Smoking status and anti-inflammatory macrophages in bronchoalveolar lavage and induced sputum in COPD

Lisette I Z Kunz, Thérèse S Lapperre, Jiska B Snoeck-Stroband, Simona E Budulac, Wim Timens, Simone van Wijngaarden, Jasmijn A Schrumpf, Klaus F Rabe, Dirkje S Postma, Peter J Sterk, Pieter S Hiemstra, Groningen Leiden Universities Corticosteroids in Obstructive Lung Disease Study Group, H F Kauffman, D de Reus, H M Boezen, D F Jansen, J M Vonk, M D W Barentsen, W Timens, M Zeinstra-Smit, A J Luteijn, T van der Molen, G ter Veen, M M E Gosman, N H T ten Hacken, H A M Kerstjens, M S van Maaren, D S Postma, C A Veltman, A Verbokkem, I Verhage, H K Vink-Klooster, H A Thiadens, J B Snoeck-Stroband, J K Sont, J Gast-Strookman, P S Hiemstra, K Janssen, T S Lapperre, K F Rabe, A van Schadewijk, J A Schrumpf, J Smit-Bakker, P J Sterk, J Stolk, A C J A Tiré, H van der Veen, M M E Wijffels, L N A Willems, P J Sterk, T Mauad, Lisette I Z Kunz, Thérèse S Lapperre, Jiska B Snoeck-Stroband, Simona E Budulac, Wim Timens, Simone van Wijngaarden, Jasmijn A Schrumpf, Klaus F Rabe, Dirkje S Postma, Peter J Sterk, Pieter S Hiemstra, Groningen Leiden Universities Corticosteroids in Obstructive Lung Disease Study Group, H F Kauffman, D de Reus, H M Boezen, D F Jansen, J M Vonk, M D W Barentsen, W Timens, M Zeinstra-Smit, A J Luteijn, T van der Molen, G ter Veen, M M E Gosman, N H T ten Hacken, H A M Kerstjens, M S van Maaren, D S Postma, C A Veltman, A Verbokkem, I Verhage, H K Vink-Klooster, H A Thiadens, J B Snoeck-Stroband, J K Sont, J Gast-Strookman, P S Hiemstra, K Janssen, T S Lapperre, K F Rabe, A van Schadewijk, J A Schrumpf, J Smit-Bakker, P J Sterk, J Stolk, A C J A Tiré, H van der Veen, M M E Wijffels, L N A Willems, P J Sterk, T Mauad

Abstract

Background: Macrophages have been implicated in the pathogenesis of COPD. M1 and M2 macrophages constitute subpopulations displaying pro- and anti-inflammatory properties. We hypothesized that smoking cessation affects macrophage heterogeneity in the lung of patients with COPD. Our aim was to study macrophage heterogeneity using the M2-marker CD163 and selected pro- and anti-inflammatory mediators in bronchoalveolar lavage (BAL) fluid and induced sputum from current smokers and ex-smokers with COPD.

Methods: 114 COPD patients (72 current smokers; 42 ex-smokers, median smoking cessation 3.5 years) were studied cross-sectionally and underwent sputum induction (M/F 99/15, age 62 ± 8 [mean ± SD] years, 42 (31-55) [median (range)] packyears, post-bronchodilator FEV1 63 ± 9% predicted, no steroids past 6 months). BAL was collected from 71 patients. CD163+ macrophages were quantified in BAL and sputum cytospins. Pro- and anti-inflammatory mediators were measured in BAL and sputum supernatants.

Results: Ex-smokers with COPD had a higher percentage, but lower number of CD163+ macrophages in BAL than current smokers (83.5% and 68.0%, p = 0.04; 5.6 and 20.1 × 10(4)/ml, p = 0.001 respectively). The percentage CD163+ M2 macrophages was higher in BAL compared to sputum (74.0% and 30.3%, p < 0.001). BAL M-CSF levels were higher in smokers than ex-smokers (571 pg/ml and 150 pg/ml, p = 0.001) and correlated with the number of CD163+ BAL macrophages (Rs = 0.38, p = 0.003). No significant differences were found between smokers and ex-smokers in the levels of pro-inflammatory (IL-6 and IL-8), and anti-inflammatory (elafin, and Secretory Leukocyte Protease Inhibitor [SLPI]) mediators in BAL and sputum.

