The frontoparietal network: function, electrophysiology, and importance of individual precision mapping

Scott Marek, Nico U F Dosenbach, Scott Marek, Nico U F Dosenbach

Abstract

The frontoparietal network is critical for our ability to coordinate behavior in a rapid, accurate, and flexible goal-driven manner. In this review, we outline support for the framing of the frontoparietal network as a distinct control network, in part functioning to flexibly interact with and alter other functional brain networks. This network coordination likely occurs in a 4 Hz to 73 Hz θ/α rhythm, both during resting state and task state. Precision mapping of individual human brains has revealed that the functional topography of the frontoparietal network is variable between individuals, underscoring the notion that group-average studies of the frontoparietal network may be obscuring important typical and atypical features. Many forms of psychopathology implicate the frontoparietal network, such as schizophrenia and attention-deficit/hyperactivity disorder. Given the interindividual variability in frontoparietal network organization, clinical studies will likely benefit greatly from acquiring more individual subject data to accurately characterize resting-state networks compromised in psychopathology.

Keywords: cognitive control; cognitive flexibility; frontoparietal; intraparietal sulcus; lateral prefrontal cortex; psychopathology.

Figures

Figure 1.. Individual frontoparietal network assignments (yellow…
Figure 1.. Individual frontoparietal network assignments (yellow patches) displayed on the left hemisphere cortical surface from the Midnight Scan Club (outer ring). The central montage depicts the number of subjects having a frontoparietal network assignment on the left and right lateral and medial cortical surface. Yellow arrows indicate exemplar patches where there is a high degree of overlap in frontoparietal assignment across subjects. Conversely, red arrows show exemplar areas where a minority of subjects contains frontoparietal network patches, highlighting the relatively large degree of heterogeneity in frontoparietal network topography. Only 52 vertices out of the 19 074 (0.3%) vertices had overlap across all 10 subjects, and 1171 of 19 074 vertices (6.1%) had overlap across eight subjects. This high degree of heterogeneity is especially prominent across large swaths of the lateral prefrontal cortex.

