The Effects of Intensive Weight Reduction on Body Composition and Serum Hormones in Female Fitness Competitors

Juha J Hulmi, Ville Isola, Marianna Suonpää, Neea J Järvinen, Marja Kokkonen, Annika Wennerström, Kai Nyman, Markus Perola, Juha P Ahtiainen, Keijo Häkkinen, Juha J Hulmi, Ville Isola, Marianna Suonpää, Neea J Järvinen, Marja Kokkonen, Annika Wennerström, Kai Nyman, Markus Perola, Juha P Ahtiainen, Keijo Häkkinen

Abstract

Worries about the potential negative consequences of popular fat loss regimens for aesthetic purposes in normal weight females have been surfacing in the media. However, longitudinal studies investigating these kinds of diets are lacking. The purpose of the present study was to investigate the effects of a 4-month fat-loss diet in normal weight females competing in fitness-sport. In total 50 participants finished the study with 27 females (27.2 ± 4.1 years) dieting for a competition and 23 (27.7 ± 3.7 years) acting as weight-stable controls. The energy deficit of the diet group was achieved by reducing carbohydrate intake and increasing aerobic exercise while maintaining a high level of protein intake and resistance training in addition to moderate fat intake. The diet led to a ~12% decrease in body weight (P < 0.001) and a ~35-50% decrease in fat mass (DXA, bioimpedance, skinfolds, P < 0.001) whereas the control group maintained their body and fat mass (diet × group interaction P < 0.001). A small decrease in lean mass (bioimpedance and skinfolds) and in vastus lateralis muscle cross-sectional area (ultrasound) were observed in diet (P < 0.05), whereas other results were unaltered (DXA: lean mass, ultrasound: triceps brachii thickness). The hormonal system was altered during the diet with decreased serum concentrations of leptin, triiodothyronine (T3), testosterone (P < 0.001), and estradiol (P < 0.01) coinciding with an increased incidence of menstrual irregularities (P < 0.05). Body weight and all hormones except T3 and testosterone returned to baseline during a 3-4 month recovery period including increased energy intake and decreased levels aerobic exercise. This study shows for the first time that most of the hormonal changes after a 35-50% decrease in body fat in previously normal-weight females can recover within 3-4 months of increased energy intake.

Keywords: body composition; exercise; fat loss; fitness; nutrition; sex hormones; thyroid hormones.

Figures

Figure 1
Figure 1
(A) The experimental design of the study. Two representative participants are shown from each group. The pre to mid time period lasted ~20 weeks during which the participants decreased their energy intake and the amount of exercise (see the Results Section), whereas the controls maintained their activity levels and nutrient intake. The mid to post period lasting ~18 weeks was a recovery period with increased energy intake back toward the baseline levels in the diet participants, whereas the controls maintained their energy intake and exercise levels (see the Results Section). (B) The measurement day example for each participant. The x-axis depicts AM-time (morning). Blood, blood sample; DXA, Dual-energy X-ray absorptiometry; InBody, bioelectrical impedance; Food, breakfast; US, ultrasound; BP, blood pressure; SF, skinfolds; Strength, muscle strength measurements.
Figure 2
Figure 2
(A,B) Subcutaneous fat thickness around Vastus lateralis (VL) and triceps brachii muscles (n = 25–27 diet and 19–20 control participants). (C,D) VL muscle cross-sectional area (CSA) and triceps brachii muscle thickness (n = 27 diet and 20 control participants). (E) Individual fat and lean mass percentage changes during the diet or pre to mid control period. Number at the x-axis depicts participant numbers ordered based on the amount of fat loss. DXA and bioimpedance values are averaged (n = 27 diet and 23 control participants). *–*** is significant (p < 0.05–< 0.001) difference to Pre and #–### is significant (p < 0.05–< 0.001) difference between the groups in the change. Group × time = ANOVA interaction effect p-value.
Figure 3
Figure 3
Serum hormone concentrations at baseline (Pre), after the diet/control period (Mid) and after that during the recovery period (Post). Out of individual panels, (A) depicts leptin, (B) testosterone, (C) estradiol, (D) free T3, (E) free T4, (F) TSH, and (G) cortisol. n = 27 diet and 23 control participants for all hormones except TSH and testosterone data, which is obtained from 22 controls. *–*** is significant (p < 0.05–< 0.001) difference to Pre and #–### is significant (p < 0.05–< 0.001) difference between the groups in the change. Significant (p < 0.05) group × time = ANOVA interaction effect p-values are shown. For TSH and cortisol there were no significant interaction effects (p = 0.198 and p = 0.332, respectively).
Figure 4
Figure 4
Individual free T3 at pre, mid, and post time-points for diet and control participants. Number at the x-axis depicts participant numbers ordered based on the pre-value. The red dotted lines limit the reference values in normal-weight healthy females. n = 27 diet and 23 control participants.

