Next Generation Hemostatic Materials Based on NHS-Ester Functionalized Poly(2-oxazoline)s

Marcel A Boerman, Edwin Roozen, María José Sánchez-Fernández, Abraham R Keereweer, Rosa P Félix Lanao, Johan C M E Bender, Richard Hoogenboom, Sander C Leeuwenburgh, John A Jansen, Harry Van Goor, Jan C M Van Hest, Marcel A Boerman, Edwin Roozen, María José Sánchez-Fernández, Abraham R Keereweer, Rosa P Félix Lanao, Johan C M E Bender, Richard Hoogenboom, Sander C Leeuwenburgh, John A Jansen, Harry Van Goor, Jan C M Van Hest

Abstract

In order to prevent hemorrhage during surgical procedures, a wide range of hemostatic agents have been developed. However, their efficacy is variable; hemostatic devices that use bioactive components to accelerate coagulation are dependent on natural sources, which limits reproducibility. Hybrid devices in which chain-end reactive poly(ethylene glycol) is employed as active component sometimes suffer from irregular cross-linking and dissolution of the polar PEG when blood flow is substantial. Herein, we describe a synthetic, nonbioactive hemostatic product by coating N-hydroxysuccinimide ester (NHS)-functional poly(2-oxazoline)s (POx-NHS) onto gelatin patches, which acts by formation of covalent cross-links between polymer, host blood proteins, gelatin and tissue to seal the wound site and prevent hemorrhage during surgery. We studied different process parameters (including polymer, carrier, and coating technique) in direct comparison with clinical products (Hemopatch and Tachosil) to obtain deeper understanding of this class of hemostatic products. In this work, we successfully prove the hemostatic efficacy of POx-NHS as polymer powders and coated patches both in vitro and in vivo against Hemopatch and Tachosil, demonstrating that POx-NHS are excellent candidate polymers for the development of next generation hemostatic patches.

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Schematic overview of application method and mechanism of action of poly(2-oxazoline) coated hemostatic patches. (A) Preparation of hemostatic patch by spray-coating POx-NHS onto a gelatin sponge. (B) Application of the patch onto the wound site. (C) Hemostasis is obtained by covalent cross-linking between the gelatin sponge, POx-NHS, blood proteins, and tissue in order to create a gel which seals off the wound surface and stops the bleeding.
Scheme 1. Synthesis of NHS-Ester Functionalized Polymers…
Scheme 1. Synthesis of NHS-Ester Functionalized Polymers (POx-NHS; P1P7)
Reagents and conditions: (i) methyl tosylate, 140 °C, CH3CN, (ii) 0.1 M NaOH, rt, (iii) NHS–OH, DIC, DCM, rt, (iv) 2-amino-ethanol, 60 °C, 300 mbar, (v) succinic anhydride, DMAP, DMF/DCM (v/v, 1:9, rt).
Figure 2
Figure 2
SEM images of POx-NHS coated patches (G1G4) and Hemopatch (PEG). Scale bars correspond to 1 mm or 100 μm (bottom right picture).
Figure 3
Figure 3
(A, B) In vitro tests. (A) Blood uptake capacity as a function of coating density (**P < 0.001, *P < 0.01); (B) In vitro adhesion test: (i) blood was applied between the patches, (ii) the patches were allowed to cross-link for defined time points (t1, t5, t15 min), (iii) the samples were placed in a Zwick Roell tensile bench and a vertical force was applied until failure, (iv) results of the adhesion test (*P < 0.05, **P < 0.01, ***P < 0.001).
Figure 4
Figure 4
In vivo study on pig spleen. (A) Images of the different prototypes at selected time points (0, 1, and 5 min), including the success rate of hemostasis. (B) Bleeding scores after 5 min according to the scoring system

