Analysis of biliary MICRObiota in hepatoBILIOpancreatic diseases compared to healthy people [MICROBILIO]: Study protocol

Fernanda Sayuri do Nascimento, Milena Oliveira Suzuki, João Victor Taba, Vitoria Carneiro de Mattos, Leonardo Zumerkorn Pipek, Eugênia Machado Carneiro D'Albuquerque, Leandro Iuamoto, Alberto Meyer, Wellington Andraus, João Renato Rebello Pinho, Eduardo Guimarães Hourneaux de Moura, João Carlos Setubal, Luiz Augusto Carneiro-D'Albuquerque, Fernanda Sayuri do Nascimento, Milena Oliveira Suzuki, João Victor Taba, Vitoria Carneiro de Mattos, Leonardo Zumerkorn Pipek, Eugênia Machado Carneiro D'Albuquerque, Leandro Iuamoto, Alberto Meyer, Wellington Andraus, João Renato Rebello Pinho, Eduardo Guimarães Hourneaux de Moura, João Carlos Setubal, Luiz Augusto Carneiro-D'Albuquerque

Abstract

Background: The performance of the microbiota is observed in several digestive tract diseases. Therefore, reaching the biliary microbiota may suggest ways for studies of biomarkers, diagnoses, tests and therapies in hepatobiliopancreatic diseases.

Methods: Bile samples will be collected in endoscopic retrograde cholangiopancreatography patients (case group) and living liver transplantation donors (control group). We will characterize the microbiome based on two types of sequence data: the V3/V4 regions of the 16S ribosomal RNA (rRNA) gene and total shotgun DNA. For 16S sequencing data a standard 16S processing pipeline based on the Amplicon Sequence Variant concept and the qiime2 software package will be employed; for shotgun data, for each sample we will assemble the reads and obtain and analyze metagenome-assembled genomes.

Results: The primary expected results of the study is to characterize the specific composition of the biliary microbiota in situations of disease and health. In addition, it seeks to demonstrate the existence of changes in the case of illness and also possible disease biomarkers, diagnosis, interventions and therapies in hepatobiliopancreatic diseases.

Trial registration: NCT04391426. Registered 18 May 2020, https://ichgcp.net/clinical-trials-registry/NCT04391426.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Study scheme.
Fig 1. Study scheme.

References

    1. Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14(8):e1002533 10.1371/journal.pbio.1002533
    1. Cresci GA, Bawden E. Gut Microbiome: What We Do and Don't Know. Nutr Clin Pract. 2015;30(6):734‐746. 10.1177/0884533615609899
    1. Akshintala VS, Talukdar R, Singh VK, Goggins M. The Gut Microbiome in Pancreatic Disease. Clin Gastroenterol Hepatol. 2019;17(2):290‐295. 10.1016/j.cgh.2018.08.045
    1. Mitsuhashi K, Nosho K, Sukawa Y, et al. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget. 2015;6(9):7209‐7220. 10.18632/oncotarget.3109
    1. Saus E, Iraola-Guzmán S, Willis JR, Brunet-Vega A, Gabaldón T. Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential. Mol Aspects Med. 2019;69:93‐106. 10.1016/j.mam.2019.05.001
    1. Riquelme E, Zhang Y, Zhang L, et al. Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell. 2019;178(4):795‐806.e12. 10.1016/j.cell.2019.07.008
    1. Aykut B, Pushalkar S, Chen R, et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature. 2019;574(7777):264‐267. 10.1038/s41586-019-1608-2
    1. Mendez R, Kesh K, Arora N, et al. Microbial dysbiosis and polyamine metabolism as predictive markers for early detection of pancreatic cancer [published online ahead of print, 2019 Aug 1]. Carcinogenesis. 2019;bgz116.
    1. Mima K, Nakagawa S, Sawayama H, et al. The microbiome and hepatobiliary-pancreatic cancers. Cancer Lett. 2017;402:9‐15. 10.1016/j.canlet.2017.05.001
    1. Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967‐970. 10.1126/science.1240527
    1. Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019;16(11):690‐704. 10.1038/s41575-019-0209-8
    1. Desrouillères K, Millette M, Bagheri L, Maherani B, Jamshidian M, Lacroix M. The synergistic effect of cell wall extracted from probiotic biomass containing Lactobacillus acidophilus CL1285, L. casei LBC80R, and L. rhamnosus CLR2 on the anticancer activity of cranberry juice-HPLC fractions. J Food Biochem. 2020;44(5):e13195 10.1111/jfbc.13195
    1. Lenoir M, Del Carmen S, Cortes-Perez NG, et al. Lactobacillus casei BL23 regulates Treg and Th17 T-cell populations and reduces DMH-associated colorectal cancer. J Gastroenterol. 2016;51(9):862‐873. 10.1007/s00535-015-1158-9
    1. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [published correction appears in Nat Biotechnol. 2019 Sep;37(9):1091]. Nat Biotechnol. 2019;37(8):852‐857. 10.1038/s41587-019-0209-9
    1. Amir A, McDonald D, Navas-Molina JA, et al. Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. mSystems. 2017;2(2):e00191–16. 10.1128/mSystems.00191-16
    1. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581‐583. 10.1038/nmeth.3869
    1. Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015;26:27663 10.3402/mehd.v26.27663
    1. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.4–3. Vienna: R Foundation for Statistical Computing; 2016. March
    1. Wood D.E., Lu J. & Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257 (2019). 10.1186/s13059-019-1891-0
    1. Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6(1):158 10.1186/s40168-018-0541-1
    1. Parks DH, Chuvochina M, Waite DW, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36(10):996‐1004. 10.1038/nbt.4229
    1. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016. August 19;44(14):6614–24. 10.1093/nar/gkw569
    1. Escapa IF, Chen T, Huang Y, Gajare P, Dewhirst FE, Lemon KP. New Insights into Human Nostril Microbiome from the Expanded Human Oral Microbiome Database (eHOMD): a Resource for the Microbiome of the Human Aerodigestive Tract. mSystems. 2018;3(6):e00187–18. 10.1128/mSystems.00187-18
    1. Molinero N, Ruiz L, Milani C, et al. The human gallbladder microbiome is related to the physiological state and the biliary metabolic profile. Microbiome. 2019;7(1):100 10.1186/s40168-019-0712-8
    1. Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota disbiosis is associated with colorectal cancer. Front Microbiol. 2015;6:20 10.3389/fmicb.2015.00020
    1. Haro C, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, Delgado-Lista J, et al. Intestinal Microbiota Is Influenced by Gender and Body Mass Index. PLoS One. 2016. May 26;11(5):e0154090 10.1371/journal.pone.0154090 ; PMCID: PMC4881937.
    1. Nicoletti A, Ponziani FR, Nardella E, Ianiro G, Gasbarrini A, Zileri Dal Verme L. Biliary tract microbiota: a new kid on the block of liver diseases?. Eur Rev Med Pharmacol Sci. 2020;24(5):2750‐2775. 10.26355/eurrev_202003_20548
    1. Chen B, Fu SW, Lu L, Zhao H. A Preliminary Study of Biliary Microbiota in Patients with Bile Duct Stones or Distal Cholangiocarcinoma. Biomed Res Int. 2019;2019:1092563 10.1155/2019/1092563
    1. Shen H, Ye F, Xie L, et al. Metagenomic sequencing of bile from gallstone patients to identify different microbial community patterns and novel biliary bacteria. Sci Rep. 2015;5:17450 10.1038/srep17450

Source: PubMed

3
Tilaa