References

    1. Ahtiainen J. P., Hoffren M., Hulmi J. J., Pietikäinen M., Mero A. A., Avela J., et al. . (2010). Panoramic ultrasonography is a valid method to measure changes in skeletal muscle cross-sectional area. Eur. J. Appl. Physiol. 108, 273–279. 10.1007/s00421-009-1211-6
    1. Ainsworth B. E., Haskell W. L., Whitt M. C., Irwin M. L., Swartz A. M., Strath S. J., et al. . (2000). Compendium of physical activities: an update of activity codes and MET intensities. Med. Sci. Sports Exerc. 32, S498–S504. 10.1097/00005768-200009001-00009
    1. Alemany J. A., Nindl B. C., Kellogg M. D., Tharion W. J., Young A. J., Montain S. J. (2008). Effects of dietary protein content on IGF-I, testosterone, and body composition during 8 days of severe energy deficit and arduous physical activity. J. Appl. Physiol. (1985) 105, 58–64. 10.1152/japplphysiol.00005.2008
    1. Arciero P. J., Ormsbee M. J., Gentile C. L., Nindl B. C., Brestoff J. R., Ruby M. (2013). Increased protein intake and meal frequency reduces abdominal fat during energy balance and energy deficit. Obesity (Silver Spring) 21, 1357–1366. 10.1002/oby.20296
    1. Awazu M., Matsuoka S., Kamimaki T., Watanabe H., Matsuo N. (2000). Absent circadian variation of blood pressure in patients with anorexia nervosa. J. Pediatr. 136, 524–527. 10.1016/S0022-3476(00)90017-9
    1. Bamman M. M., Hunter G. R., Newton L. E., Roney R. K., Khaled M. A. (1993). Changes in body composition, diet, and strength of bodybuilders during the 12 weeks prior to competition. J. Sports Med. Phys. Fitness 33, 383–391.
    1. Chan J. L., Matarese G., Shetty G. K., Raciti P., Kelesidis I., Aufiero D., et al. . (2006). Differential regulation of metabolic, neuroendocrine, and immune function by leptin in humans. Proc. Natl. Acad. Sci. U.S.A. 103, 8481–8486. 10.1073/pnas.0505429103
    1. Churchward-Venne T. A., Murphy C. H., Longland T. M., Phillips S. M. (2013). Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans. Amino Acids 45, 231–240. 10.1007/s00726-013-1506-0
    1. Davis S. R., McCloud P., Strauss B. J., Burger H. (1995). Testosterone enhances estradiol's effects on postmenopausal bone density and sexuality. Maturitas 21, 227–236. 10.1016/0378-5122(94)00898-H
    1. Dulloo A. G., Jacquet J., Girardier L. (1996). Autoregulation of body composition during weight recovery in human: the Minnesota Experiment revisited. Int. J. Obes. Relat. Metab. Disord. 20, 393–405.
    1. Durnin J. V., Womersley J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 32, 77–97. 10.1079/BJN19740060
    1. Fothergill E., Guo J., Howard L., Kerns J. C., Knuth N. D., Brychta R., et al. . (2016). Persistent metabolic adaptation 6 years after “The Biggest Loser” competition. Obesity (Silver Spring) 24, 1612–1619. 10.1002/oby.21538
    1. Goodman C. A., Hornberger T. A., Robling A. G. (2015). Bone and skeletal muscle: key players in mechanotransduction and potential overlapping mechanisms. Bone 80, 24–36. 10.1016/j.bone.2015.04.014
    1. Hackett D. A., Johnson N. A., Chow C. M. (2013). Training practices and ergogenic aids used by male bodybuilders. J. Strength Cond. Res. 27, 1609–1617. 10.1519/JSC.0b013e318271272a
    1. Häkkinen K., Kallinen M. (1994). Distribution of strength training volume into one or two daily sessions and neuromuscular adaptations in female athletes. Electromyogr. Clin. Neurophysiol. 34, 117–124.
    1. Häkkinen K., Pakarinen A., Kallinen M. (1992). Neuromuscular adaptations and serum hormones in women during short-term intensive strength training. Eur. J. Appl. Physiol. Occup. Physiol. 64, 106–111. 10.1007/BF00717946