Conclusions: Our data suggest that smoking cessation partially changes the macrophage polarization in vivo in the periphery of the lung towards an anti-inflammatory phenotype, which is not accompanied by a decrease in inflammatory parameters.

Figures

Figure 1
Figure 1
Photomicrograph of membrane-bound CD163 staining on BAL and sputum cells. A BAL cytospin is shown in the left photograph and a sputum cytospin in the right photograph. Scale bar = 20 μm
Figure 2
Figure 2
BAL differential cell counts expressed as percentage and cell concentrations of COPD patients. Percentage is shown in the left panel, cell concentrations in the right panel. Open circles represent ex-smokers, closed circles represent current smokers. Horizontal bars represent medians. P-values are corrected for recovery of BAL fluid using multiple linear regression.
Figure 3
Figure 3
Sputum differential cell counts expressed as percentage and cell concentrations of COPD patients. Percentage is shown in the left panel, cell concentrations in the right panel. Open circles represent ex-smokers, closed circles represent current smokers. Horizontal bars represent medians.
Figure 4
Figure 4
The percentage and number of CD163+ macrophages in BAL and induced sputum in COPD patients. The percentage (left panel) and number of CD163+ macrophages (right panel) in BAL and induced sputum between ex-smokers (open symbols) and smokers (closed symbols) with COPD. Horizontal bars represent medians. P-values are corrected for recovery of BAL fluid using multiple linear regression.
Figure 5
Figure 5
Soluble mediators measured in BAL and induced sputum supernatants of COPD patients. Ex-smokers are represented by open symbols and smokers by closed symbols. Horizontal bars represent medians. P-values are corrected for recovery of BAL fluid using multiple linear regression.