References

    1. Marietta M.; Facchini L.; Pedrazzi P.; Busani S.; Torelli G. Pathophysiology of bleeding in surgery. Transplant. Proc. 2006, 38 (3), 812–4. 10.1016/j.transproceed.2006.01.047.
    1. Janssen P. F.; Brölmann H. A. M.; Huirne J. A. F. Effectiveness of electrothermal bipolar vessel-sealing devices versus other electrothermal and ultrasonic devices for abdominal surgical hemostasis: a systematic review. Surg. Endosc. 2012, 26 (10), 2892–2901. 10.1007/s00464-012-2276-6.
    1. Siegal R. J.; Vaezy S.; Martin R.; Crum L. Therapeutic Ultrasound, Part II* High Intensity Focused Ultrasound: A Method of Hemostasis. Echocardiography 2001, 18 (4), 309–315. 10.1046/j.1540-8175.2001.00309.x.
    1. Brustia R.; Granger B.; Scatton O. An update on topical haemostatic agents in liver surgery: systematic review and meta analysis. J. Hepatobiliary. Pancreat. Sci. 2016, 23 (10), 609–621. 10.1002/jhbp.389.
    1. Kim F. J.; Rha K. H.; Hernandez F.; Jarrett T. W.; Pinto P. A.; Kavoussi L. R. Laparoscopic radical versus partial nephrectomy: assessment of complications. J. Urol. 2003, 170 (2), 408–11. 10.1097/01.ju.0000076017.26789.6a.
    1. Tomizawa Y. Clinical benefits and risk analysis of topical hemostats: a review. J. Artif. Organs 2005, 8 (3), 137–42. 10.1007/s10047-005-0296-x.
    1. Bouten P. J. M.; Zonjee M.; Bender J.; Yauw S. T. K.; van Goor H.; van Hest J. C. M.; Hoogenboom R. The chemistry of tissue adhesive materials. Prog. Polym. Sci. 2014, 39 (7), 1375–1405. 10.1016/j.progpolymsci.2014.02.001.
    1. Emilia M.; Luca S.; Francesca B.; Luca B.; Paolo S.; Giuseppe F.; Gianbattista B.; Carmela M.; Luigi M.; Mauro L. Topical hemostatic agents in surgical practice. Transfus. Apher. Sci. 2011, 45 (3), 305–11. 10.1016/j.transci.2011.10.013.
    1. Bruckner B. A.; Blau L. N.; Rodriguez L.; Suarez E. E.; Ngo U. Q.; Reardon M. J.; Loebe M. Microporous polysaccharide hemosphere absorbable hemostat use in cardiothoracic surgical procedures. J. Cardiothorac. Surg. 2014, 9 (1), 1–7. 10.1186/s13019-014-0134-4.
    1. Pusateri A. E.; McCarthy S. J.; Gregory K. W.; Harris R. A.; Cardenas L.; McManus A. T.; Goodwin C. W. Jr. Effect of a chitosan-based hemostatic dressing on blood loss and survival in a model of severe venous hemorrhage and hepatic injury in swine. J. Trauma 2003, 54 (1), 177–82. 10.1097/00005373-200301000-00023.
    1. Wu Y.; He J.; Cheng W.; Gu H.; Guo Z.; Gao S.; Huang Y. Oxidized regenerated cellulose-based hemostat with microscopically gradient structure. Carbohydr. Polym. 2012, 88 (3), 1023–1032. 10.1016/j.carbpol.2012.01.058.
    1. Lewis K. M.; Spazierer D.; Urban M. D.; Lin L.; Redl H.; Goppelt A. Comparison of regenerated and non-regenerated oxidized cellulose hemostatic agents. Eur. Surg. 2013, 45, 213–220. 10.1007/s10353-013-0222-z.
    1. Hajosch R.; Suckfuell M.; Oesser S.; Ahlers M.; Flechsenhar K.; Schlosshauer B. A novel gelatin sponge for accelerated hemostasis. J. Biomed. Mater. Res., Part B 2010, 94 (2), 372–9. 10.1002/jbm.b.31663.
    1. Kabiri M.; Emami S. H.; Rafinia M.; Tahriri M. Preparation and characterization of absorbable hemostat crosslinked gelatin sponges for surgical applications. Curr. Appl. Phys. 2011, 11 (3), 457–461. 10.1016/j.cap.2010.08.031.
    1. Moench C.; Bechstein W. O.; Hermanutz V.; Hoexter G.; Knaebel H. P. Comparison of the collagen haemostat Sangustop(R) versus a carrier-bound fibrin sealant during liver resection; ESSCALIVER-Study. Trials 2010, 11, 109.10.1186/1745-6215-11-109.
    1. Ghobril C.; Grinstaff M. W. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem. Soc. Rev. 2015, 44 (7), 1820–35. 10.1039/C4CS00332B.
    1. Leggat P. A.; Smith D. R.; Kedjarune U. Surgical applications of cyanoacrylate adhesives: a review of toxicity. ANZ. J. Surg. 2007, 77 (4), 209–13. 10.1111/j.1445-2197.2007.04020.x.
