Brain damages in ketamine addicts as revealed by magnetic resonance imaging

Chunmei Wang, Dong Zheng, Jie Xu, Waiping Lam, D T Yew, Chunmei Wang, Dong Zheng, Jie Xu, Waiping Lam, D T Yew

Abstract

Ketamine, a known antagonist of N-methyl-D-aspartic (NMDA) glutamate receptors, had been used as an anesthetic particularly for pediatric or for cardiac patients. Unfortunately, ketamine has become an abusive drug in many parts of the world while chronic and prolonged usage led to damages of many organs including the brain. However, no studies on possible damages in the brains induced by chronic ketamine abuse have been documented in the human via neuroimaging. This paper described for the first time via employing magnetic resonance imaging (MRI) the changes in ketamine addicts of 0.5-12 years and illustrated the possible brain regions susceptible to ketamine abuse. Twenty-one ketamine addicts were recruited and the results showed that the lesions in the brains of ketamine addicts were located in many regions which appeared 2-4 years after ketamine addiction. Cortical atrophy was usually evident in the frontal, parietal or occipital cortices of addicts. Such study confirmed that many brain regions in the human were susceptible to chronic ketamine injury and presented a diffuse effect of ketamine on the brain which might differ from other central nervous system (CNS) drugs, such as cocaine, heroin, and methamphetamine.

Keywords: addiction; atrophy; brain; ketamine; lesion; magnetic resonance imaging (MRI).

Figures

Figure 1
Figure 1
Hyperintense spots (arrow) in superficial white matter and internal capsule of ketamine addicts. (A) FLAIR imaging of a 1 year ketamine addict. (B) T2 imaging of a 3 years ketamine addict.
Figure 2
Figure 2
MRI images of the brains of a 4 years ketamine addicts. (A) T2 image of a horizontal brain section showing degenerative hyperintense spots in basal forebrain (arrow). (B) T2 image of a horizontal section showing hyperintense degeneration in cerebellum (a) and in pons (b). (C) T2 image of a sagittal section showing degeneration spots in diencephalon (thalamus).
Figure 3
Figure 3
FLAIR image of diffusion blockage as hyperintense spots in the parahippocampal gyrus (G) and insula (I) as well as atrophy of uncus (arrow). (A) Ketamine addict of 4 years. (B) Ketamine addict of 5 years.
Figure 4
Figure 4
T2 image showed parietal atrophy (arrow) in a sagittal brain section of a ketamine addict of 4 years.
Figure 5
Figure 5
T2 image showed prefrontal and occipital atrophy (arrows) in a sagittal brain section of a 7 years' ketamine addict.
Figure 6
Figure 6
T2 image showed hypertensive degenerative spots in corpus striatum (arrows) of a 6 years' ketamine addicts.
Figure 7
Figure 7
T1 images showed atrophic basal prefrontal (gyrus rectus) lesion of a 0.5 years ketamine addicts who took three drugs including ketamine (A). (B) Control with no retraction of gyrus rectus (arrow).
Figure 8
Figure 8
T2 image showed significant prefrontal atrophy (arrow) in a horizontal brain section of a ketamine addict who had high dose of ketamine (3 g per day) for only 3 years.
Figure 9
Figure 9
T2 image of a coronal section that showed degenerative lesion (arrow) in the brainstem (midbrain) of a ketamine addict of 7 years.

