Nerve injury and neuropathic pain - A question of age

Maria Fitzgerald, Rebecca McKelvey, Maria Fitzgerald, Rebecca McKelvey

Abstract

The effects of peripheral nerve injury on somatosensory processing and pain are highly dependent upon the age at which the damage occurs. Adult nerve injury rapidly triggers neuropathic pain, but this is not so if the same nerve injury is performed in animals below postnatal day (P) 28, consistent with observations in paediatric patients. However, longitudinal studies show that pain hypersensitivity emerges later in life, when the animal reaches adolescence, an observation that could be of clinical importance. Here we discuss the evidence that the central consequences of nerve damage are critically determined by the status of neuroimmune regulation at different ages. In the first postnatal weeks, when spinal somatosensory circuits are undergoing synaptic reorganisation, the 'default' neuroimmune response is skewed in an anti-inflammatory direction, suppressing the excitation of dorsal horn neurons and preventing the onset of neuropathic pain. As animals grow up and the central nervous system matures, the neuroimmune profile shifts in a pro-inflammatory direction, unmasking a 'latent' pain response to an earlier nerve injury. The data predicts that nerve injury in infancy and childhood could go unnoticed at the time, but emerge as clinically 'unexplained' or 'functional' pain in adolescence.

Keywords: Adolescent; Anti-inflammatory; Dorsal horn; Microglia; Neonatal; Neuroimmune; Neuropathic pain; Paediatric; Peripheral nerve; Plasticity; Pro-inflammatory; Somatosensory.

Copyright © 2015. Published by Elsevier Inc.

Figures

Fig. 1
Fig. 1
The dorsal horn response to peripheral nerve injury depends upon age. A model is proposed above of the cellular activity in the dorsal horn following nerve injury at different time points and postnatal stages Top: Neonatal (day 1–7) nerve injury results in primary afferent sprouting, and there is no pain behaviour. It is proposed that microglia are phagocytic (blue cells) and resident T helper cells (pink circular cells) are predominantly type Th2, that is anti-inflammatory. This cellular environment promotes and supports structural plasticity and postnatal neuronal circuit development (dark red neurons). Centre: Juvenile (day 10) nerve injury initially triggers an anti-inflammatory response in the dorsal horn with anti-inflammatory T helper cell activity (Th2) and microglial activity (M2) associated with release of cytokines such as IL4 and IL10. There is no pain behaviour. Bottom: Juvenile (day 10) nerve injury causes a later, delayed onset pro-inflammatory response in the dorsal horn. This arises from a switch of microglial and T cell activity from M2 and Th2 to M1 and Th1, associated with the release of pro-inflammatory cytokines such as IL1, TNF and the neurotrophin, BDNF. These, in turn, excite dorsal horn neurons and as a result trigger pain behaviour.