    1. Haring R., Hannemann A., John U., Radke D., Nauck M., Wallaschofski H., et al. . (2012). Age-specific reference ranges for serum testosterone and androstenedione concentrations in women measured by liquid chromatography-tandem mass spectrometry. J. Clin. Endocrinol. Metab. 97, 408–415. 10.1210/jc.2011-2134
    1. Helms E. R., Aragon A. A., Fitschen P. J. (2014). Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J. Int. Soc. Sports Nutr. 11:20. 10.1186/1550-2783-11-20
    1. Helms E. R., Fitschen P. J., Aragon A. A., Cronin J., Schoenfeld B. J. (2015). Recommendations for natural bodybuilding contest preparation: resistance and cardiovascular training. J. Sports Med. Phys. Fitness 55, 164–178.
    1. Henning P. C., Scofield D. E., Spiering B. A., Staab J. S., Matheny R. W., Jr., Smith M. A., et al. . (2014). Recovery of endocrine and inflammatory mediators following an extended energy deficit. J. Clin. Endocrinol. Metab. 99, 956–964. 10.1210/jc.2013-3046
    1. Hill A. M., LaForgia J., Coates A. M., Buckley J. D., Howe P. R. (2007). Estimating abdominal adipose tissue with DXA and anthropometry. Obesity (Silver Spring) 15, 504–510. 10.1038/oby.2007.629
    1. Hulmi J. J., Laakso M., Mero A. A., Häkkinen K., Ahtiainen J. P., Peltonen H. (2015). The effects of whey protein with or without carbohydrates on resistance training adaptations. J. Int. Soc. Sports Nutr. 12:48. 10.1186/s12970-015-0109-4
    1. Huovinen H. T., Hulmi J. J., Isolehto J., Kyröläinen H., Puurtinen R., Karila T., et al. . (2015). Body composition and power performance improved after weight reduction in male athletes without hampering hormonal balance. J. Strength Cond. Res. 29, 29–36. 10.1519/JSC.0000000000000619
    1. Ihle R., Loucks A. B. (2004). Dose-response relationships between energy availability and bone turnover in young exercising women. J. Bone Miner. Res. 19, 1231–1240. 10.1359/JBMR.040410
    1. Josse A. R., Atkinson S. A., Tarnopolsky M. A., Phillips S. M. (2011). Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women. J. Nutr. 141, 1626–1634. 10.3945/jn.111.141028
    1. Kang S. M., Yoon J. W., Ahn H. Y., Kim S. Y., Lee K. H., Shin H., et al. . (2011). Android fat depot is more closely associated with metabolic syndrome than abdominal visceral fat in elderly people. PLoS ONE 6:e27694. 10.1371/journal.pone.0027694
    1. Kelesidis T., Kelesidis I., Chou S., Mantzoros C. S. (2010). Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann. Intern. Med. 152, 93–100. 10.7326/0003-4819-152-2-201001190-00008
    1. Keys A., Brozek J., Henschel A., Mickelsen O., Taylor H. (1950). The Biology of Human Starvation. Minneapolis, MN: The University of Minnesota Press.
    1. Kim B. (2008). Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid 18, 141–144. 10.1089/thy.2007.0266
    1. Kistler B. M., Fitschen P. J., Ranadive S. M., Fernhall B., Wilund K. R. (2014). Case study: natural bodybuilding contest preparation. Int. J. Sport Nutr. Exerc. Metab. 24, 694–700. 10.1123/ijsnem.2014-0016
    1. Komi P. V., Bosco C. (1978). Utilization of stored elastic energy in leg extensor muscles by men and women. Med. Sci. Sports 10, 261–265.
    1. Kraemer W. J., Volek J. S., Clark K. L., Gordon S. E., Puhl S. M., Koziris L. P., et al. . (1999). Influence of exercise training on physiological and performance changes with weight loss in men. Med. Sci. Sports Exerc. 31, 1320–1329. 10.1097/00005768-199909000-00014
    1. Longland T. M., Oikawa S. Y., Mitchell C. J., Devries M. C., Phillips S. M. (2016). Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. Am. J. Clin. Nutr. 103, 738–746. 10.3945/ajcn.115.119339
    1. Mehta T., Smith D. L., Jr., Muhammad J., Casazza K. (2014). Impact of weight cycling on risk of morbidity and mortality. Obes. Rev. 15, 870–881. 10.1111/obr.12222
