Why a d-β-hydroxybutyrate monoester?

Adrian Soto-Mota, Nicholas G Norwitz, Kieran Clarke, Adrian Soto-Mota, Nicholas G Norwitz, Kieran Clarke

Abstract

Much of the world's prominent and burdensome chronic diseases, such as diabetes, Alzheimer's, and heart disease, are caused by impaired metabolism. By acting as both an efficient fuel and a powerful signalling molecule, the natural ketone body, d-β-hydroxybutyrate (βHB), may help circumvent the metabolic malfunctions that aggravate some diseases. Historically, dietary interventions that elevate βHB production by the liver, such as high-fat diets and partial starvation, have been used to treat chronic disease with varying degrees of success, owing to the potential downsides of such diets. The recent development of an ingestible βHB monoester provides a new tool to quickly and accurately raise blood ketone concentration, opening a myriad of potential health applications. The βHB monoester is a salt-free βHB precursor that yields only the biologically active d-isoform of the metabolite, the pharmacokinetics of which have been studied, as has safety for human consumption in athletes and healthy volunteers. This review describes fundamental concepts of endogenous and exogenous ketone body metabolism, the differences between the βHB monoester and other exogenous ketones and summarises the disease-specific biochemical and physiological rationales behind its clinical use in diabetes, neurodegenerative diseases, heart failure, sepsis related muscle atrophy, migraine, and epilepsy. We also address the limitations of using the βHB monoester as an adjunctive nutritional therapy and areas of uncertainty that could guide future research.

Keywords: Ketone monoester; ketone bodies; ketosis.

Conflict of interest statement

The intellectual property covering the uses of ketone bodies and ketone esters are owned by BTG Plc, Oxford University Innovation Ltd and the US National Institutes of Health. Professor Kieran Clarke, as an inventor, will receive a share of the royalties under the terms prescribed by each institution. Professor Clarke is a director of TdeltaS Ltd, a company spun out of the University of Oxford to develop products based on the science of ketone bodies in human nutrition. The other authors declare that they have no competing financial interests or personal relationships that could have influenced the work reported in this paper.

© 2020 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

Figures

Figure 1.. In hepatocytes, acetyl-coenzyme A acetyltransferase…
Figure 1.. In hepatocytes, acetyl-coenzyme A acetyltransferase (ACAT: 1) combines two acetyl-CoA molecules into acetoacetyl-CoA (AcAc-CoA).
AcAc-CoA is combined with another acetyl-CoA by HMG-CoA synthase (2) to form 3-hydroxymethylglutaryl-CoA (HMG-CoA). HMG-CoA lyase (3) cleaves HMG-CoA, releasing acetyl-CoA and the ketone body, acetoacetate (AcAc). AcAc can then be reduced to βHB by βHB dehydrogenase (4). βHB, the main transport ketone, exits hepatocytes via monocarboxylate transporters (MCT) and travels through the circulation to peripheral tissues. Once there, βHB is oxidised back into AcAc by βHB dehydrogenase (4). In the rate-limiting step of ketolysis, succinyl-CoA-3-oxaloacid CoA transferase (SCOT) (5) converts AcAc and succinyl-CoA into AcAc-CoA and succinate. AcAc-CoA is then cleaved by ACAT (1) to yield two molecules of acetyl-CoA that can enter the Krebs cycle.
Figure 2.. The βHB monoester bond is…
Figure 2.. The βHB monoester bond is cleaved by gut esterases, yielding βHB and butanediol, which enter the portal circulation.
In the liver, alcohol dehydrogenase (ADH) converts butanediol converted into βHB, which leaves via the monocarboxylate transporters (MCT). Each monoester molecule thus yields two βHB equivalents.

