Dietary Pea Fiber Supplementation Improves Glycemia and Induces Changes in the Composition of Gut Microbiota, Serum Short Chain Fatty Acid Profile and Expression of Mucins in Glucose Intolerant Rats

Zohre Hashemi, Janelle Fouhse, Hyun Seun Im, Catherine B Chan, Benjamin P Willing, Zohre Hashemi, Janelle Fouhse, Hyun Seun Im, Catherine B Chan, Benjamin P Willing

Abstract

Several studies have demonstrated the beneficial impact of dried peas and their components on glucose tolerance; however, the role of gut microbiota as a potential mediator is not fully examined. In this study, we investigated the effect of dietary supplementation with raw and cooked pea seed coats (PSC) on glucose tolerance, microbial composition of the gut, select markers of intestinal barrier function, and short chain fatty acid profile in glucose intolerant rats. Male Sprague Dawley rats were fed high fat diet (HFD) for six weeks to induce glucose intolerance, followed by four weeks of feeding PSC-supplemented diets. Cooked PSC improved glucose tolerance by approximately 30% (p < 0.05), and raw and cooked PSC diets reduced insulin response by 53% and 56% respectively (p < 0.05 and p < 0.01), compared to HFD (containing cellulose as the source of dietary fiber). 16S rRNA gene sequencing on fecal samples showed a significant shift in the overall microbial composition of PSC groups when compared to HFD and low fat diet (LFD) controls. At the family level, PSC increased the abundance of Lachnospiraceae and Prevotellaceae (p < 0.001), and decreased Porphyromonadaceae (p < 0.01) compared with HFD. This was accompanied by increased mRNA expression of mucin genes Muc1, Muc2, and Muc4 in ileal epithelium (p < 0.05). Serum levels of acetate and propionate increased with raw PSC diet (p < 0.01). These results indicate that supplementation of HFD with PSC fractions can improve glycemia and may have a protective role against HFD-induced alterations in gut microbiota and mucus layer.

Keywords: glucose tolerance; gut microbiome; mucins; pea fiber; short chain fatty acids.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Effect of 4 weeks of feeding a HFD supplemented with raw or cooked PSC on oral glucose tolerance test (OGTT) and the corresponding insulin response. (a) Concentrations of blood glucose measured basally and following oral administration of 1 g/kg glucose; (b) IAUC calculated for glucose levels during OGTT; (c) Plasma insulin levels during OGTT; (d) incremental area under the curve (IAUC) for insulin during OGTT. The data represent mean ± SEM, n = 4–14. Significant differences seen at different time points of OGTT are explained in the text, and differences between IAUCs are shown here. * p < 0.05, ** p < 0.01 and *** p < 0.001 show significant difference compared with HFD. Reproduced from Hashemi et al. [6] with permission.
Figure 2
Figure 2
Effect of feeding PSC-supplemented diets on fecal microbial composition. (a) Fecal bacterial communities clustered using PCoA analysis of weighted UniFrac distances, analyzed by ANOSIM. The percentage of variation explained by each coordinate is shown in parentheses. HFD and LFD clustered together (p > 0.05) and cooked (CP) and raw (RP) clustered together (p > 0.05); however, HFD and LFD clustered separately from CP and RP (p < 0.05); (b) Inverse Simpson diversity index as a measure of diversity within each sample. Inverse Simpson diversity indices differed significantly among the groups (p < 0.001). Bars are means ± SEM, n = 6–8, ** p < 0.01, * p < 0.05.
Figure 3
Figure 3
mRNA expression of TLRs and tight Junction proteins. Mean relative mRNA expression (FC, fold change) of (a) TLR2; (b) TLR4; (c) occludin and (d) ZO-1 in ileum of the rats normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression. Data are means ± SEM, n = 5–8. No significant differences were found between groups.
Figure 4
Figure 4
mRNA expression of mucins. Relative mRNA expression (FC, fold change) of (a) Muc1; (b) Muc2; (c) Muc3 and (d) Muc4 in the ileum. Gene expression data was normalized to GAPDH as the house-keeping gene and presented as means ± SEM, n = 6–8. There was a significant effect of treatment for relative expression of Muc1, Muc2, and Muc4 (p < 0.05). CP group showed increased expression of Muc2 and Muc4 genes when compared to HFD group (* p < 0.05).
Figure 5
Figure 5
SCFA concentration (μmol/g) in (a) serum and (b) feces of rats following four weeks of PSC-supplemented or control diets. Data are presented as means ± SEM, n = 6–8. Serum acetate and propionate concentrations were significantly different between the groups. Asterisks show significant difference compared to HFD (** p < 0.01, * p < 0.05). Fecal SCFAs concentrations were not statistically different between groups.