References

    1. Adkins B. Development of neonatal Th1/Th2 function. Int. Rev. Immunol. 2000;19:157–171.
    1. Anand P., Birch R. Restoration of sensory function and lack of long-term chronic pain syndromes after brachial plexus injury in human neonates. Brain. 2002;125:113–122.
    1. Arnoux I., Hoshiko M., Sanz Diez A., Audinat E. Paradoxical effects of minocycline in the developing mouse somatosensory cortex. Glia. 2014;62:399–410.
    1. Atherton D.D., Taherzadeh O., Elliot D., Anand P. Age-dependent development of chronic neuropathic pain, allodynia and sensory recovery after upper limb nerve injury in children. J. Hand Surg. Eur. Vol. 2008;33:186–191.
    1. Beggs S., Torsney C., Drew L.J., Fitzgerald M. The postnatal reorganization of primary afferent input and dorsal horn cell receptive fields in the rat spinal cord is an activity-dependent process. Eur. J. Neurosci. 2002;16:1249–1258.
    1. Berta T., Park C.-K., Xu Z.-Z., Xie R.-G., Liu T., Lü N., Liu Y.-C., Ji R.-R. Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-α secretion. J. Clin. Invest. 2014;124:1173–1186.
    1. Bremner L.R., Fitzgerald M. Postnatal tuning of cutaneous inhibitory receptive fields in the rat. J. Physiol. 2008;586:1529–1537.
    1. Bromberg M.H., Schechter N.L., Nurko S., Zempsky W.T., Schanberg L.E. Persistent pain in chronically ill children without detectable disease activity. Pain Manag. 2014;4:211–219.
    1. Chong M.S., Fitzgerald M., Winter J., Hu-Tsai M., Emson P.C., Wiese U., Woolf C.J. GAP-43 mRNA in rat spinal cord and dorsal root ganglia neurons: developmental changes and re-expression following peripheral nerve injury. Eur. J. Neurosci. 1992;4:883–895.
    1. Coggeshall R.E., Pover C.M., Fitzgerald M. Dorsal root ganglion cell death and surviving cell numbers in relation to the development of sensory innervation in the rat hindlimb. Brain Res. Dev. Brain Res. 1994;82:193–212.
    1. Costigan M., Moss A., Latremoliere A., Johnston C., Verma-Gandhu M., Herbert T.A., Barrett L., Brenner G.J., Vardeh D., Woolf C.J., Fitzgerald M. T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J. Neurosci. 2009;29:14415–14422.
    1. Coull J.A.M., Beggs S., Boudreau D., Boivin D., Tsuda M., Inoue K., Gravel C., Salter M.W., De Koninck Y. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438:1017–1021.
    1. Crain J.M., Nikodemova M., Watters J.J. Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. J. Neurosci. Res. 2013;91:1143–1151.
    1. Decosterd I., Woolf C.J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 2000;87:149–158.
    1. Elahi S., Ertelt J.M., Kinder J.M., Jiang T.T., Zhang X., Xin L., Chaturvedi V., Strong B.S., Qualls J.E., Steinbrecher K.A., Kalfa T.A., Shaaban A.F., Way S.S. Immunosuppressive CD71 + erythroid cells compromise neonatal host defence against infection. Nature. 2013;504:158–162.
    1. Ferber I.A., Lee H.J., Zonin F., Heath V., Mui A., Arai N., O'Garra A. GATA-3 significantly downregulates IFN-gamma production from developing Th1 cells in addition to inducing IL-4 and IL-5 levels. Clin. Immunol. 1999;91:134–144.
    1. Fitzgerald M. The sprouting of saphenous nerve terminals in the spinal cord following early postnatal sciatic nerve section in the rat. J. Comp. Neurol. 1985;240:407–413.
    1. Fitzgerald M. The development of nociceptive circuits. Nat. Rev. Neurosci. 2005;6:507–520.
    1. Fitzgerald M., Shortland P. The effect of neonatal peripheral nerve section on the somadendritic growth of sensory projection cells in the rat spinal cord. Brain Res. 1988;470:129–136.
    1. Fitzgerald M., Vrbová G. Plasticity of acid phosphatase (FRAP) afferent terminal fields and of dorsal horn cell growth in the neonatal rat. J. Comp. Neurol. 1985;240:414–422.
    1. Fitzgerald M., Woolf C.J., Shortland P. Collateral sprouting of the central terminals of cutaneous primary afferent neurons in the rat spinal cord: pattern, morphology, and influence of targets. J. Comp. Neurol. 1990;300:370–385.
    1. Gao Y.-J., Ji R.-R. Chemokines, neuronal–glial interactions, and central processing of neuropathic pain. Pharmacol. Ther. 2010;126:56–68.
    1. Garrido-Mesa N., Zarzuelo A., Gálvez J. Minocycline: far beyond an antibiotic. Br. J. Pharmacol. 2013;169:337–352.
