Cardiovascular Effects of Treatment With the Ketone Body 3-Hydroxybutyrate in Chronic Heart Failure Patients

Roni Nielsen, Niels Møller, Lars C Gormsen, Lars Poulsen Tolbod, Nils Henrik Hansson, Jens Sorensen, Hendrik Johannes Harms, Jørgen Frøkiær, Hans Eiskjaer, Nichlas Riise Jespersen, Søren Mellemkjaer, Thomas Ravn Lassen, Kasper Pryds, Hans Erik Bøtker, Henrik Wiggers, Roni Nielsen, Niels Møller, Lars C Gormsen, Lars Poulsen Tolbod, Nils Henrik Hansson, Jens Sorensen, Hendrik Johannes Harms, Jørgen Frøkiær, Hans Eiskjaer, Nichlas Riise Jespersen, Søren Mellemkjaer, Thomas Ravn Lassen, Kasper Pryds, Hans Erik Bøtker, Henrik Wiggers

Abstract

Background: Myocardial utilization of 3-hydroxybutyrate (3-OHB) is increased in patients with heart failure and reduced ejection fraction (HFrEF). However, the cardiovascular effects of increased circulating plasma-3-OHB levels in these patients are unknown. Consequently, the authors' aim was to modulate circulating 3-OHB levels in HFrEF patients and evaluate: (1) changes in cardiac output (CO); (2) a potential dose-response relationship between 3-OHB levels and CO; (3) the impact on myocardial external energy efficiency (MEE) and oxygen consumption (MVO2); and (4) whether the cardiovascular response differed between HFrEF patients and age-matched volunteers.

Methods: Study 1: 16 chronic HFrEF patients (left ventricular ejection fraction: 37±3%) were randomized in a crossover design to 3-hour of 3-OHB or placebo infusion. Patients were monitored invasively with a Swan-Ganz catheter and with echocardiography. Study 2: In a dose-response study, 8 HFrEF patients were examined at increasing 3-OHB infusion rates. Study 3 to 4: 10 HFrEF patients and 10 age-matched volunteers were randomized in a crossover design to 3-hour 3-OHB or placebo infusion. MEE and MVO2 were evaluated using 11C-acetate positron emission tomography.

Results: 3-OHB infusion increased circulating levels of plasma 3-OHB from 0.4±0.3 to 3.3±0.4 mM ( P<0.001). CO rose by 2.0±0.2 L/min ( P<0.001) because of an increase in stroke volume of 20±2 mL ( P<0.001) and heart rate of 7±2 beats per minute (bpm) ( P<0.001). Left ventricular ejection fraction increased 8±1% ( P<0.001) numerically. There was a dose-response relationship with a significant CO increase of 0.3 L/min already at plasma-3-OHB levels of 0.7 mM ( P<0.001). 3-OHB increased MVO2 without altering MEE. The response to 3-OHB infusion in terms of MEE and CO did not differ between HFrEF patents and age-matched volunteers.

Conclusions: 3-OHB has beneficial hemodynamic effects in HFrEF patients without impairing MEE. These beneficial effects are detectable in the physiological concentration range of circulating 3-OHB levels. The hemodynamic effects of 3-OHB were observed in both HFrEF patients and age-matched volunteers. 3-OHB may potentially constitute a novel treatment principle in HFrEF patients.

Keywords: 3-hydroxybutyrate; echocardiography; heart failure; ketone bodies; metabolism; positron-emission tomography.