References

    1. Canadian Diabetes Association Clinical Practice Guidelines Expert Committee Canadian diabetes association 2013 clinical practice guidelines for the prevention and management of diabetes in Canada. Can. J. Diabetes. 2013;37(Suppl. S1):S1–S212.
    1. Dahl W.J., Foster L.M., Tyler R.T. Review of the health benefits of peas (Pisum sativum L.) Br. J. Nutr. 2012;108(Suppl. S1):S3–S10. doi: 10.1017/S0007114512000852.
    1. Marinangeli C.P., Krause D., Harding S.V., Rideout T.C., Zhu F., Jones P.J.H. Whole and fractionated yellow pea flours modulate insulin, glucose, oxygen consumption, and the caecal microbiome in Golden Syrian hamsters. Appl. Physiol. Nutr. Metab. 2011;36:811–820. doi: 10.1139/h11-101.
    1. Whitlock K.A., Kozicky L., Jin A., Yee H., Ha C., Morris J., Field C.J., Bell R.C., Ozga J.A., Chan C.B. Assessment of the mechanisms exerting glucose-lowering effects of dried peas in glucose-intolerant rats. Br. J. Nutr. 2012;108(Suppl. S1):S91–S102. doi: 10.1017/S0007114512000736.
    1. Mollard R.C., Luhovyy B.L., Smith C., Anderson G.H. Acute effects of pea protein and hull fibre alone and combined on blood glucose, appetite, and food intake in healthy young men—A randomized crossover trial. Appl. Physiol. Nutr. Metab. 2014;39:1360–1365. doi: 10.1139/apnm-2014-0170.
    1. Hashemi Z., Yang K., Yang H., Jin A., Ozga J., Chan C.B. Cooking enhances beneficial effects of pea seed coat consumption on glucose tolerance, incretin, and pancreatic hormones in high-fat-diet-fed rats. Appl. Physiol. Nutr. Metab. 2015;40:323–333. doi: 10.1139/apnm-2014-0380.
    1. Da S Queiroz-Monici K., Costa G.E., da Silva N., Reis S.M., de Oliveira A.C. Bifidogenic effect of dietary fiber and resistant starch from leguminous on the intestinal microbiota of rats. Nutrition. 2005;21:602–608. doi: 10.1016/j.nut.2004.09.019.
    1. Eslinger A.J., Eller L.K., Reimer R.A. Yellow pea fiber improves glycemia and reduces Clostridium leptum in diet-induced obese rats. Nutr. Res. 2014;34:714–722. doi: 10.1016/j.nutres.2014.07.016.
    1. Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–484. doi: 10.1038/nature07540.
    1. Voreades N., Kozil A., Weir T.L. Diet and the development of the human intestinal microbiome. Front. Microbiol. 2014;5:494. doi: 10.3389/fmicb.2014.00494.
    1. Cani P.D., Possemiers S., Van de Wiele T., Guiot Y., Everard A., Rottier O., Geurts L., Naslain D., Neyrinck A., Lambert D.M., et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091–1103. doi: 10.1136/gut.2008.165886.
    1. Neyrinck A.M., Van Hee V.F., Piront N., De Backer F., Toussaint O., Cani P.D., Delzenne N.M. Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr. Diabetes. 2012;2:e28. doi: 10.1038/nutd.2011.24.
    1. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414.
    1. Cani P.D., Amar J., Iglesias M.A., Poggi M., Knauf C., Bastelica D., Neyrinck A.M., Fava F., Tuohy K.M., Chabo C., et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772. doi: 10.2337/db06-1491.
    1. Cani P.D., Bibiloni R., Knauf C., Waget A., Neyrinck A.M., Delzenne N.M., Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–1481. doi: 10.2337/db07-1403.
    1. De La Serre C.B., Ellis C.L., Lee J., Hartman A.L., Rutledge J.C., Raybould H.E. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2010;299:G440–G448. doi: 10.1152/ajpgi.00098.2010.
    1. Lam Y.Y., Ha C.W., Campbell C.R., Mitchell A.J., Dinudom A., Oscarsson J., Cook D.I., Hunt N.H., Caterson I.D., Holmes A.J., et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS ONE. 2012;7:e34233. doi: 10.1371/journal.pone.0034233.
    1. Vaarala O., Atkinson M.A., Neu J. The “perfect storm” for type 1 diabetes: The complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes. 2008;57:2555–2562. doi: 10.2337/db08-0331.
    1. Moreira A.P., Texeira T.F., Ferreira A.B., Peluzio Mdo C., Alfenas Rde C. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br. J. Nutr. 2012;108:801–809. doi: 10.1017/S0007114512001213.
    1. Lee H., Lee I.S., Choue R. Obesity, inflammation and diet. Pediatr. Gastroenterol. Hepatol. Nutr. 2013;16:143–152. doi: 10.5223/pghn.2013.16.3.143.