References

    1. Petersen SE., Posner MI. The attention system of the human brain: 20 years after. Annu Rev Neurosci. 2012;35:73–89.
    1. Posner M., Petersen S. The attention system of the human brain. Annu Rev Neurosci. 1990;13:25–42.
    1. Carter CS., Botvinick MM., Cohen JD. The contribution of the anterior cingulate cortex to executive processes in cognition. Rev Neurosci. 1999;10(1):49–57.
    1. Barcelo F., Escera C., Corral MJ., Perianez JA. Task switching and novelty processing activate a common neural network for cognitive control. J Cogn Neurosci. 2006;18(10):1734–1748.
    1. Barcelo F., Perianez JA., Knight RT. Think differently: a brain orienting response to task novelty. Neuroreport. 2002;13(15):1887–1892.
    1. Cavanagh JF., Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn Sci. 2014;18(8):414–421.
    1. Botvinick MM., Cohen JD., Carter CS. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci. 2004;8(12):539–546.
    1. Shenhav A., Botvinick MM., Cohen JD. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron. 2013;79(2):217–240.
    1. Menon V., Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Fund. 2010;214(5-6):655–667.
    1. Sridharan D., Levitin DJ., Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A. 2008;105(34):12569–12574.
    1. Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci. 2015;16(1):55–61.
    1. Dosenbach NU, Visscher KM., Palmer ED., et al. A core system for the implementation of task sets. Neuron. 2006;50(5):799–812.
    1. Braver TS., Reynolds JR., Donaldson DI. Neural mechanisms of transient and sustained cognitive control during task switching. Neuron. 2003;39(4):713–726.
    1. Cole MW., Bassett DS., Power JD., Braver TS., Petersen SE. Intrinsic and task-evoked network architectures of the human brain. Neuron. 2014;83(1):238–251.
    1. Dosenbach NU., Fair DA., Cohen AL., Schlaggar BL., Petersen SE. A dual-networks architecture of top-down control. Trends Cogn Sci. 2008;12(3):99–105.
    1. Dosenbach NU., Fair DA., Miezin FM., et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A. 2007;104(26):11073–11078.
    1. Rossi AF., Bichot NP., Desimone R., Ungerleider LG. Top down attentional deficits in macaques with lesions of lateral prefrontal cortex. J Neurosci. 2007;27(42):11306–11314.
    1. Ploran EJ., Nelson SM., Velanova K., Donaldson DI., Petersen SE., Wheeler ME. Evidence accumulation and the moment of recognition: dissociating perceptual recognition processes using fMRI. J Neurosci. 2007;27(44):11912–11924.
    1. Wallis G., Stokes M., Cousijn H., Woolrich M., Nobre AC. Frontoparietal and cingulo-opercular networks play dissociable roles in control of working memory. J Cogn Neurosci. 2015;27(10):2019–2034.
    1. Ptak R. The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment. Neuroscientist. 2012;18(5):502–515.
    1. Gazzaley A., Nobre AC. Top-down modulation: bridging selective attention and working memory. Trends Cogn Sci. 2012;16(2):129–135.
    1. Cole MW., Pathak S., Schneider W. Identifying the brain's most globally connected regions. Neuroimage. 2010;49(4):3132–3148.
    1. Power JD., Schlaggar BL., Lessov-Schlaggar CN., Petersen SE. Evidence for hubs in human functional brain networks. Neuron. 2013;79(4):798–813.
    1. Power JD., Cohen AL., Nelson SM., et al. Functional network organization of the human brain. Neuron. 2011;72(4):665–678.
    1. Marek S., Hwang K., Foran W., Hallquist MN., Luna B. The contribution of network organization and integration to the development of cognitive control. PLoS Biol. 2015;13(12):e1002328.
    1. Cole MW., Ito T., Braver TS. Lateral prefrontal cortex contributes to fluid intelligence through multinetwork connectivity. Brain Connect. 2015;5(8):497–504.
    1. Hearne LJ., Mattingley JB., Cocchi L. Functional brain networks related to individual differences in human intelligence at rest. Sci Rep. 2016;6:32328.
    1. Sheffield JM., Repovs G., Harms MP., et al. Fronto-parietal and cingulo-opercular network integrity and cognition in health and schizophrenia. Neuropsychologia. 2015;73:82–93.
    1. Cole MW., Reynolds JR., Power JD., Repovs G., Anticevic A., Braver TS. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci. 2013;16(9):1348–1355.
    1. Cole MW., Braver TS., Meiran N. The task novelty paradox: flexible control of inflexible neural pathways during rapid instructed task learning. Neurosci Biobehav Rev. 2017;81(Pt A):4–15.
    1. Goense JB., Logothetis NK. Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol. 2008;18(9):631–640.
    1. Koch SP., Werner P., Steinbrink J., Fries P., Obrig H. Stimulus-induced and state-dependent sustained gamma activity is tightly coupled to the hemodynamic response in humans. J Neurosci. 2009;29(44):13962–13970.