References

    1. Becker A., Grecksch G., Schroder H. (2006). Pain sensitivity is altered in animals after subchronic ketamine treatment. Psychopharmacology (Berl.) 189, 237–247 10.1007/s00213-006-0557-2
    1. Becker A., Peters B., Schroeder H., Mann T., Huether G., Grecksch G. (2003). Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 687–700 10.1016/S0278-5846(03)00080-0
    1. Bolla K. I., Cadet J. L., London E. D. (1998). The neuropsychiatry of chronic cocaine abuse. J. Neuropsychiatry Clin. Neurosci. 10, 280–289
    1. Brismar J., Ozand P. T. (1994). CT and MR of the brain in the diagnosis of organic acidemias. Experiences from 107 patients. Brain Dev. 16Suppl., 104–124 10.1016/0387-7604(94)90103-1
    1. Cakirer S., Karaarslan E., Arslan A. (2003). Spontaneously T1-hyperintense lesions of the brain on MRI: a pictorial review. Curr. Probl. Diagn. Radiol. 32, 194–217 10.1016/S0363-0188(03)00026-4
    1. Chan W. M., Liang Y., Wai M. S., Hung A. S., Yew D. T. (2011). Cardiotoxicity induced in mice by long term ketamine and ketamine plus alcohol treatment. Toxicol. Lett. 207, 191–196 10.1016/j.toxlet.2011.09.008
    1. Chan W. M., Xu J., Fan M., Jiang Y., Tsui T. Y., Wai M. S., et al. (2012). Downregulation in the human and mice cerebella after ketamine versus ketamine plus ethanol treatment. Microsc. Res. Tech. 75, 258–264 10.1002/jemt.21052
    1. Collins R. C., Dobkin B. H., Choi D. W. (1989). Selective vulnerability of the brain: new insights into the pathophysiology of stroke. Ann. Intern. Med. 110, 992–1000 10.7326/0003-4819-110-12-992
    1. Den Hollander B., Schouw M., Groot P., Huisman H., Caan M., Barkhof F., et al. (2012). Preliminary evidence of hippocampal damage in chronic users of ecstasy. J. Neurol. Neurosurg. Psychiatry 83, 83–85 10.1136/jnnp.2010.228387
    1. de Win M. M., Jager G., Booij J., Reneman L., Schilt T., Lavini C., et al. (2008a). Neurotoxic effects of ecstasy on the thalamus. Br. J. Psychiatry 193, 289–296 10.1192/bjp.bp.106.035089
    1. de Win M. M., Jager G., Booij J., Reneman L., Schilt T., Lavini C., et al. (2008b). Sustained effects of ecstasy on the human brain: a prospective neuroimaging study in novel users. Brain 131, 2936–2945 10.1093/brain/awn255
    1. Dickenson A. H., Ghandehari J. (2007). Anti-convulsants and anti-depressants. Handb. Exp. Pharmacol. 177, 145–177
    1. Dickerson J., Sharp F. R. (2006). Atypical antipsychotics and a Src kinase inhibitor (PP1) prevent cortical injury produced by the psychomimetic, noncompetitive NMDA receptor antagonist MK-801. Neuropsychopharmacology 31, 1420–1430 10.1038/sj.npp.1300878
    1. Goldstein R. Z., Leskovjan A. C., Hoff A. L., Hitzemann R., Bashan F., Khalsa S. S., et al. (2004). Severity of neuropsychological impairment in cocaine and alcohol addiction: association with metabolism in the prefrontal cortex. Neuropsychologia 42, 1447–1458 10.1016/j.neuropsychologia.2004.04.002
    1. Gozzi A., Tessari M., Dacome L., Agosta F., Lepore S., Lanzoni A., et al. (2011). Neuroimaging evidence of altered fronto-cortical and striatal function after prolonged cocaine self-administration in the rat. Neuropsychopharmacology 36, 2431–2440 10.1038/npp.2011.129
    1. Hertle D. N., Dreier J. P., Woitzik J., Hartings J. A., Bullock R., Okonkwo D. O., et al. (2012). Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain 135, 2390–2398 10.1093/brain/aws152
    1. Hyttinen L., Autti T., Rauma S., Soljanlahti S., Vuorio A. F., Strandberg T. E. (2009). White matter hyperintensities on T2-weighted MRI images among DNA-verified older familial hypercholesterolemia patients. Acta Radiol. 50, 320–326 10.1080/02841850802709227