    1. Geurts L., Neyrinck A.M., Delzenne N.M., Knauf C., Cani P.D. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: Novel insights into molecular targets and interventions using prebiotics. Benef. Microbes. 2014;5:3–17. doi: 10.3920/BM2012.0065.
    1. Rinttila T., Kassinen A., Malinen E., Krogius L., Palva A. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol. 2004;97:1166–1177. doi: 10.1111/j.1365-2672.2004.02409.x.
    1. Schloss P.D., Gevers D., Westcott S.L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE. 2011;6:e27310. doi: 10.1371/journal.pone.0027310.
    1. Hammer Ø., Harper D.A.T., Ryan P.D. PAST: Paleontologial statistics software package for education. Palaeontol. Electron. 2001;4:1–9.
    1. Vasishtha H., Srivastava R.P. Effect of soaking and cooking on dietary fibre components of different type of chickpea genotypes. J. Food Sci. Technol. 2013;50:579–584. doi: 10.1007/s13197-011-0366-4.
    1. Harding S.V., Sapirstein H.D., Rideout T.C., Marinangeli C.P., Dona A.K., Jones P.J. Consumption of wheat bran modified by autoclaving reduces fat mass in hamsters. Eur. J. Nutr. 2014;53:793–802. doi: 10.1007/s00394-013-0583-x.
    1. Marconi E., Ruggeri S., Cappelloni M., Leonardi D., Carnovale E. Physicochemical, nutritional, and microstructural characteristics of chickpeas (Cicer arietinum L.) and common beans (Phaseolus vulgaris L.) following microwave cooking. J. Agric. Food Chem. 2000;48:5986–5994. doi: 10.1021/jf0008083.
    1. Vital M., Howe A.C., Tiedje J.M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio. 2014;5 doi: 10.1128/mBio.00889-14.
    1. Umu O.C., Frank J.A., Fangel J.U., Oostindjer M., da Silva C.S., Bolhuis E.J., Bosch G., Willats W.G.T., Pope P.B., Diep D.B. Resistant starch diet induces change in the swine microbiome and a predominance of beneficial bacterial populations. Microbiome. 2015;3:16. doi: 10.1186/s40168-015-0078-5.
    1. Chan C.B., Gupta J., Kozicky L., Hashemi Z., Yang K. Improved glucose tolerance in insulin-resistant rats after pea hull feeding is associated with changes in lipid metabolism-targeted transcriptome. Appl. Physiol. Nutr. Metab. 2014;39:1112–1119. doi: 10.1139/apnm-2014-0054.
    1. Bergman E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990;70:567–590.
    1. Boets E., Deroover L., Houben E., Vermeulen K., Gomand S.V., Delcour J.A., Verbeke K. Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin. Nutrients. 2015;7:8916–8929. doi: 10.3390/nu7115440.
    1. Ivarsson E., Roos S., Liu H.Y., Lindberg J.E. Fermentable non-starch polysaccharides increases the abundance of Bacteroides-Prevotella-Porphyromonas in ileal microbial community of growing pigs. Animal. 2014;8:1777–1787. doi: 10.1017/S1751731114001827.
    1. Zhou A.L., Hergert N., Rompato G., Lefevre M. Whole grain oats improve insulin sensitivity and plasma cholesterol profile and modify gut microbiota composition in C57BL/6J mice. J. Nutr. 2015;145:222–230. doi: 10.3945/jn.114.199778.
    1. De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S., Collini S., Pieraccini G., Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 2010;107:14691–14696. doi: 10.1073/pnas.1005963107.
    1. Wu G.D., Chen J., Hoffmann C., Bittinger K., Chen Y.Y., Keilbaugh S.A., Bewtra M., Knights D., Walters W.A., Knight R., et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–108. doi: 10.1126/science.1208344.
    1. Flint H.J., Scott K.P., Duncan S.H., Louis P., Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3:289–306. doi: 10.4161/gmic.19897.
    1. Huang Y.L., Tsai Y.H., Chow C.J. Water-insoluble fiber-rich fraction from pineapple peel improves intestinal function in hamsters: Evidence from cecal and fecal indicators. Nutr. Res. 2014;34:346–354. doi: 10.1016/j.nutres.2014.03.001.
    1. Chen H., Mao X., He J., Yu B., Huang Z., Yu J., Zheng P., Chen D. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br. J. Nutr. 2013;110:1837–1848. doi: 10.1017/S0007114513001293.
    1. Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a.
    1. Hildebrandt M.A., Hoffmann C., Sherrill-Mix S.A., Keilbaugh S.A., Hamady M., Chen Y.Y., Kinght R., Ahima R.S., Bushman F., Wu G.D. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137:1716–1724. doi: 10.1053/j.gastro.2009.08.042.