    1. Donner TH., Siegel M. A framework for local cortical oscillation patterns. Trends Cogn Sci. 2011;15(5):191–199.
    1. von Stein A., Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 2000;38(3):301–313.
    1. Haegens S., Osipova D., Oostenveld R., Jensen O. Somatosensory working memory performance in humans depends on both engagement and disengagement of regions in a distributed network. Hum Brain Mapp. 2010;31(1):26–35.
    1. Klimesch W., Sauseng P., Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev. 2007;53(1):63–88.
    1. Zanto TP., Rubens MT., Thangavel A., Gazzaley A. Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nat Neurosci. 2011;14(5):656–661.
    1. Sadaghiani S., Scheeringa R., Lehongre K., et al. α-band phase synchrony is related to activity in the fronto-parietal adaptive control network. J Neurosci. 2012;32(41):14305–14310.
    1. Fries P. Rhythms for cognition: communication through coherence. Neuron. 2015;88(1):220–235.
    1. Palva S., Palva JM. Functional roles of alpha-band phase synchronization in local and large-scale cortical networks. Front Psychol. 2011;2:204.
    1. Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005;9(10):474–480.
    1. Helfrich RF., Knight RT. Oscillatory dynamics of prefrontal cognitive control. Trends Cogn Sci.. 2016;20(12):916–930.
    1. Hipp JF., Hawellek DJ., Corbetta M., Siegel M., Engel AK. Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci. 2012;15(6):884–890.
    1. Wang L., Saalmann YB., Pinsk MA., Arcaro MJ., Kastner S. Electrophysiological low-frequency coherence and cross-frequency coupling contribute to BOLD connectivity. Neuron. 2012;76(5):1010–1020.
    1. Hacker CD., Snyder AZ., Pahwa M., Corbetta M., Leuthardt EC. Frequency-specific electrophysiologic correlates of resting state fMRI networks. Neuroimage. 2017;149:446–457.
    1. Laumann TO., Gordon EM., Adeyemo B., et al. Functional system and areal organization of a highly sampled individual human brain. Neuron. 2015;87(3):657–670.
    1. Gordon EM., Laumann TO., Gilmore AW., et al. Precision functional mapping of individual human brains. Neuron. 2017;95(4):791–807 e797.
    1. Fransson P., Aden U., Blennow M., Lagercrantz H. The functional architecture of the infant brain as revealed by resting-state fMRI. Cereb Cortex. 2011;21(1):145–154.
    1. Gao W., Alcauter S., Smith JK., Gilmore JH., Lin W. Development of human brain cortical network architecture during infancy. Brain Struct Funct. 2015;220(2):1173–1186.
    1. Grayson DS., Fair DA. Development of large-scale functional networks from birth to adulthood: A guide to the neuroimaging literature. Neuroimage. 2017;160:15–31.
    1. Chai LR., Khambhati AN., Ciric R., Moore TM. Evolution of brain network dynamics in neurodevelopment. Network Neuroscience. 2017;1(1):1430.
    1. Cuthbert BN., Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 2013;11:126.
    1. Sylvester CM., Barch DM., Corbetta M., Power JD., Schlaggar BL., Luby JL. Resting state functional connectivity of the ventral attention network in children with a history of depression or anxiety. J Am Acad Child Adolesc Psychiatry. 2013;52(12):1326–1336.
    1. Heinrichs RW., Zakzanis KK. Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology. 1998;12(3):426–445.
    1. Sheffield JM., Kandala S., Tamminga CA., et al. Transdiagnostic associations between functional brain network integrity and cognition. JAMA Psychiatry. 2017;74(6):605–613.
    1. Lesh TA., Niendam TA., Minzenberg MJ., Carter CS. Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology. 2011;36(1):316–338.
    1. Cole MW., Anticevic A., Repovs G., Barch D. Variable global dysconnectivity and individual differences in schizophrenia. Biol Psychiatry. 2011;70(1):43–50.
    1. Anticevic A., Repovs G., Barch DM. Working memory encoding and maintenance deficits in schizophrenia: neural evidence for activation and deactivation abnormalities. Schizophr Bull. 2013;39(1):168–178.
    1. Repovs G., Csernansky JG., Barch DM. Brain network connectivity in individuals with schizophrenia and their siblings. Biol Psychiatry. 2011;69(10):967–973.
    1. Cole MW., Repovs G., Anticevic A. The frontoparietal control system: a central role in mental health. Neuroscientist. 2014;20(6):652–664.
    1. Lewis DA., Curley AA., Glausier JR., Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 2012;35(1):57–67.
    1. David AS., Malmberg A., Brandt L., Allebeck P., Lewis G. IQ and risk for schizophrenia: a population-based cohort study. Psychol Med. 1997;27(6):1311–1323.
    1. Knekt P., Lindfors O., Sares-Jaske L., Virtala E., Harkanen T. Randomized trial on the effectiveness of long- and short-term psychotherapy on psychiatric symptoms and working ability during a 5-year follow-up. Nord J Psychiatry. 2013;6(1):59–68.

Source: PubMed

3
Tilaa