    1. Gilron I., Baron R., Jensen T. Neuropathic pain: principles of diagnosis and treatment. Mayo Clin. Proc. 2015;90:532–545.
    1. Gordon S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003;3:23–35.
    1. Graham J.E., Christian L.M., Kiecolt-Glaser J.K. Stress, age, and immune function: toward a lifespan approach. J. Behav. Med. 2006;29:389–400.
    1. Harry G.J. Microglia during development and aging. Pharmacol. Ther. 2013;139:313–326.
    1. Harry G.J., Kraft A.D. Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology. 2012;33:191–206. (2)
    1. Hathway G.J., Vega-Avelaira D., Moss A., Ingram R., Fitzgerald M. Brief, low frequency stimulation of rat peripheral C-fibres evokes prolonged microglial-induced central sensitization in adults but not in neonates. Pain. 2009;144:110–118.
    1. Himes B.T., Tessler A. Death of some dorsal root ganglion neurons and plasticity of others following sciatic nerve section in adult and neonatal rats. J. Comp. Neurol. 1989;284:215–230.
    1. Howard R.F., Walker S.M., Michael Mota P., Fitzgerald M. The ontogeny of neuropathic pain: Postnatal onset of mechanical allodynia in rat spared nerve injury (SNI) and chronic constriction injury (CCI) models. Pain. 2005;115:382–389.
    1. Howard R.F., Wiener S., Walker S.M. Neuropathic pain in children. Arch. Dis. Child. 2014;99:84–89.
    1. Kobayashi K., Imagama S., Ohgomori T., Hirano K., Uchimura K., Sakamoto K., Hirakawa A., Takeuchi H., Suzumura A., Ishiguro N., Kadomatsu K. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. 2013;4:e525.
    1. Koch S.C., Tochiki K.K., Hirschberg S., Fitzgerald M. C-fiber activity-dependent maturation of glycinergic inhibition in the spinal dorsal horn of the postnatal rat. Proc. Natl. Acad. Sci. U. S. A. 2012;109:12201–12206.
    1. Li J., Baccei M.L. Neonatal tissue damage facilitates nociceptive synaptic input to the developing superficial dorsal horn via NGF-dependent mechanisms. Pain. 2011;152:1846–1855.
    1. Lowrie M.B., Lawson S.J. Cell death of spinal interneurones. Prog. Neurobiol. 2000;61:543–555.
    1. Maynard C.L., Elson C.O., Hatton R.D., Weaver C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231–241.
    1. McKelvey R., Berta T., Old E., Ji R.-R., Fitzgerald M. Neuropathic pain is constitutively suppressed in early life by anti-inflammatory neuroimmune regulation. J. Neurosci. 2015;35:457–466.
    1. Melzack R., Israel R., Lacroix R., Schultz G. Phantom limbs in people with congenital limb deficiency or amputation in early childhood. Brain. 1997;120(Pt 9):1603–1620.
    1. Milligan E.D., Watkins L.R. Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci. 2009;10:23–36.
    1. Milligan E.D., Sloane E.M., Langer S.J., Cruz P.E., Chacur M., Spataro L., Wieseler-Frank J., Hammack S.E., Maier S.F., Flotte T.R., Forsayeth J.R., Leinwand L.A., Chavez R., Watkins L.R. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol. Pain. 2005;1:9.
    1. Moss A., Beggs S., Vega-Avelaira D., Costigan M., Hathway G.J., Salter M.W., Fitzgerald M. Spinal microglia and neuropathic pain in young rats. Pain. 2007;128:215–224.
    1. Nikodemova M., Kimyon R.S., De I., Small A.L., Collier L.S., Watters J.J. Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third postnatal week. J. Neuroimmunol. 2015;278:280–288.
    1. Ouyang W., Ranganath S.H., Weindel K., Bhattacharya D., Murphy T.L., Sha W.C., Murphy K.M. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity. 1998;9:745–755.
    1. Paolicelli R.C., Bolasco G., Pagani F., Maggi L., Scianni M., Panzanelli P., Giustetto M., Ferreira T.A., Guiducci E., Dumas L., Ragozzino D., Gross C.T. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456–1458.
    1. Ponomarev E.D., Shriver L.P., Maresz K., Dittel B.N. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J. Neurosci. Res. 2005;81:374–389.
    1. PrabhuDas M., Adkins B., Gans H., King C., Levy O., Ramilo O., Siegrist C.-A. Challenges in infant immunity: implications for responses to infection and vaccines. Nat. Immunol. 2011;12:189–194.