    1. Öllinger R.; Mihaljevic A. L.; Schuhmacher C.; Bektas H.; Vondran F.; Kleine M.; Sainz-Barriga M.; Weiss S.; Knebel P.; Pratschke J.; Troisi R. I. A multicentre, randomized clinical trial comparing the Veriset haemostatic patch with fibrin sealant for the management of bleeding during hepatic surgery. HPB 2013, 15 (7), 548–558. 10.1111/hpb.12009.
    1. Lewis K. M.; Spazierer D.; Slezak P.; Baumgartner B.; Regenbogen J.; Gulle H. Swelling, sealing, and hemostatic ability of a novel biomaterial: A polyethylene glycol-coated collagen pad. J. Biomater. Appl. 2014, 29 (5), 780–8. 10.1177/0885328214545500.
    1. Lewis K. M.; Kuntze C. E.; Gulle H. Control of bleeding in surgical procedures: critical appraisal of HEMOPATCH (Sealing Hemostat). Med. Devices: Evidence Res. 2015, 9, 1–10. 10.2147/MDER.S90591.
    1. Lewis K. M.; Schiviz A.; Hedrich H. C.; Regenbogen J.; Goppelt A. Hemostatic efficacy of a novel, PEG-coated collagen pad in clinically relevant animal models. Int. J. Surg. 2014, 12 (9), 940–4. 10.1016/j.ijsu.2014.07.017.
    1. Howk K.; Fortier J.; Poston R. A Novel Hemostatic Patch That Stops Bleeding in Cardiovascular and Peripheral Vascular Procedures. Ann. Vasc. Surg. 2016, 31, 186–195. 10.1016/j.avsg.2015.09.007.
    1. Tomalia D. A.; Sheetz D. P. Homopolymerization of 2-alkyl- and 2-aryl-2-oxazolines. J. Polym. Sci., Part A-1: Polym. Chem. 1966, 4 (9), 2253–2265. 10.1002/pol.1966.150040919.
    1. Seeliger W.; Aufderhaar E.; Diepers W.; Feinauer R.; Nehring R.; Thier W.; Hellmann H. Recent syntheses and reactions of cyclic imidic esters. Angew. Chem., Int. Ed. Engl. 1966, 5, 875–888. 10.1002/anie.196608751.
    1. Levy A.; Litt M. Polymerization of cyclic iminoethers. V. 1,3-oxazolines with hydroxy-, acetoxy-, and carboxymethyl-alkyl groups in the 2 position and their polymers. J. Polym. Sci., Part A-1: Polym. Chem. 1968, 6 (7), 1883–1894. 10.1002/pol.1968.150060711.
    1. Kagiya T.; Narisawa S.; Maeda T.; Fukui K. Ring-opening polymerization of 2-substituted 2-oxazolines. J. Polym. Sci., Part B: Polym. Lett. 1966, 4 (7), 441–445. 10.1002/pol.1966.110040701.
    1. Hoogenboom R. Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew. Chem., Int. Ed. 2009, 48 (43), 7978–94. 10.1002/anie.200901607.
    1. Rossegger E.; Schenk V.; Wiesbrock F. Design Strategies for Functionalized Poly(2-oxazoline)s and Derived Materials. Polymers 2013, 5 (3), 956–1011. 10.3390/polym5030956.
    1. Guillerm B.; Monge S.; Lapinte V.; Robin J. J. How to modulate the chemical structure of polyoxazolines by appropriate functionalization. Macromol. Rapid Commun. 2012, 33 (19), 1600–12. 10.1002/marc.201200266.
    1. Kronek J.; Paulovičová E.; Paulovičová L.; Kroneková Z.; Lustoň J. Immunomodulatory efficiency of poly(2-oxazolines). J. Mater. Sci.: Mater. Med. 2012, 23 (6), 1457–1464. 10.1007/s10856-012-4621-7.
    1. Bauer M.; Lautenschlaeger C.; Kempe K.; Tauhardt L.; Schubert U. S.; Fischer D. Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. Macromol. Biosci. 2012, 12 (7), 986–98. 10.1002/mabi.201200017.
    1. Adams N.; Schubert U. S. Poly(2-oxazolines) in biological and biomedical application contexts. Adv. Drug Delivery Rev. 2007, 59 (15), 1504–20. 10.1016/j.addr.2007.08.018.
    1. Gaertner F. C.; Luxenhofer R.; Blechert B.; Jordan R.; Essler M. Synthesis, biodistribution and excretion of radiolabeled poly(2-alkyl-2-oxazoline)s. J. Controlled Release 2007, 119 (3), 291–300. 10.1016/j.jconrel.2007.02.015.
    1. Wyffels L.; Verbrugghen T.; Monnery B. D.; Glassner M.; Stroobants S.; Hoogenboom R.; Staelens S. muPET imaging of the pharmacokinetic behavior of medium and high molar mass (89)Zr-labeled poly(2-ethyl-2-oxazoline) in comparison to poly(ethylene glycol). J. Controlled Release 2016, 235, 63–71. 10.1016/j.jconrel.2016.05.048.
    1. de la Rosa V. R. Poly(2-oxazoline)s as materials for biomedical applications. J. Mater. Sci.: Mater. Med. 2014, 25 (5), 1211–25. 10.1007/s10856-013-5034-y.