References

    1. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P. et al.Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176:532–555. doi: 10.1164/rccm.200703-456SO.
    1. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L. et al.The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350:2645–2653. doi: 10.1056/NEJMoa032158.
    1. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8:183–192. doi: 10.1038/nri2254.
    1. Rutgers SR, Postma DS, ten Hacken NH, Kauffman HF, van der Mark TW, Koeter GH. et al.Ongoing airway inflammation in patients with COPD who do not currently smoke. Thorax. 2000;55:12–18. doi: 10.1136/thorax.55.1.12.
    1. Turato G, Di Stefano A, Maestrelli P, Mapp CE, Ruggieri MP, Roggeri A. et al.Effect of smoking cessation on airway inflammation in chronic bronchitis. Am J Respir Crit Care Med. 1995;152:1262–1267.
    1. Willemse BWM, ten Hacken NHT, Rutgers B, Lesman-Leegte IGAT, Postma DS, Timens W. Effect of 1-year smoking cessation on airway inflammation in COPD and asymptomatic smokers. Eur Respir J. 2005;26:835–845. doi: 10.1183/09031936.05.00108904.
    1. Lapperre TS, Postma DS, Gosman MME, Snoeck-Stroband JB, ten Hacken NHT, Hiemstra PS. et al.Relation between duration of smoking cessation and bronchial inflammation in COPD. Thorax. 2006;61:115–121. doi: 10.1136/thx.2005.040519.
    1. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–483. doi: 10.1146/annurev.immunol.021908.132532.
    1. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–969. doi: 10.1038/nri2448.
    1. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–964. doi: 10.1038/nri1733.
    1. Verreck FAW, de Boer T, Langenberg DML, van der Zanden L, Ottenhoff THM. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-{gamma}- and CD40L-mediated costimulation. J Leukoc Biol. 2006;79:285–293. doi: 10.1189/jlb.0105015.
    1. Savage NDL, de Boer T, Walburg KV, Joosten SA, van Meijgaarden K, Geluk A. et al.Human anti-inflammatory macrophages induce Foxp3+GITR+CD25+ regulatory T cells, which suppress via membrane-bound TGF{beta}-1. J Immunol. 2008;181:2220–2226.
    1. Xu W, Roos A, Schlagwein N, Woltman AM, Daha MR, van Kooten C. IL-10-producing macrophages preferentially clear early apoptotic cells. Blood. 2006;107:4930–4937. doi: 10.1182/blood-2005-10-4144.
    1. Blumenthal RL, Campbell DE, Hwang P, DeKruyff RH, Frankel LR, Umetsu DT. Human alveolar macrophages induce functional inactivation in antigen-specific CD4 T cells. J Allergy Clin Immunol. 2001;107:258–264. doi: 10.1067/mai.2001.112845.
    1. Thepen T, van Rooijen N, Kraal G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J Exp Med. 1989;170:499–509. doi: 10.1084/jem.170.2.499.
    1. Van den Heuvel MM, Tensen CP, van As JH, van den Berg TK, Fluitsma DM, Dijkstra CD. et al.Regulation of CD 163 on human macrophages: cross-linking of CD163 induces signaling and activation. J Leukoc Biol. 1999;66:858–866.
    1. Högger P, Dreier J, Droste A, Buck F, Sorg C. Identification of the integral membrane protein RM3/1 on human monocytes as a glucocorticoid-inducible member of the scavenger receptor cysteine-rich family (CD163) J Immunol. 1998;161:1883–1890.
    1. Schonkeren D, van der Hoorn ML, Khedoe P, Swings G, van Beelen E, Claas FHJ. et al.Differential distribution and phenotype of decidual macrophages in preecclamptic versus control pregnancies. Am J Pathol. 2010;178:709–717. doi: 10.1016/j.ajpath.2010.10.011.
    1. Hodge S, Hodge G, Ahern J, Jersmann H, Holmes M, Reynolds PN. Smoking alters alveolar macrophage recognition and phagocytic ability: Implications in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2007;37:748–755. doi: 10.1165/rcmb.2007-0025OC.
    1. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur J Cancer. 2006;42:717–727. doi: 10.1016/j.ejca.2006.01.003.
    1. Woollard KJ, Geissmann F. Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol. 2010;7:77–86. doi: 10.1038/nrcardio.2009.228.
    1. Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair. J Clin Invest. 2008;118:3522–3530. doi: 10.1172/JCI36150.
    1. Lapperre TS, Snoeck-Stroband JB, Gosman MME, Stolk J, Sont JK, Jansen DF. et al.Dissociation of lung function and airway inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170:499–504. doi: 10.1164/rccm.200401-112OC.
    1. Lapperre TS, Willems LNA, Timens W, Rabe KF, Hiemstra PS, Postma DS. et al.Small Airways Dysfunction and Neutrophilic Inflammation in Bronchial Biopsies and BAL in COPD. Chest. 2007;131:53–59. doi: 10.1378/chest.06-0796.
    1. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl. 1993;16:5–40.
    1. Technical recommendations and guidelines for bronchoalveolar lavage (BAL). Report of the European Society of Pneumology Task Group. Eur Respir J. 1989;2:561–585.