    1. Murphy E.F., Cotter P.D., Healy S., Marques T.M., O’Sullivan O., Fouhy F., Clarke S.F., O’Toole P.W., Quigley E.M., Stanton C., et al. Composition and energy harvesting capacity of the gut microbiota: Relationship to diet, obesity and time in mouse models. Gut. 2010;59:1635–1642. doi: 10.1136/gut.2010.215665.
    1. Zhang H., DiBaise J.K., Zuccolo A., Kudrna D., Braidotti M., Yu Y., Parameswaran P., Crowell M.D., Wing R., Rittmann B.E., et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. USA. 2009;106:2365–2370. doi: 10.1073/pnas.0812600106.
    1. Larsen N., Vogensen F.K., van den Berg F.W., Nielsen D.S., Andreasen A.S., Pedersen B.K., Abu AI-Soud W., Sorensen S.J., Hansen L.H., Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE. 2010;5:e9085. doi: 10.1371/journal.pone.0009085.
    1. Schwiertz A., Taras D., Schafer K., Beijer S., Bos N.A., Donus C., Hardt P.D. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18:190–195. doi: 10.1038/oby.2009.167.
    1. Wu X., Ma C., Han L., Nawaz M., Gao F., Zhang X.Y., Yu P.B., Zhao C.A., Li L.C., Zhou A.P., et al. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr. Microbiol. 2010;61:69–78. doi: 10.1007/s00284-010-9582-9.
    1. McCusker R.H., Kelley K.W. Immune-neural connections: How the immune system’s response to infectious agents influences behavior. J. Exp. Biol. 2013;216:84–98. doi: 10.1242/jeb.073411.
    1. Takeuchi O., Akira S. Toll-like receptors; their physiological role and signal transduction system. Int. Immunopharmacol. 2001;1:625–635. doi: 10.1016/S1567-5769(01)00010-8.
    1. Murakami K., Bujo H., Unoki H., Saito Y. High fat intake induces a population of adipocytes to co-express TLR2 and TNFalpha in mice with insulin resistance. Biochem. Biophys. Res. Commun. 2007;354:727–734. doi: 10.1016/j.bbrc.2007.01.039.
    1. Maslowski K.M., Vieira A.T., Ng A., Kranich J., Sierro F., Yu D., Schilter H.C., Rolph M.S., Mackay F., Artis D., et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282–1286. doi: 10.1038/nature08530.
    1. Adam C.L., Gratz S.W., Peinado D.I., Thomson L.M., Garden K.E., Williams P.A., Richardson A.J., Ross A.W. Effects of Dietary Fibre (Pectin) and/or Increased Protein (Casein or Pea) on Satiety, Body Weight, Adiposity and Caecal Fermentation in High Fat Diet-Induced Obese Rats. PLoS ONE. 2016;11:e0155871. doi: 10.1371/journal.pone.0155871.
    1. Spreckley E., Murphy K.G. The L-Cell in Nutritional Sensing and the Regulation of Appetite. Front. Nutr. 2015;2:23. doi: 10.3389/fnut.2015.00023.
    1. Burger-van Paassen N., Vincent A., Puiman P.J., van der Sluis M., Bouma J., Boehm G., van Goudoever J.B., Van Seuningen I., Renes I.B. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: Implications for epithelial protection. Biochem. J. 2009;420:211–219. doi: 10.1042/BJ20082222.
    1. Mastrodonato M., Mentino D., Portincasa P., Calamita G., Liquori G.E., Ferri D. High-fat diet alters the oligosaccharide chains of colon mucins in mice. Histochem. Cell Biol. 2014;142:449–459. doi: 10.1007/s00418-014-1221-2.
    1. Schulz M.D., Atay C., Heringer J., Romrig F.K., Schwitalla S., Aydin B., Ziegler P.K., Varga J., Reindl W., Pommerenke C., et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature. 2014;514:508–512. doi: 10.1038/nature13398.
    1. Linden S.K., Florin T.H., McGuckin M.A. Mucin dynamics in intestinal bacterial infection. PLoS ONE. 2008;3:e3952. doi: 10.1371/journal.pone.0003952.
    1. Everard A., Belzer C., Geurts L., Ouwerkerk J.P., Druart C., Bindels L.B., Guiot Y., Derrien M., Muccioli G.G., Delzenne N.M., et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA. 2013;110:9066–9071. doi: 10.1073/pnas.1219451110.
    1. Liu Z., DeSantis T.Z., Andersen G.L., Knight R. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res. 2008;36:e120. doi: 10.1093/nar/gkn491.
    1. Claesson M.J., Wang Q., O’Sullivan O., Greene-Diniz R., Cole J.R., Ross R.P., O’Toole P.W. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 2010;38:e200. doi: 10.1093/nar/gkq873.

Source: PubMed

3
Tilaa