Trial of improved practices approach to explore the acceptability and feasibility of different modes of chlorhexidine application for neonatal cord care in Pemba, Tanzania

Usha Dhingra, Sunil Sazawal, Pratibha Dhingra, Arup Dutta, Said Mohammed Ali, Shaali Makame Ame, Saikat Deb, Atifa Mohammed Suleiman, Robert E Black, Usha Dhingra, Sunil Sazawal, Pratibha Dhingra, Arup Dutta, Said Mohammed Ali, Shaali Makame Ame, Saikat Deb, Atifa Mohammed Suleiman, Robert E Black

Abstract

Background: Infections are responsible for 30-40 % of 4 million neonatal deaths annually. Use of chlorhexidine (CHX), a broad-spectrum topical antiseptic with strong residual activity, for umbilical cord cleansing has been shown to reduce infections during the neonatal period. However, the challenge remains with regard to selection of best mode of CHX delivery. As a part of formative research, we undertook a qualitative study in Pemba Island as a pilot to explore the attitudes; beliefs and practices of the community and health workers related to delivery, newborn and cord care. During the second phase of formative research, we used Trials of Improved Practices (TIPs) methodology to explore the acceptance and impediments, for the three possible modes of chlorhexidine application- 100 ml bottle with cotton swab, 10 ml single use dropper bottle and 3 g single application squeeze tube containing gel, as an umbilical cord care intervention.

Methods: In this pilot study, 204 mother-newborn pairs were enrolled from hospital and community setting in Pemba, Tanzania using a randomized three period crossover design. Mothers/guardians, Trained Birth Attendants (TBA)/ medical staff and community health workers (CHWs) were requested to try three different modes of CHX application for cord cleaning. All participants were demonstrated the method of cord cleaning using all three modes of delivery; each delivery mode was used for 3 days and an interview was conducted on day 10 to collect summary of their experience. Acceptance and preference scores were calculated based on feedback from the participants.

Results: Of 204 mother-newborn pairs, 27 were lost to follow up. 177 mothers performed the intervention and applied CHX to the newborn cord for all 9 days. Mothers rated 10 ml dropper bottle (49.7 %) as most convenient in terms of ease and application. They selected 10 ml dropper bottle (44.6 %) as their first choice; gel tube (33.9 %) and 100 ml bottle (21.5 %) as their second and third choice. TBAs, medical staff and CHWs also preferred 10 ml dropper bottle (43.3 %) over 100 ml bottle (12.9 %) and gel (38.8 %).

Conclusions: Overall acceptability of CHX application for cord cleansing was high. 10 ml single use dropper bottle was given highest preference for CHX application. An understanding of the attitudes, beliefs and cultural practices in the community and selection of the most acceptable mode of CHX delivery is essential to the design and implementation of the intervention trials examining the efficacy of CHX cord care in reducing neonatal mortality and subsequent implementation in the programs.

Trial registration: ClinicalTrials.gov NCT01528852 Registered February 3, 2012.

Figures

Fig. 1
Fig. 1
Preference for mode of Chlorhexidine application stratified by randomization sequence. *Values depict numbers