Figures

Figure 1.
Figure 1.
Study flowchart. The figure depicts the flow in each study. End point measurements lasted approximately 15 (Studies 1 and 2) to 30 (Studies 3 and 4) minutes. During measurements, the infusions were continued. The subsequent study arm was postponed accordingly to ensure either 3 (Studies 1, 3, and 4) or 2 hours (Study 2) for each infusion. In Study 4, placebo infusion was followed by 25% (1/4) of the 3-OHB dosage in Study 1 and then increased to 50% (1/2). Blood was sampled, and invasive hemodynamic measures were recorded repeatedly throughout the studies. 3-OHB indicates 3-betahydroxybutyrate; echo, echocardiography; IV, intravenous; meas, measurements; and PET, positron emission tomography.
Figure 2.
Figure 2.
Circulating P-3-OHB levels (Study 1) and changes in cardiac output in HFrEF patients (Studies 1 and 2). Mean with bars indicating standard deviation (A and B) or SEM (C). A, P-3-OHB levels were low until 3-OHB infusion was initiated and decreased after 3-OHB was substituted with placebo (n=16). B, Cardiac output increased from placebo to 3-OHB infusion and decreased when 3-OHB infusion was terminated (n=16). C, CO was assessed in Study 2 (n=8) at a low infusion rate (0.045 g · kg-1 · h-1, mean P-3-OHB: 0.7 mM) and an intermediate infusion rate (0.09 g · kg-1 · h-1, mean P-3-OHB: 1.6 mM; paired analysis). These results were compared with those obtained in Study 1 (high infusion rate [0.18 g · kg-1 · h-1], mean P-3-OHB: 3.3 mM, n=16; unpaired data) and demonstrated a dose-response association. 3-OHB indicates 3-betahydroxybutyrate; and CO, cardiac output.
Figure 3.
Figure 3.
Changes in myocardial external efficiency in Studies 3 and 4. MEE was significantly lower in HFrEF patients (n=8) than in age-matched subjects (n=8) (P<0.001), but 3-OHB did not affect MEE in either study group. 3-OHB indicates 3-betahydroxybutyrate; and MEE, myocardial external efficiency.
Figure 4.
Figure 4.
Changes in end point parameters from placebo to 3-OHB infusion. Mean relative change with SEM and the corresponding mean absolute change±SEM listed above or below each bar, respectively. Bpm indicates beats per minute; CO, cardiac output; HR, heart rate; LVEF, left ventricular ejection fraction (Study 1, n=16); MAP, mean arterial pressure; MEE, myocardial external efficiency (Studies 3 and 4, n=20); mPAP, mean pulmonary pressure; PVR, pulmonary vascular resistance; SV, stroke volume; SVO2, mixed venous saturation measured in the pulmonary artery; and SVR, systemic vascular resistance.

