

3
Tilaa