    1. Melin A., Tornberg Å. B., Skouby S., Møller S. S., Sundgot-Borgen J., Faber J., et al. . (2015). Energy availability and the female athlete triad in elite endurance athletes. Scand. J. Med. Sci. Sports 25, 610–622. 10.1111/sms.12261
    1. Mero A. A., Huovinen H., Matintupa O., Hulmi J. J., Puurtinen R., Hohtari H., et al. . (2010). Moderate energy restriction with high protein diet results in healthier outcome in women. J. Int. Soc. Sports Nutr. 7:4. 10.1186/1550-2783-7-4
    1. Mettler S., Mitchell N., Tipton K. D. (2010). Increased protein intake reduces lean body mass loss during weight loss in athletes. Med. Sci. Sports Exerc. 42, 326–337. 10.1249/MSS.0b013e3181b2ef8e
    1. Meyer N. L., Sundgot-Borgen J., Lohman T. G., Ackland T. R., Stewart A. D., Maughan R. J., et al. . (2013). Body composition for health and performance: a survey of body composition assessment practice carried out by the Ad Hoc Research Working Group on Body Composition, Health and Performance under the auspices of the IOC Medical Commission. Br. J. Sports Med. 47, 1044–1053. 10.1136/bjsports-2013-092561
    1. Miazgowski T., Krzyzanowska-Swiniarska B., Dziwura-Ogonowska J., Widecka K. (2014). The associations between cardiometabolic risk factors and visceral fat measured by a new dual-energy X-ray absorptiometry-derived method in lean healthy Caucasian women. Endocrine 47, 500–505. 10.1007/s12020-014-0180-7
    1. Miller C. T., Fraser S. F., Levinger I., Straznicky N. E., Dixon J. B., Reynolds J., et al. . (2013). The effects of exercise training in addition to energy restriction on functional capacities and body composition in obese adults during weight loss: a systematic review. PLoS ONE 8:e81692. 10.1371/journal.pone.0081692
    1. Miller K. K., Lawson E. A., Mathur V., Wexler T. L., Meenaghan E., Misra M., et al. . (2007). Androgens in women with anorexia nervosa and normal-weight women with hypothalamic amenorrhea. J. Clin. Endocrinol. Metab. 92, 1334–1339. 10.1210/jc.2006-2501
    1. Müller M. J., Enderle J., Pourhassan M., Braun W., Eggeling B., Lagerpusch M., et al. . (2015). Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited. Am. J. Clin. Nutr. 102, 807–819. 10.3945/ajcn.115.109173
    1. Müller W., Lohman T. G., Stewart A. D., Maughan R. J., Meyer N. L., Sardinha L. B., et al. . (2016). Subcutaneous fat patterning in athletes: selection of appropriate sites and standardisation of a novel ultrasound measurement technique: ad hoc working group on body composition, health and performance, under the auspices of the IOC Medical Commission. Br. J. Sports Med. 50, 45–54. 10.1136/bjsports-2015-095641
    1. Muñoz M. T., Morandé G., García-Centenera J. A., Hervás F., Pozo J., Argente J. (2002). The effects of estrogen administration on bone mineral density in adolescents with anorexia nervosa. Eur. J. Endocrinol. 146, 45–50. 10.1530/eje.0.1460045
    1. Newton L., Hunter G., Bammon M., Roney R. (1993). Changes in psychological state and self-reported diet during various phases of training in competitive bodybuilders. J. Strength Cond. Res. 7, 153–158. 10.1519/00124278-199308000-00005
    1. Ojasto T., Häkkinen K. (2009). Effects of different accentuated eccentric load levels in eccentric-concentric actions on acute neuromuscular, maximal force, and power responses. J. Strength Cond. Res. 23, 996–1004. 10.1519/JSC.0b013e3181a2b28e
    1. Pasiakos S. M., Cao J. J., Margolis L. M., Sauter E. R., Whigham L. D., McClung J. P., et al. . (2013). Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial. FASEB J. 27, 3837–3847. 10.1096/fj.13-230227