References

    1. Cahill GF., Jr. Starvation in man. N Engl J Med. 1970;282:668–675. doi: 10.1056/NEJM197003192821209.
    1. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB, Farese RV, Jr, de Cabo R, Ulrich S, Akassoglou K, Verdin E. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013;339:211–214. doi: 10.1126/science.1227166.
    1. Kolwicz SC, Jr, Airhart S, Tian R. Ketones step to the plate: A game changer for metabolic remodeling in heart failure? Circulation. 2016;133:689–691. doi: 10.1161/CIRCULATIONAHA.116.021230.
    1. Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME Trial: A “thrifty substrate” hypothesis. Diabetes Care. 2016;39:1108–1114. doi: 10.2337/dc16-0330.
    1. Bedi KC, Jr, Snyder NW, Brandimarto J, Aziz M, Mesaros C, Worth AJ, Wang LL, Javaheri A, Blair IA, Margulies KB, Rame JE. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation. 2016;133:706–716. doi: 10.1161/CIRCULATIONAHA.115.017545.
    1. Lopaschuk GD, Ussher JR. Evolving concepts of myocardial energy metabolism: More than just fats and carbohydrates. Circ Res. 2016;119:1173–1176. doi: 10.1161/CIRCRESAHA.116.310078.
    1. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–2128. doi: 10.1056/NEJMoa1504720.
    1. Javed B, Carine H, Gerasimos F, Stuart P, Richard B, Martina B, Alfred C, Jyothis G, Jennifer G, James J, Sanjay K, Carolyn L, Gregory L, Nikolaus M, Peter M, Cyrus M, Piotr P, Julio R, Naveed S, Afshin S, Benjamin S, Sanjiv S, Hiroyuki T, Subodh V, Christoph W, Hans-Juergan W, Faiez Z, D AS. The potential role and rationale for treatment of heart failure with sodium–glucose co-transporter 2 inhibitors. Eur J Heart Fail. 2017;19:1390–1400.
    1. Sattar N, McLaren J, Kristensen SL, Preiss D, McMurray JJ. SGLT2 Inhibition and cardiovascular events: Why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia. 2016;59:1333–1339. doi: 10.1007/s00125-016-3956-x.
    1. Nielsen R, Nørrelund H, Kampmann U, Kim WY, Ringgaard S, Schär M, Møller N, Bøtker HE, Wiggers H. Failing heart of patients with type 2 diabetes mellitus can adapt to extreme short-term increases in circulating lipids and does not display features of acute myocardial lipotoxicity. Circ Heart Fail. 2013;6:845–852. doi: 10.1161/CIRCHEARTFAILURE.113.000187.
    1. Hansson NH, Tolbod L, Harms HJ, Wiggers H, Kim WY, Hansen E, Zaremba T, Frøkiær J, Jakobsen S, Sørensen J. Evaluation of ECG-gated [(11)C]acetate PET for measuring left ventricular volumes, mass, and myocardial external efficiency. J Nucl Cardiol. 2016;23:670–679. doi: 10.1007/s12350-015-0331-0.
    1. Harms HJ, Knaapen P, de Haan S, Halbmeijer R, Lammertsma AA, Lubberink M. Automatic generation of absolute myocardial blood flow images using [15O]H2O and a clinical PET/CT scanner. Eur J Nucl Med Mol Imaging. 2011;38:930–939. doi: 10.1007/s00259-011-1730-3.
    1. Hansson NH, Harms HJ, Kim WY, Nielsen R, Tolbod LP, Frøkiær J, Bouchelouche K, Poulsen SH, Wiggers H, Parner ET, Sörensen J. Test-retest repeatability of myocardial oxidative metabolism and efficiency using standalone dynamic 11C-acetate PET and multimodality approaches in healthy controls. J Nucl Cardiol. 2018;25:1929–1936. doi: 10.1007/s12350-018-1302-z.
    1. Marinho NV, Keogh BE, Costa DC, Lammerstma AA, Ell PJ, Camici PG. Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation. 1996;93:737–744.
    1. Kroon M, Groeneveld AB, Smulders YM. Cardiac output measurement by pulse dye densitometry: Comparison with pulmonary artery thermodilution in post-cardiac surgery patients. J Clin Monit Comput. 2005;19:395–399. doi: 10.1007/s10877-005-6865-y.
    1. Taegtmeyer H, Hems R, Krebs HA. Utilization of energy-providing substrates in the isolated working rat heart. Biochem J. 1980;186:701–711.
    1. Kashiwaya Y, Sato K, Tsuchiya N, Thomas S, Fell DA, Veech RL, Passonneau JV. Control of glucose utilization in working perfused rat heart. J Biol Chem. 1994;269:25502–25514.
    1. Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, Chance B, Clarke K, Veech RL. Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J. 1995;9:651–658.
    1. Schugar RC, Moll AR, André d’Avignon D, Weinheimer CJ, Kovacs A, Crawford PA. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol Metab. 2014;3:754–769. doi: 10.1016/j.molmet.2014.07.010.
    1. Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, Koves T, Gardell SJ, Krüger M, Hoppel CL, Lewandowski ED, Crawford PA, Muoio DM, Kelly DP. The failing heart relies on ketone bodies as a fuel. Circulation. 2016;133:698–705.
    1. Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol. 2013;304:H1060–H1076. doi: 10.1152/ajpheart.00646.2012.
    1. Kobayashi K, Neely JR. Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res. 1979;44:166–175.
    1. Jeffrey FM, Diczku V, Sherry AD, Malloy CR. Substrate selection in the isolated working rat heart: Effects of reperfusion, afterload, and concentration. Basic Res Cardiol. 1995;90:388–396.
    1. Berger M, Hagg SA, Goodman MN, Ruderman NB. Glucose metabolism in perfused skeletal muscle. Effects of starvation, diabetes, fatty acids, acetoacetate, insulin and exercise on glucose uptake and disposition. Biochem J. 1976;158:191–202.