References

    1. Lawn JE, Cousens S, Zupan J. Four million neonatal deaths: when? Where? Why? Lancet. 2005;365:891–900. doi: 10.1016/S0140-6736(05)71048-5.
    1. Schuchat A, Ziwicki SS, Dinsmoor MJ, Mercer B, Romaguera J, O'Sulliva MJ, et al. For the PENS study group. Risk factors and opportunities for prevention of early onset neonatal sepsis: a multicentre case control study. Pediatrics. 2000;105:21–26. doi: 10.1542/peds.105.1.21.
    1. Lawn JE, Kinney MV, Black RE, Pitt C, Cousens S, Kerber K, et al. Newborn survival: a multi-country analysis of a decade of change. Health Policy Plan. 2012;27(Suppl 3):iii6–iii28. doi: 10.1093/heapol/czs053.
    1. Oestergaard MZ, Inoue M, Yoshida S, Mahanani WR, Gore FM, Cousens S, et al. Neonatal mortality levels for 193 countries in 2009 with trends since 1990: a systemic analysis of progress, projections and priorities. PLoS Med. 2011;8:e1001080. doi: 10.1371/journal.pmed.1001080.
    1. Lawn JE, Wilczynska-Ketende K, Cousens SN. Estimating the causes of 4 million neonatal deaths in the year 2000. Int J Epidemiol. 2006;35(3):706–18. doi: 10.1093/ije/dyl043.
    1. Bryce J, Boschi-Pinto C, Shibuya K, Black RE, WHO Child Health Epidemiology Reference Group WHO estimates of the causes of death in children. Lancet. 2005;365:1147–1152. doi: 10.1016/S0140-6736(05)71877-8.
    1. World Health Organization . Care of the umbilical cord. WHO/FHE/MSM-cord care. Geneva: WHO; 1998.
    1. McClure EM, Goldenberg RL, Brandes N, Darmstadt GL, Wright LL, CHX Working Group et al. The use of chlorhexidine to reduce maternal and neonatal mortality and morbidity in low-resource settings. Int J Gynaecol Obstet. 2007;97:89–94. doi: 10.1016/j.ijgo.2007.01.014.
    1. Goldenberg RL, McClure EM, Saleem S, Rouse D, Vermund S. Use of vaginally administered chlorhexidine during labor to improve pregnancy outcomes. Obstet Gynecol. 2006;107:1139–1146. doi: 10.1097/01.AOG.0000215000.65665.dd.
    1. Mullany LC, Darmstadt GL, Tielsch JM. Safety and impact of chlorhexidine antisepsis interventions for improving neonatal health in developing countries. Pediatr Infect Dis J. 2006;25:665–675. doi: 10.1097/01.inf.0000223489.02791.70.
    1. Denton GW. Chlorhexidine. In: Block SS, editor. Disinfection, sterilization, and preservation. 5. Philadelphia: Lippincott Williams & Wilkens; 2001. pp. 321–326.
    1. World Health Organization. WHO Recommendations on Postnatal Care of the Mother and Newborn. 2013. .
    1. Mullany LC, Darmstadt GL, Khatry SK, Katz J, LeClerg SC, Shrestha S, et al. Topical applications of chlorhexidine to the umbilical cord for prevention of omphalitis and neonatal mortality in southern Nepal: a community-based, cluster-randomised trial. Lancet. 2006;367:910–918. doi: 10.1016/S0140-6736(06)68381-5.
    1. Arifeen SE, Mullany LC, Shah R, Mannan I, Rahman SM, Talukder MR, et al. The effect of cord cleansing with chlorhexidine on neonatal mortality in rural Bangladesh: a community-based, cluster-randomised trial. Lancet. 2012;379(9820):1022–8.
    1. Soofi S, Cousens S, Imdad A, Bhutto N, Ali N, Bhutta ZA. Topical application of chlorhexidine to neonatal umbilical cords for prevention of omphalitis and neonatal mortality in a rural district of Pakistan: a community-based, cluster-randomised trial. Lancet. 2012;379(9820):1029–1036. doi: 10.1016/S0140-6736(11)61877-1.
    1. Tuladhar S, Ban B. A study on cord-care practices in bardiya district. Kathmandu: Nepal Family Health Program; 2007.
    1. Hodgins S, Thapa K, Khanal L, Aryal S, Suvedi BK, Baidya U, et al. Chlorhexidine gel versus aqueous for preventive use on umbilical stump: a randomized noninferiority trial. Pediatr Infect Dis J. 2010;29(11):999–1003.
    1. Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, et al. Global, regional, and national causes of child mortality: n updated systematic analysis for 2010 with time trendssince 2000. Lancet. 2012;379(9832):2151–61. doi: 10.1016/S0140-6736(12)60560-1.
    1. World Health Organization . Review of the available evidence on 4% chlorhexidine solution for umbilical cord care. Second meeting of the subcommittee of the expert committee on the selection and use of essential medicines. Geneva: WHO; 2008.
    1. Zupan J, Garner P, Omari AAA. Topical umbilical cord care at birth. Cochrane Database of Systematic Reviews 2004, Issue 3. Art. No.: CD001057. doi:10.1186/0.1002/14651858.CD001057.pub2.
    1. Hyder AA, Wali S, McGuckin J. Burden of disease for neonatal mortality in South Asia and Sub-Saharan Africa. Washington, DC: Save the Children Federation-U.S; 2001. pp. 1–93.
    1. The Manoff Group. Trials of Improved Practices (TIPs). [homepage on the Internet]. [cited 2015Oct 8]. Available:
    1. Dhingra U, Gittelsohn J, Suleiman AM, Suleiman SM, Dutta A, Ali SM, et al. Delivery, immediate newborn and cord care practices in Pemba Tanzania: a qualitative study of community, hospital staff and community level care providers for knowledge, attitudes, belief systems and practices. BMC Pregnancy Childbirth. 2014;14:173. doi: 10.1186/1471-2393-14-173.
    1. Mullany LC, Faillace S, Tielsch JM, Stolzfus RJ, Nygaard KE, Kavle JA, et al. Incidence and risk factors for newborn umbilical cord infections on Pemba Island, Zanzibar, Tanzania. Pediatr Infect Dis J. 2009;28(6):503–9. doi: 10.1097/INF.0b013e3181950910.
    1. Alam MA, Ali NA, Sultana N, Mullany LC, Teela KC, Khan NU, et al. Newborn umbilical cord and skin care in Sylhet District, Bangladesh: implications for the promotion of umbilical cord cleansing with topical chlorhexidine. J Perinatol. 2008;28(Suppl 2):S61–8. doi: 10.1038/jp.2008.164.
    1. Mullany LC, Saha SK, Shah R, Islam MS, Rahman M, Islam M, Talukder RR, El Arifeen S, Darmstadt GL, Baqui AH. Impact of 4.0 % Chlorhexidine Cord Cleansing on the Bacteriological Profile of the Newborn Umbilical Stump in Rural Sylhet District, Bangladesh: A Community-Based, Cluster-Randomized Trial. Pediatr Infect Dis J. 2011 Dec 20. [Epub ahead of print].
    1. Mullany LC, El Arifeen S, Winch PJ, Shah R, Mannan I, Rahman SM, et al. Impact of 4.0 % chlorhexidine cleansing of the umbilical cord on mortality and omphalitis among newborns of Sylhet, Bangladesh: design of a community-based cluster randomized trial. BMC Pediatr. 2009;9:67. doi: 10.1186/1471-2431-9-67.
    1. Darmstadt GL, Hossain MM, Choi Y, Shirin M, Mullany LC, Islam M, et al. Safety and effect of chlorhexidine skin cleansing on skin flora of neonates in Bangladesh. Pediatr Infect Dis J. 2007;26:492–495. doi: 10.1097/01.inf.0000261927.90189.88.
    1. Mullany LC, Khatry SK, Sherchand JB, LeClerq SC, Darmstadt GL, Katz J, et al. A randomized controlled trial of the impact of chlorhexidine skin cleansing on bacterial colonization of hospital-born infants in Nepal. Pediatr Infect Dis J. 2008;27(6):505–11. doi: 10.1097/INF.0b013e31816791a2.

Source: PubMed

3
Tilaa