    1. Maas L. C., Lukas S. E., Kaufman M. J., Weiss R. D., Daniels S. L., Rogers V. W., et al. (1998). Functional magnetic resonance imaging of human brain activation during cue-induced cocaine craving. Am. J. Psychiatry 155, 124–126
    1. Mak Y. T., Lam W. P., Lu L., Wong Y. W., Yew D. T. (2010). The toxic effect of ketamine on SH-SY5Y neuroblastoma cell line and human neuron. Microsc. Res. Tech. 73, 195–201
    1. Matsushima T., Nakamura K., Oka T., Tachikawa N., Sata T., Murayama S., et al. (1997). Unusual MRI and pathologic findings of progressive multifocal leukoencephalopathy complicating adult Wiskott-Aldrich syndrome. Neurology 48, 279–282 10.1212/WNL.48.1.279
    1. Meldrum B. S., Evans M. C., Swan J. H., Simon R. P. (1987). Protection against hypoxic/ischaemic brain damage with excitatory amino acid antagonists. Med. Biol. 65, 153–157
    1. Moeller F. G., Hasan K. M., Steinberg J. L., Kramer L. A., Valdes I., Lai L. Y., et al. (2007). Diffusion tensor imaging eigenvalues: preliminary evidence for altered myelin in cocaine dependence. Psychiatry Res. 154, 253–258 10.1016/j.pscychresns.2006.11.004
    1. Morgan C. J., Curran H. V. (2006). Acute and chronic effects of ketamine upon human memory: a review. Psychopharmacology (Berl.) 188, 408–424 10.1007/s00213-006-0572-3
    1. Narendran R., Frankle W. G., Keefe R., Gil R., Martinez D., Slifstein M., et al. (2005). Altered prefrontal dopaminergic function in chronic recreational ketamine users. Am. J. Psychiatry 162, 2352–2359 10.1176/appi.ajp.162.12.2352
    1. Reneman L., de Win M. M., Van Den Brink W., Booij J., Den Heeten G. J. (2006). Neuroimaging findings with MDMA/ecstasy: technical aspects, conceptual issues and future prospects. J. Psychopharmacol. 20, 164–175 10.1177/0269881106061515
    1. Salo R., Nordahl T. E., Buonocore M. H., Natsuaki Y., Waters C., Moore C. D., et al. (2009). Cognitive control and white matter callosal microstructure in methamphetamine-dependent subjects: a diffusion tensor imaging study. Biol. Psychiatry 65, 122–128 10.1016/j.biopsych.2008.08.004
    1. Schmittner M. D., Vajkoczy S. L., Horn P., Bertsch T., Quintel M., Vajkoczy P., et al. (2007). Effects of fentanyl and S(+)-ketamine on cerebral hemodynamics, gastrointestinal motility, and need of vasopressors in patients with intracranial pathologies: a pilot study. J. Neurosurg. Anesthesiol. 19, 257–262 10.1097/ANA.0b013e31811f3feb
    1. Smith F. J., Bartel P. R., Hugo J. M., Becker P. J. (2006). Anesthetic technique (sufentanil versus ketamine plus midazolam) and quantitative electroencephalographic changes after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 20, 520–525 10.1053/j.jvca.2005.11.014
    1. Smith L. M., Chang L., Yonekura M. L., Gilbride K., Kuo J., Poland R. E., et al. (2001). Brain proton magnetic resonance spectroscopy and imaging in children exposed to cocaine in utero. Pediatrics 107, 227–231 10.1542/peds.107.2.227
    1. Sowell E. R., Leow A. D., Bookheimer S. Y., Smith L. M., O'Connor M. J., Kan E., et al. (2010). Differentiating prenatal exposure to methamphetamine and alcohol versus alcohol and not methamphetamine using tensor-based brain morphometry and discriminant analysis. J. Neurosci. 30, 3876–3885 10.1523/JNEUROSCI.4967-09.2010
    1. Sun L., Lam W. P., Wong Y. W., Lam L. H., Tang H. C., Wai M. S., et al. (2011). Permanent deficits in brain functions caused by long-term ketamine treatment in mice. Hum. Exp. Toxicol. 30, 1287–1296 10.1177/0960327110388958