    1. Moreadith R. W.; Viegas T. X.; Bentley M. D.; Harris J. M.; Fang Z.; Yoon K.; Dizman B.; Weimer R.; Rae B. P.; Li X.; Rader C.; Standaert D.; Olanow W. Clinical development of a poly(2-oxazoline) (POZ) polymer therapeutic for the treatment of Parkinson’s disease – Proof of concept of POZ as a versatile polymer platform for drug development in multiple therapeutic indications. Eur. Polym. J. 2017, 88, 524.10.1016/j.eurpolymj.2016.09.052.
    1. Zalipsky S.; Hansen C. B.; Oaks J. M.; Allen T. M. Evaluation of Blood Clearance Rates and Biodistribution of Poly(2-oxazoline)-Grafted Liposomes§. J. Pharm. Sci. 1996, 85 (2), 133–137. 10.1021/js9504043.
    1. Lih E.; Lee J. S.; Park K. M.; Park K. D. Rapidly curable chitosan-PEG hydrogels as tissue adhesives for hemostasis and wound healing. Acta Biomater. 2012, 8 (9), 3261–9. 10.1016/j.actbio.2012.05.001.
    1. ASTM F2258–05(2015), Standard Test Method for Strength Properties of Tissue Adhesives in Tension; ASTM International: West Conshohocken, PA, 2015, . In ASTM F2258–05(2015), Standard Test Method for Strength Properties of Tissue Adhesives in Tension, ASTM International, West Conshohocken, PA, 2015, .
    1. Adams G. L.; Manson R. J.; Hasselblad V.; Shaw L. K.; Lawson J. H. Acute in-vivo evaluation of bleeding with Gelfoam plus saline and Gelfoam plus human thrombin using a liver square lesion model in swine. J. Thromb. Thrombolysis 2009, 28 (1), 1–5. 10.1007/s11239-008-0249-3.
    1. Mees M. A.; Hoogenboom R. Functional Poly(2-oxazoline)s by Direct Amidation of Methyl Ester Side Chains. Macromolecules 2015, 48 (11), 3531–3538. 10.1021/acs.macromol.5b00290.
    1. Rueda J. C.; Campos E.; Komber H.; Zschoche S.; Häussler L.; Voit B. Synthesis and characterization of new pH- and thermo-responsive hydrogels based on N-isopropylacrylamide and 2-oxazolines. Des. Monomers Polym. 2014, 17 (3), 208–216. 10.1080/15685551.2013.840471.
    1. Rueda J. C.; Asmad M.; Ruiz V.; Komber H.; Zschoche S.; Voit B. Synthesis and characterization of new bi-sensitive copoly(2-oxazolines). Des. Monomers Polym. 2015, 18 (8), 761–769. 10.1080/15685551.2015.1078109.
    1. Boerman M. A.; Van der Laan H. L.; Bender J. C. M. E.; Hoogenboom R.; Jansen J. A.; Leeuwenburgh S. C.; Van Hest J. C. M. Synthesis of pH- and thermoresponsive poly(2-n-propyl-2-oxazoline) based copolymers. J. Polym. Sci., Part A: Polym. Chem. 2016, 54 (11), 1573–1582. 10.1002/pola.28011.
    1. Bouten P. J. M.; Hertsen D.; Vergaelen M.; Monnery B. D.; Boerman M. A.; Goossens H.; Catak S.; van Hest J. C. M.; Van Speybroeck V.; Hoogenboom R. Accelerated living cationic ring-opening polymerization of a methyl ester functionalized 2-oxazoline monomer. Polym. Chem. 2015, 6 (4), 514–518. 10.1039/C4PY01373E.
    1. Bouten P. J. M.; Hertsen D.; Vergaelen M.; Monnery B. D.; Catak S.; van Hest J. C. M.; Van Speybroeck V.; Hoogenboom R. Synthesis of poly(2-oxazoline)s with side chain methyl ester functionalities: Detailed understanding of living copolymerization behavior of methyl ester containing monomers with 2-alkyl-2-oxazolines. J. Polym. Sci., Part A: Polym. Chem. 2015, 53 (22), 2649–2661. 10.1002/pola.27733.
    1. Wiesbrock F.; Hoogenboom R.; Leenen M. A. M.; Meier M. A. R.; Schubert U. S. Investigation of the Living Cationic Ring-Opening Polymerization of 2-Methyl-, 2-Ethyl-, 2-Nonyl-, and 2-Phenyl-2-oxazoline in a Single-Mode Microwave Reactor†. Macromolecules 2005, 38 (12), 5025–5034. 10.1021/ma0474170.
    1. Wijnans S.; de Gans B.-J.; Wiesbrock F.; Hoogenboom R.; Schubert U. S. Characterization of a Poly(2-oxazoline) Library by High-Throughput, Automated Contact-Angle Measurements and Surface-Energy Calculations. Macromol. Rapid Commun. 2004, 25 (23), 1958–1962. 10.1002/marc.200400408.

Source: PubMed

3
Tilaa