    1. Nalos M, Leverve X, Huang S, Weisbrodt L, Parkin R, Seppelt I, Ting I, Mclean A. Half-molar sodium lactate infusion improves cardiac performance in acute heart failure: A pilot randomised controlled clinical trial. Crit Care. 2014;18:R48. doi: 10.1186/cc13793.
    1. Fioretto P, Trevisan R, Velussi M, Cernigoi A, De Riva C, Bressan M, Doria A, Pauletto N, Angeli P, De Dona C, Nosadini R. Glomerular filtration rate is increased in man by the infusion of both D,L-3-hydroxybutyric acid and sodium D,l-3-hydroxybutyrate. J Clin Endocrinol Metab. 1987;65:331–338.
    1. Gadegbeku CA, Dhandayuthapani A, Shrayyef MZ, Egan BM. Hemodynamic effects of nicotinic acid infusion in normotensive and hypertensive subjects. Am J Hypertens. 2003;16:67–71.
    1. Balasse EO. Kinetics of ketone body metabolism in fasting humans. Metabolism. 1979;28:41–50.
    1. Robinson AM, Williamson DH. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev. 1980;60:143–187. doi: 10.1152/physrev.1980.60.1.143.
    1. Lommi J, Kupari M, Koskinen P, Näveri H, Leinonen H, Pulkki K, Härkönen M. Blood ketone bodies in congestive heart failure. J Am Coll Cardiol. 1996;28:665–672.
    1. Nørrelund H, Wiggers H, Halbirk M, Frystyk J, Flyvbjerg A, Bøtker HE, Schmitz O, Jørgensen JO, Christiansen JS, Møller N. Abnormalities of whole body protein turnover, muscle metabolism and levels of metabolic hormones in patients with chronic heart failure. J Intern Med. 2006;260:11–21. doi: 10.1111/j.1365-2796.2006.01663.x.
    1. Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, Mari A, Pieber TR, Muscelli E. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65:1190–1195. doi: 10.2337/db15-1356.
    1. Neubauer S. The failing heart–an engine out of fuel. N Engl J Med. 2007;356:1140–1151. doi: 10.1056/NEJMra063052.
    1. Kim IS, Izawa H, Sobue T, Ishihara H, Somura F, Nishizawa T, Nagata K, Iwase M, Yokota M. Prognostic value of mechanical efficiency in ambulatory patients with idiopathic dilated cardiomyopathy in sinus rhythm. J Am Coll Cardiol. 2002;39:1264–1268.
    1. Taegtmeyer H. Failing heart and starving brain: Ketone bodies to the rescue. Circulation. 2016;134:265–266. doi: 10.1161/CIRCULATIONAHA.116.022141.
    1. Mäki MT, Haaparanta M, Nuutila P, Oikonen V, Luotolahti M, Eskola O, Knuuti JM. Free fatty acid uptake in the myocardium and skeletal muscle using fluorine-18-fluoro-6-thia-heptadecanoic acid. J Nucl Med. 1998;39:1320–1327.
    1. Vanoverschelde JL, Wijns W, Essamri B, Bol A, Robert A, Labar D, Cogneau M, Michel C, Melin JA. Hemodynamic and mechanical determinants of myocardial O2 consumption in normal human heart: Effects of dobutamine. Am J Physiol. 1993;265(6 Pt 2):H1884–H1892. doi: 10.1152/ajpheart.1993.265.6.H1884.
    1. Ukkonen H, Saraste M, Akkila J, Knuuti J, Karanko M, Iida H, Lehikoinen P, Någren K, Lehtonen L, Voipio-Pulkki LM. Myocardial efficiency during levosimendan infusion in congestive heart failure. Clin Pharmacol Ther. 2000;68:522–531. doi: 10.1067/mcp.2000.110972.
    1. Beanlands RS, Bach DS, Raylman R, Armstrong WF, Wilson V, Montieth M, Moore CK, Bates E, Schwaiger M. Acute effects of dobutamine on myocardial oxygen consumption and cardiac efficiency measured using carbon-11 acetate kinetics in patients with dilated cardiomyopathy. J Am Coll Cardiol. 1993;22:1389–1398.
    1. Tuunanen H, Engblom E, Naum A, Scheinin M, Någren K, Airaksinen J, Nuutila P, Iozzo P, Ukkonen H, Knuuti J. Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy: evidence of relationship with insulin resistance and left ventricular dysfunction. J Card Fail. 2006;12:644–652. doi: 10.1016/j.cardfail.2006.06.005.
    1. Gormsen LC, Svart M, Thomsen HH, Sondergaard E, Vendelbo MH, Christensen N, Tolbod LP, Harms HJ, Nielsen R, Wiggers H, Jessen N, Hansen J, Botker HE, Moller N. Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: A positron emission tomography study. J Am Heart Assoc. 2017;6:1–11.
    1. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88:1009–1086. doi: 10.1152/physrev.00045.2006.
    1. Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, Murray AJ, Stubbs B, West J, McLure SW, King MT, Dodd MS, Holloway C, Neubauer S, Drawer S, Veech RL, Griffin JL, Clarke K. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab. 2016;24:256–268. doi: 10.1016/j.cmet.2016.07.010.
    1. Hasselbalch SG, Madsen PL, Hageman LP, Olsen KS, Justesen N, Holm S, Paulson OB. Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia. Am J Physiol. 1996;270(5 Pt 1):E746–E751. doi: 10.1152/ajpendo.1996.270.5.E746.
    1. Fox K, Ford I, Steg PG, Tendera M, Robertson M, Ferrari R BEAUTIFUL investigators. Heart rate as a prognostic risk factor in patients with coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): A subgroup analysis of a randomised controlled trial. Lancet. 2008;372:817–821. doi: 10.1016/S0140-6736(08)61171-X.
    1. Ma W, Berg J, Yellen G. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. J Neurosci. 2007;27:3618–3625. doi: 10.1523/JNEUROSCI.0132-07.2007.
    1. Egstrup M, Gustafsson I, Andersen MJ, Kistorp CN, Schou M, Tuxen CD, Møller JE. Haemodynamic response during low-dose dobutamine infusion in patients with chronic systolic heart failure: Comparison of echocardiographic and invasive measurements. Eur Heart J Cardiovasc Imaging. 2013;14:659–667. doi: 10.1093/ehjci/jes234.

Source: PubMed

3
Tilaa