References

    1. Cahill G.F. (2006) Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22 10.1146/annurev.nutr.26.061505.111258
    1. Balasse E.O. (1979) Kinetics of ketone body metabolism in fasting humans. Metab. Clin. Exp. 28, 41–50 10.1016/0026-0495(79)90166-5
    1. Sato K., Kashiwaya Y., Keon C.A., Tsuchiya N., King M.T., Radda G.K. et al. (1995) Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J. 9, 651–658 10.1096/fasebj.9.8.7768357
    1. Veech R.L. (2004) The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot. Essent. Fatty Acids 70, 309–319 10.1016/j.plefa.2003.09.007
    1. Newman J.C. and Verdin E. (2014) β-hydroxybutyrate: much more than a metabolite. Diabetes Res. Clin. Pract. 106, 173–181 10.1016/j.diabres.2014.08.009
    1. Shimazu T., Hirschey M.D., Newman J., He W., Shirakawa K., Le Moan N. et al. (2013) Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 10.1126/science.1227166
    1. Youm Y.H., Nguyen K.Y., Grant R.W., Goldberg E.L., Bodogai M., Kim D. et al. (2015) The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 10.1038/nm.3804
    1. Kimura I., Inoue D., Maeda T., Hara T., Ichimura A., Miyauchi S. et al. (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl Acad. Sci. U.S.A. 108, 8030–8035 10.1073/pnas.1016088108
    1. Xie Z., Zhang D., Chung D., Tang Z., Huang H., Dai L. et al. (2016) Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol. Cell 62, 194–206 10.1016/j.molcel.2016.03.036
    1. Cahill G.F., Herrera M.G., Morgan A.P., Soeldner J.S., Steinke J., Levy P.L. et al. (1966) Hormone-fuel interrelationships during fasting. J. Clin. Invest. 45, 1751–1769 10.1172/JCI105481
    1. Halestrap A.P. (2013) The SLC16 gene family—Structure, role and regulation in health and disease. Mol. Aspects Med. 34, 337–349 10.1016/j.mam.2012.05.003
    1. Puchalska P. and Crawford P.A. (2017) Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25, 262–284 10.1016/j.cmet.2016.12.022
    1. Orii K.E., Fukao T., Song X.-Q., Mitchell G.A. and Kondo N. (2008) Liver-specific silencing of the human gene encoding succinyl-CoA: 3-ketoacid CoA transferase. Tohoku J. Exp. Med. 215, 227–236 10.1620/tjem.215.227
    1. Balasse E.O. and Féry F. (1989) Ketone body production and disposal: effects of fasting, diabetes, and exercise. Diabetes Metab. Rev. 5, 247–270 10.1002/dmr.5610050304
    1. Green A. and Bishop R.E. (2019) Ketoacidosis—Where do the protons come from? Trends Biochem. Sci. 44, 484–489 10.1016/j.tibs.2019.01.005
    1. Taggart A.K.P.P., Kero J., Gan X., Cai T.-Q.Q., Cheng K., Ippolito M. et al. (2005) (D)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J. Biol. Chem. 280, 26649–26652 10.1074/jbc.C500213200
    1. Shimazu T., Hirschey M.D., Hua L., Dittenhafer-Reed K.E., Schwer B., Lombard D.B. et al. (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 12, 654–661 10.1016/j.cmet.2010.11.003
    1. Krebs H.A., Wallace P.G., Hems R. and Freedland R.A. (1969) Rates of ketone-body formation in the perfused rat liver. Biochem. J. 112, 595–600 10.1042/bj1120595
    1. Newport M.T., VanItallie T.B., Kashiwaya Y., King M.T. and Veech R.L. (2015) A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer's disease. Alzheimer's Dement. 11, 99–103 10.1016/j.jalz.2014.01.006
    1. Stubbs B.J., Cox P.J., Evans R.D., Santer P., Miller J.J., Faull O.K. et al. (2017) On the metabolism of exogenous ketones in humans. Front. Physiol. 8, 848 10.3389/fphys.2017.00848
    1. Clarke K., Tchabanenko K., Pawlosky R., Carter E., Todd King M., Musa-Veloso K. et al. (2012) Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul. Toxicol. Pharmacol. 63, 401–408 10.1016/j.yrtph.2012.04.008
    1. Kesl S.L., Poff A.M., Ward N.P., Fiorelli T.N., Ari C., Van Putten A.J. et al. (2016) Effects of exogenous ketone supplementation on blood ketone, glucose, triglyceride, and lipoprotein levels in sprague–Dawley rats. Nutr. Metab. (Lond) 13, 1–15 10.1186/s12986-016-0061-6
    1. Stubbs B.J., Cox P.J., Kirk T., Evans R.D. and Clarke K. (2019) Gastrointestinal effects of exogenous ketone drinks are infrequent, mild and vary according to ketone compound and dose. Int. J. Sport Nutr. Exerc. Metab. 29, 596–603 10.1123/ijsnem.2019-0014