    1. Reynolds M.L., Fitzgerald M. Neonatal sciatic nerve section results in thiamine monophosphate but not substance P or calcitonin gene-related peptide depletion from the terminal field in the dorsal horn of the rat: The role of collateral sprouting. Neuroscience. 1992;51:191–202.
    1. Ririe D.G., Eisenach J.C. Age-dependent responses to nerve injury-induced mechanical allodynia. Anesthesiology. 2006;104:344–350.
    1. Schafer D.P., Lehrman E.K., Kautzman A.G., Koyama R., Mardinly A.R., Yamasaki R., Ransohoff R.M., Greenberg M.E., Barres B.A., Stevens B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705.
    1. Scheffel J., Regen T., Van Rossum D., Seifert S., Ribes S., Nau R., Parsa R., Harris R.A., Boddeke H.W.G.M., Chuang H.-N., Pukrop T., Wessels J.T., Jürgens T., Merkler D., Brück W., Schnaars M., Simons M., Kettenmann H., Hanisch U.-K. Toll-like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia. Glia. 2012;60:1930–1943.
    1. Scholz J., Broom D.C., Youn D.-H., Mills C.D., Kohno T., Suter M.R., Moore K.A., Decosterd I., Coggeshall R.E., Woolf C.J. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J. Neurosci. 2005;25:7317–7323.
    1. Schwarz J.M., Bilbo S.D. Sex, glia, and development: interactions in health and disease. Horm. Behav. 2012;62:243–253.
    1. Shigemoto-Mogami Y., Hoshikawa K., Goldman J.E., Sekino Y., Sato K. Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J. Neurosci. 2014;34:2231–2243.
    1. Shortland P., Fitzgerald M. Functional connections formed by saphenous nerve terminal sprouts in the dorsal horn following neonatal sciatic nerve section. Eur. J. Neurosci. 1991;3:383–396.
    1. Shortland P., Fitzgerald M. Neonatal sciatic nerve section results in a rearrangement of the central terminals of saphenous and axotomized sciatic nerve afferents in the dorsal horn of the spinal cord of the adult rat. Eur. J. Neurosci. 1994;6:75–86.
    1. Shortland P., Molander C. Alterations in the distribution of stimulus-evoked c-fos in the spinal cord after neonatal peripheral nerve injury in the rat. Brain Res. Dev. Brain Res. 2000;119:243–250.
    1. Stein M., Keshav S., Harris N., Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 1992;176:287–292.
    1. Tandrup T., Woolf C.J., Coggeshall R.E. Delayed loss of small dorsal root ganglion cells after transection of the rat sciatic nerve. J. Comp. Neurol. 2000;422:172–180.
    1. Taves S., Berta T., Chen G., Ji R.-R. Microglia and spinal cord synaptic plasticity in persistent pain. Neural Plast. 2013;2013:753656.
    1. Tremblay M.-È., Lowery R.L., Majewska A.K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 2010;8 (e1000527)
    1. Vega-Avelaira D., Moss A., Fitzgerald M. Age-related changes in the spinal cord microglial and astrocytic response profile to nerve injury. Brain Behav. Immun. 2007;21:617–623.
    1. Vega-Avelaira D., Géranton S.M., Fitzgerald M. Differential regulation of immune responses and macrophage/neuron interactions in the dorsal root ganglion in young and adult rats following nerve injury. Mol. Pain. 2009;5:70.
    1. Vega-Avelaira D., McKelvey R., Hathway G., Fitzgerald M. The emergence of adolescent onset pain hypersensitivity following neonatal nerve injury. Mol. Pain. 2012;8:30.
    1. Vega-Avelaira D., Ballesteros J.J., López-García J.A. Inflammation-induced hyperalgesia and spinal microglia reactivity in neonatal rats. Eur. J. Pain. 2013;17:1180–1188.
    1. Walco G.A., Dworkin R.H., Krane E.J., LeBel A.A., Treede R.-D. Neuropathic pain in children: special considerations. Mayo Clin. Proc. 2010;85:S33–S41.
    1. Werry E.L., Liu G.J., Lovelace M.D., Nagarajah R., Hickie I.B., Bennett M.R. Lipopolysaccharide-stimulated interleukin-10 release from neonatal spinal cord microglia is potentiated by glutamate. Neuroscience. 2011;175:93–103.
    1. Whiteside G., Doyle C.A., Hunt S.P., Munglani R. Differential time course of neuronal and glial apoptosis in neonatal rat dorsal root ganglia after sciatic nerve axotomy. Eur. J. Neurosci. 1998;10:3400–3408.
    1. Yip H.K., Rich K.M., Lampe P.A., Johnson E.M. The effects of nerve growth factor and its antiserum on the postnatal development and survival after injury of sensory neurons in rat dorsal root ganglia. J. Neurosci. 1984;4:2986–2992.

Source: PubMed

3
Tilaa