    1. Sun L., Li Q., Zhang Y., Liu D., Jiang H., Pan F., et al. (2012). Chronic ketamine exposure induces permanent impairment of brain functions in adolescent cynomolgus monkeys. Addict. Biol. [Epub ahead of print]. 10.1111/adb.12004
    1. Tan S., Chan W. M., Wai M. S., Hui L. K., Hui V. W., James A. E., et al. (2011a). Ketamine effects on the urogenital system–changes in the urinary bladder and sperm motility. Microsc. Res. Tech. 74, 1192–1198 10.1002/jemt.21014
    1. Tan S., Rudd J. A., Yew D. T. (2011b). Gene expression changes in GABA(A) receptors and cognition following chronic ketamine administration in mice. PLoS ONE 6:21328 10.1371/journal.pone.0021328
    1. Tan S., Lam W. P., Wai M. S., Yu W. H., Yew D. T. (2012). Chronic ketamine administration modulates midbrain dopamine system in mice. PLoS ONE 7:e43947 10.1371/journal.pone.0043947
    1. Thompson P. M., Hayashi K. M., Simon S. L., Geaga J. A., Hong M. S., Sui Y., et al. (2004). Structural abnormalities in the brains of human subjects who use methamphetamine. J. Neurosci. 24, 6028–6036 10.1523/JNEUROSCI.0713-04.2004
    1. Toda S. (2012). The role of the striatum in addiction. Brain Nerve 64, 911–917
    1. Wai M. S., Chan W. M., Zhang A. Q., Wu Y., Yew D. T. (2012). Long-term ketamine and ketamine plus alcohol treatments produced damages in liver and kidney. Hum. Exp. Toxicol. 31, 877–886 10.1177/0960327112436404
    1. Wai M. S., Luan P., Jiang Y., Chan W. M., Therese Y. M., Tsui T. Y., et al. (2013). Long term ketamine and ketamine plus alcohol toxicity—what can we learn from animal models? Mini Rev. Med. Chem. 13, 273–279 10.2174/138955713804805210
    1. Wang X., Li B., Zhou X., Liao Y., Tang J., Liu T., et al. (2012). Changes in brain gray matter in abstinent heroin addicts. Drug Alcohol Depend. 126, 304–308 10.1016/j.drugalcdep.2012.05.030
    1. Wexler B. E., Gottschalk C. H., Fulbright R. K., Prohovnik I., Lacadie C. M., Rounsaville B. J., et al. (2001). Functional magnetic resonance imaging of cocaine craving. Am. J. Psychiatry 158, 86–95 10.1176/appi.ajp.158.1.86
    1. Wong Y. W., Lam L. H., Tang H. C., Liang Y., Tan S., Yew D. T. (2012). Intestinal and liver changes after chronic ketamine and ketamine plus alcohol treatment. Microsc. Res. Tech. 75, 1170–1175 10.1002/jemt.22045
    1. Yeung L. Y., Rudd J. A., Lam W. P., Mak Y. T., Yew D. T. (2009). Mice are prone to kidney pathology after prolonged ketamine addiction. Toxicol. Lett. 191, 275–278 10.1016/j.toxlet.2009.09.006
    1. Yeung L. Y., Wai M. S., Fan M., Mak Y. T., Lam W. P., Li Z., et al. (2010a). Hyperphosphorylated tau in the brains of mice and monkeys with long-term administration of ketamine. Toxicol. Lett. 193, 189–193 10.1016/j.toxlet.2010.01.008
    1. Yeung L. Y., Wai M. S., Yew D. T. (2010b). Silver impregnation of the prefrontal cortices in the brains with long postmortem delay. Int. J. Neurosci. 120, 314–317 10.3109/00207450903243507
    1. Yin J. J., Ma S. H., Xu K., Wang Z. X., Le H. B., Huang J. Z., et al. (2012). Functional magnetic resonance imaging of methamphetamine craving. Clin. Imaging 36, 695–701 10.1016/j.clinimag.2012.02.006
    1. Yu H., Li Q., Wang D., Shi L., Lu G., Sun L., et al. (2012). Mapping the central effects of chronic ketamine administration in an adolescent primate model by functional magnetic resonance imaging (fMRI). Neurotoxicology 33, 70–77 10.1016/j.neuro.2011.11.001

Source: PubMed

3
Tilaa