    1. Rickenlund A., Carlström K., Ekblom B., Brismar T. B., von Schoultz B., Hirschberg A. L. (2003). Hyperandrogenicity is an alternative mechanism underlying oligomenorrhea or amenorrhea in female athletes and may improve physical performance. Fertil. Steril. 79, 947–955. 10.1016/S0015-0282(02)04850-1
    1. Robinson S. L., Lambeth-Mansell A., Gillibrand G., Smith-Ryan A., Bannock L. (2015). A nutrition and conditioning intervention for natural bodybuilding contest preparation: case study. J. Int. Soc. Sports Nutr. 12:20. 10.1186/s12970-015-0083-x
    1. Rosenbaum M., Murphy E. M., Heymsfield S. B., Matthews D. E., Leibel R. L. (2002). Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J. Clin. Endocrinol. Metab. 87, 2391–2394. 10.1210/jcem.87.5.8628
    1. Rossow L. M., Fukuda D. H., Fahs C. A., Loenneke J. P., Stout J. R. (2013). Natural bodybuilding competition preparation and recovery: a 12-month case study. Int. J. Sports Physiol. Perform. 8, 582–592. 10.1123/ijspp.8.5.582
    1. Saarni S. E., Rissanen A., Sarna S., Koskenvuo M., Kaprio J. (2006). Weight cycling of athletes and subsequent weight gain in middleage. Int. J. Obes. (Lond). 30, 1639–1644. 10.1038/sj.ijo.0803325
    1. Sachs K. V., Harnke B., Mehler P. S., Krantz M. J. (2016). Cardiovascular complications of anorexia nervosa: a systematic review. Int. J. Eat. Disord. 49, 238–248. 10.1002/eat.22481
    1. Sandoval W. M., Heyward V. H., Lyons T. M. (1989). Comparison of body composition, exercise and nutritional profiles of female and male body builders at competition. J. Sports Med. Phys. Fitness 29, 63–70.
    1. Schumann M., Küüsmaa M., Newton R. U., Sirparanta A. I., Syväoja H., Häkkinen A., et al. . (2014). Fitness and lean mass increases during combined training independent of loading order. Med. Sci. Sports Exerc. 46, 1758–1768. 10.1249/MSS.0000000000000303
    1. Sundgot-Borgen J., Meyer N. L., Lohman T. G., Ackland T. R., Maughan R. J., Stewart A. D., et al. . (2013). How to minimise the health risks to athletes who compete in weight-sensitive sports review and position statement on behalf of the Ad Hoc Research Working Group on Body Composition, Health and Performance, under the auspices of the IOC Medical Commission. Br. J. Sports Med. 47, 1012–1022. 10.1136/bjsports-2013-092966
    1. Terry P. C., Lane A. M., Lane H. J., Keohane L. (1999). Development and validation of a mood measure for adolescents. J. Sports Sci. 17, 861–872. 10.1080/026404199365425
    1. Tolle V., Kadem M., Bluet-Pajot M. T., Frere D., Foulon C., Bossu C., et al. . (2003). Balance in ghrelin and leptin plasma levels in anorexia nervosa patients and constitutionally thin women. J. Clin. Endocrinol. Metab. 88, 109–116. 10.1210/jc.2002-020645
    1. Tomiyama A. J., Mann T., Vinas D., Hunger J. M., Dejager J., Taylor S. E. (2010). Low calorie dieting increases cortisol. Psychosom. Med. 72, 357–364. 10.1097/PSY.0b013e3181d9523c
    1. van der Ploeg G. E., Brooks A. G., Withers R. T., Dollman J., Leaney F., Chatterton B. E. (2001). Body composition changes in female bodybuilders during preparation for competition. Eur. J. Clin. Nutr. 55, 268–277. 10.1038/sj.ejcn.1601154
    1. Verheggen R. J., Maessen M. F., Green D. J., Hermus A. R., Hopman M. T., Thijssen D. H. (2016). A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: distinct effects on body weight and visceral adipose tissue. Obes. Rev. 17, 664–690. 10.1111/obr.12406
    1. Vuoskoski J. K., Eerola T. (2011). The role of mood and personality in the perception of emotions represented by music. Cortex 47, 1099–1106. 10.1016/j.cortex.2011.04.011
    1. Wilmore J. H., Brown C. H., Davis J. A. (1977). Body physique and composition of the female distance runner. Ann. N.Y. Acad. Sci. 301, 764–776. 10.1111/j.1749-6632.1977.tb38245.x

Source: PubMed

3
Tilaa