    1. Haslam PL, Baughman RP. Report of ERS Task Force: guidelines for measurement of acellular components and standardization of BAL. Eur Respir J. 1999;14:245–248. doi: 10.1034/j.1399-3003.1999.14b01.x.
    1. in't Veen JC, de Gouw HW, Smits HH, Sont JK, Hiemstra PS, Sterk PJ. et al.Repeatability of cellular and soluble markers of inflammation in induced sputum from patients with asthma. Eur Respir J. 1996;9:2441–2447.
    1. van Wetering S, van der Linden AC, van Sterkenburg MA, Rabe KF, Schalkwijk J, Hiemstra PS. Regulation of secretory leukocyte proteinase inhibitor (SLPI) production by human bronchial epithelial cells: increase of cell-associated SLPI by neutrophil elastase. J Investig Med. 2000;48:359–366.
    1. Frankenberger M, Menzel M, Betz R, Kaßner G, Weber N, Kohlhäufl M. et al.Characterization of a population of small macrophages in induced sputum of patients with chronic obstructive pulmonary disease and healthy volunteers. Clinical & Experimental Immunology. 2004;138:507–516.
    1. Kollert F, Probst C, Muller-Quernheim J, Zissel G, Prasse A. CCL18 production is decreased in alveolar macrophages from cigarette smokers. Inflammation. 2009;32:163–168. doi: 10.1007/s10753-009-9115-5.
    1. Berenson CS, Garlipp MA, Grove LJ, Maloney J, Sethi S. Impaired phagocytosis of nontypeable Haemophilus influenzae by human alveolar macrophages in chronic obstructive pulmonary disease. J Infect Dis. 2006;194:1375–1384. doi: 10.1086/508428.
    1. Taylor AE, Finney-Hayward TK, Quint JK, Thomas CMR, Tudhope SJ, Wedzicha JA. et al.Defective macrophage phagocytosis of bacteria in COPD. Eur Respir J. 2010;35:1039–1047. doi: 10.1183/09031936.00036709.
    1. Verreck FAW, de Boer T, Langenberg DML, Hoeve MA, Kramer M, Vaisberg E. et al.Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA. 2004;101:4560–4565. doi: 10.1073/pnas.0400983101.
    1. Shaykhiev R, Krause A, Salit J, Strulovici-Barel Y, Harvey BG, O'Connor TP. et al.Smoking-dependent reprogramming of alveolar macrophage polarization: Implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol. 2009;183:2867–2883. doi: 10.4049/jimmunol.0900473.
    1. Hollander C, Sitkauskiene B, Sakalauskas R, Westin U, Janciauskiene SM. Serum and bronchial lavage fluid concentrations of IL-8, SLPI, sCD14 and sICAM-1 in patients with COPD and asthma. Respir Med. 2007;101:1947–1953. doi: 10.1016/j.rmed.2007.04.010.
    1. Aaron S, Vandemheen K, Ramsay T, Zhang C, Avnur Z, Nikolcheva T. et al.Multi analyte profiling and variability of inflammatory markers in blood and induced sputum in patients with stable COPD. Respiratory Research. 2010;11:41. doi: 10.1186/1465-9921-11-41.
    1. Stravinskaite K, Sitkauskiene B, Dicpinigaitis PV, Babusyte A, Sakalauskas R. Influence of smoking status on cough reflex sensitivity in subjects with COPD. Lung. 2009;187:37–42. doi: 10.1007/s00408-008-9124-4.
    1. Saha S, Doe C, Mistry V, Siddiqui S, Parker D, Sleeman M. et al.Granulocyte-macrophage colony-stimulating factor expression in induced sputum and bronchial mucosa in asthma and COPD. Thorax. 2009;64:671–676. doi: 10.1136/thx.2008.108290.
    1. Hodge S, Matthews G, Mukaro V, Ahern J, Shivam A, Hodge G, Cigarette Smoke-induced Changes to Alveolar Macrophage Phenotype and Function is Improved by Treatment with Procysteine. Am J Respir Cell Mol Biol. 2010. 2009-0459OC.
    1. Takanashi S, Hasegawa Y, Kanehira Y, Yamamoto K, Fujimoto K, Satoh K. et al.Interleukin-10 level in sputum is reduced in bronchial asthma, COPD and in smokers. Eur Respir J. 1999;14:309–314. doi: 10.1183/09031936.99.14230999.
    1. Babusyte A, Stravinskaite K, Jeroch J, Lotvall J, Sakalauskas R, Sitkauskiene B. Patterns of airway inflammation and MMP-12 expression in smokers and ex-smokers with COPD. Respir Res. 2007;8:81. doi: 10.1186/1465-9921-8-81.
    1. Culpitt SV, Rogers DF, Shah P, De Matos C, Russell REK, Donnelly LE. et al.Impaired inhibition by dexamethasone of cytokine release by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;167:24–31. doi: 10.1164/rccm.200204-298OC.
    1. Lee E, Lindo T, Jackson N, Meng-Choong L, Reynolds P, Hill A. et al.Reversal of human neutrophil survival by leukotriene B4 receptor blockade and 5-lipoxygenase and 5-lipoxygenase activating protein inhibitors. Am J Respir Crit Care Med. 1999;160:2079–2085.
    1. Yanagita M, Kobayashi R, Murakami S. Nicotine can skew the characterization of the macrophage type-1 (MPhi1) phenotype differentiated with granulocyte-macrophage colony-stimulating factor to the MPhi2 phenotype. Biochem Biophys Res Commun. 2009;388:91–95. doi: 10.1016/j.bbrc.2009.07.124.
    1. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol. 2005;175:342–349.

Source: PubMed

3
Tilaa