    1. Dearlove D.J., Faull O.K. and Clarke K. (2019) Context is key: exogenous ketosis and athletic performance. Curr. Opin. Physiol. 10, 81–89 10.1016/j.cophys.2019.04.010
    1. Abbasi J. (2018) Interest in the ketogenic diet grows forweight loss and type 2 diabetes. JAMA 319, 215–217 10.1001/jama.2017.20639
    1. Joshi S., Ostfeld R.J. and McMacken M. (2019) The ketogenic diet for obesity and diabetes—Enthusiasm outpaces evidence. JAMA Intern. Med. 179, 1163–1164 10.1001/jamainternmed.2019.2633
    1. Gano L.B., Patel M. and Rho J.M. (2014) Ketogenic diets, mitochondria, and neurological diseases. J. Lipid Res. 55, 2211–2228 10.1194/jlr.R048975
    1. Martin-Mcgill K.J., Jackson C.F., Bresnahan R., Levy R.G. and Cooper P.N. (2018) Ketogenic diets for drug-resistant epilepsy. Cochrane Database Syst. Rev. 11, CD001903 10.1002/14651858.CD001903.pub4
    1. Kielb S., Koo H.P., Bloom D.A. and Faerber G.J. (2000) Nephrolithiasis associated with the ketogenic diet. J. Urol. 164, 464–466 10.1016/S0022-5347(05)67400-9
    1. Groleau V., Schall J.I., Stallings V.A. and Bergqvist C.A. (2014) Long-term impact of the ketogenic diet on growth and resting energy expenditure in children with intractable epilepsy. Dev. Med. Child Neurol. 56, 898–904 10.1111/dmcn.12462
    1. D'Andrea Meira I., Romão T.T., Pires do Prado H.J., Krüger L.T., Pires M.E.P. and da Conceição P.O. (2019) Ketogenic diet and epilepsy: what we know so far. Front. Neurosci. 13, 5 10.3389/fnins.2019.00005
    1. Kovács Z., D'Agostino D.P., Diamond D., Kindy M.S., Rogers C. and Ari C. (2019) Therapeutic potential of exogenous ketone supplement induced ketosis in the treatment of psychiatric disorders: review of current literature. Front. Psychiatry 10, 363 10.3389/fpsyt.2019.00363
    1. Gross E.C., Lisicki M., Fischer D., Sándor P.S. and Schoenen J. (2019) The metabolic face of migraine—from pathophysiology to treatment. Nat. Rev. Neurol. 15, 627–643 10.1038/s41582-019-0255-4
    1. Norwitz N.G., Hu M.T. and Clarke K. (2019) The mechanisms by which the ketone body d-β-hydroxybutyrate may improve the multiple cellular pathologies of Parkinson's disease. Front. Nutr. 6, 63 10.3389/fnut.2019.00063
    1. Zhang C., Rissman R.A. and Feng J. (2015) Characterization of ATP alternations in an Alzheimer's disease transgenic mouse model. J. Alzheimer's Dis. 44, 375–378 10.3233/JAD-141890
    1. Greenamyre J.T., Sherer T.B., Betarbet R. and Panov A V. (2001) Complex I and Parkinson's disease. IUBMB Life 52, 135–141 10.1080/15216540152845939
    1. Mosconi L., de Leon M., Murray J E.L., Lu J., Javier E. et al. (2011) Reduced mitochondria cytochrome oxidase activity in adult children of mothers with Alzheimer's disease. J. Alzheimer's Dis. 27, 483–490 10.3233/JAD-2011-110866
    1. Kim G.H., Kim J.E., Rhie S.J. and Yoon S. (2015) The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol. 24, 325 10.5607/en.2015.24.4.325
    1. Fortier M., Castellano C.-A., Croteau E., Langlois F., Bocti C., St-Pierre V. et al. (2019) A ketogenic drink improves brain energy and some measures of cognition in mild cognitive impairment. Alzheimer's Dement. 15, 625–634 10.1016/j.jalz.2018.12.017
    1. Srivastava S., Baxa U., Niu G., Chen X. and Veech R.L. (2013) A ketogenic diet increases brown adipose tissue mitochondrial proteins and UCP1 levels in mice. IUBMB Life 65, 58–66 10.1002/iub.1102
    1. Kashiwaya Y., Pawlosky R., Markis W., King M.T., Bergman C., Srivastava S. et al. (2010) A ketone ester diet increases brain malonyl-CoA and uncoupling proteins 4 and 5 while decreasing food intake in the normal wistar rat. J. Biol. Chem. 285, 25950–25956 10.1074/jbc.M110.138198
    1. Xu X., Zhang Q., Tu J. and Ren Z. (2011) d-β-hydroxybutyrate inhibits microglial activation in a cell activation model in vitro. J. Med. Coll. PLA 26, 117–127 10.1016/S1000-1948(11)60042-7
    1. Kashiwaya Y., Takeshima T., Mori N., Nakashima K., Clarke K. and Veech R.L. (2000) d-β-hydroxybutyrate protects neurons in models of Alzheimer's and Parkinson's disease. Proc. Natl Acad. Sci. U.S.A. 97, 5440–5444 10.1073/pnas.97.10.5440
    1. ISRCTN - ISRCTN64294760: Can a ketone drink reduce the severity of symptoms of Parkinson's disease? [Internet]. Available from:
    1. Miranda J.J., Barrientos-Gutiérrez T., Corvalan C., Hyder A.A., Lazo-Porras M., Oni T. et al. (2019) Understanding the rise of cardiometabolic diseases in low- and middle-income countries. Nat. Med. 25, 1667–1679 10.1038/s41591-019-0644-7
    1. Aubert G., Martin O.J., Horton J.L., Lai L., Vega R.B., Leone T.C. et al. (2016) The failing heart relies on ketone bodies as a fuel. Circulation 133, 698–705 10.1161/CIRCULATIONAHA.115.017355
    1. Nielsen R., Møller N., Gormsen L.C., Tolbod L.P., Hansson N.H., Sorensen J. et al. (2019) Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation 139, 2129–2141 10.1161/CIRCULATIONAHA.118.036459
    1. McMurray J.J.V., Adamopoulos S., Anker S.D., Auricchio A., Böhm M., Dickstein K. et al. (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the european society of cardiology. developed in collaboration with the heart failure association (HFA) of the ESC. Eur. Heart J. 33, 1787–1847 10.1093/eurheartj/ehs104
    1. Lim E.L., Hollingsworth K.G., Aribisala B.S., Chen M.J., Mathers J.C. and Taylor R. (2011) Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 54, 2506–2514 10.1007/s00125-011-2204-7
    1. Muller M.J., Paschen U. and Seitz H.J. (1984) Effect of ketone bodies on glucose production and utilization in the miniature pig. J. Clin. Invest. 74, 249–261 10.1172/JCI111408
    1. Ari C., Murdun C., Koutnik A.P., Goldhagen C.R., Rogers C., Park C. et al. (2019) Exogenous ketones lower blood glucose level in rested and exercised rodent models. Nutrients 11, E2330 10.3390/nu11102330
    1. Myette-Côté É., Caldwell H.G., Ainslie P.N., Clarke K. and Little J.P. (2019) A ketone monoester drink reduces the glycemic response to an oral glucose challenge in individuals with obesity: a randomized trial. Am. J. Clin. Nutr. 110, 1491–1501 10.1093/ajcn/nqz232
    1. Sherwin R.S., Hendler R.G. and Felig P. (1976) Effect of diabetes mellitus and insulin on the turnover and metabolic response to ketones in man. Diabetes 25, 776–784 10.2337/diab.25.9.776
    1. ISRCTN - ISRCTN16169021: The mechanism whereby an exogenous ketone drink lowers blood glucose [Internet]. Available from:
    1. Matthew C. Riddle (2019) Introduction: standards of medical care in diabetes—2019. Diabetes Care 42, S1–S2 10.2337/dc19-Sint01
    1. Wright A.K., Kontopantelis E., Emsley R., Buchan I., Sattar N., Rutter M.K. et al. (2017) Life expectancy and cause-specific mortality in type 2 diabetes: a population-based cohort study quantifying relationships in ethnic subgroups. Diabetes Care 40, 338–345 10.2337/dc16-1616
    1. ISRCTN - ISRCTN12401551: Safety of twenty-eight-day consumption of ΔG® in healthy adults and type 2 diabetes patients [Internet]. Available from:
    1. Evans M., Cogan K.E. and Egan B. (2017) Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation. J. Physiol. 595, 2857–2871 10.1113/JP273185
    1. Rich A.J. (1990) Ketone bodies as substrates. Proc. Nutr. Soc. 49, 361–373 10.1079/PNS19900042
    1. Alverdy J.C. (2018) Hypermetabolism and nutritional support in sepsis. Surg. Infect. (Larchmt) 19, 163–167 10.1089/sur.2017.313
    1. Cecconi M., Evans L., Levy M. and Rhodes A. (2018) Sepsis and septic shock. Lancet 392, 75–87 10.1016/S0140-6736(18)30696-2
    1. Frayn K.N. (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 55, 628–634 10.1152/jappl.1983.55.2.628
    1. Cox P.J. and Clarke K. (2014) Acute nutritional ketosis: implications for exercise performance and metabolism. Extrem. Physiol. Med. 3, 17 10.1186/2046-7648-3-17
    1. Cox P.J., Kirk T., Ashmore T., Willerton K., Evans R., Smith A. et al. (2016) Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab. 24, 256–268 10.1016/j.cmet.2016.07.010
    1. Beylot M., Chassard D., Chambrier C., Guiraud M., Odeon M., Beaufrere B. et al. (1994) Metabolic effects of a d-β-hydroxybutyrate infusion in septic patients. Crit. Care Med. 22, 1091–1098 10.1097/00003246-199407000-00007
    1. Soto-Mota A., Vansant H., Evans R.D. and Clarke K. (2019) Safety and tolerability of sustained exogenous ketosis using ketone monoester drinks for 28 days in healthy adults. Regul. Toxicol. Pharmacol. 109, 104506 10.1016/j.yrtph.2019.104506

Source: PubMed

3
Tilaa