EEG alpha reactivity and cholinergic system integrity in Lewy body dementia and Alzheimer's disease

Julia Schumacher, Alan J Thomas, Luis R Peraza, Michael Firbank, Ruth Cromarty, Calum A Hamilton, Paul C Donaghy, John T O'Brien, John-Paul Taylor, Julia Schumacher, Alan J Thomas, Luis R Peraza, Michael Firbank, Ruth Cromarty, Calum A Hamilton, Paul C Donaghy, John T O'Brien, John-Paul Taylor

Abstract

Background: Lewy body dementia (LBD), which includes dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), is characterised by marked deficits within the cholinergic system which are more severe than in Alzheimer's disease (AD) and are mainly caused by degeneration of the nucleus basalis of Meynert (NBM) whose widespread cholinergic projections provide the main source of cortical cholinergic innervation. EEG alpha reactivity, which refers to the reduction in alpha power over occipital electrodes upon opening the eyes, has been suggested as a potential marker of cholinergic system integrity.

Methods: Eyes-open and eyes-closed resting state EEG data were recorded from 41 LBD patients (including 24 patients with DLB and 17 with PDD), 21 patients with AD, and 40 age-matched healthy controls. Alpha reactivity was calculated as the relative reduction in alpha power over occipital electrodes when opening the eyes. Structural MRI data were used to assess volumetric changes within the NBM using a probabilistic anatomical map.

Results: Alpha reactivity was reduced in AD and LBD patients compared to controls with a significantly greater reduction in LBD compared to AD. Reduced alpha reactivity was associated with smaller volumes of the NBM across all groups (ρ = 0.42, pFDR = 0.0001) and in the PDD group specifically (ρ = 0.66, pFDR = 0.01).

Conclusions: We demonstrate that LBD patients show an impairment in alpha reactivity upon opening the eyes which distinguishes this form of dementia from AD. Furthermore, our results suggest that reduced alpha reactivity might be related to a loss of cholinergic drive from the NBM, specifically in PDD.

Keywords: Dementia with Lewy bodies; Nucleus basalis of Meynert; Parkinson’s disease dementia; Resting state EEG; Structural MRI.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Nucleus basalis of Meynert mask. Region of interest mask for the NBM in MNI space, estimated from the SPM Anatomy Toolbox
Fig. 2
Fig. 2
Alpha reactivity analysis. a Occipital EEG signals of example control and DLB participants in eyes-closed (blue) and eyes-open (red) conditions. b Comparison of mean power spectra for eyes-closed and eyes-open conditions for the different clinical groups. Shaded areas indicate standard errors. AD, Alzheimer’s disease; DLB, dementia with Lewy bodies; HC, healthy controls; PDD, Parkinson’s disease dementia
Fig. 3
Fig. 3
Group comparison. a Group comparison of alpha reactivity. b Group comparison of NBM volumes (normalised with respect to total intracranial volume). In each boxplot, the central line corresponds to the sample median; the upper and lower borders of the box represent the 25th and 75th percentile, respectively; and the length of the whiskers is 1.5 times the interquartile range. Corresponding results from statistical comparisons between the groups are presented in Table 2. AD, Alzheimer’s disease; DLB, dementia with Lewy bodies; HC, healthy controls; NBM, nucleus basalis of Meynert; PDD, Parkinson’s disease dementia
Fig. 4
Fig. 4
Correlations between alpha reactivity and NBM volume. Spearman’s correlations between alpha reactivity and normalised NBM volume across all groups and in each group separately. p values are FDR (false discovery rate)-corrected for multiple comparisons. AD, Alzheimer’s disease; DLB, dementia with Lewy bodies; FDR, false discovery rate; HC, healthy controls; NBM, nucleus basalis of Meynert; PDD, Parkinson’s disease dementia
Fig. 5
Fig. 5
Interpretation of alpha reactivity changes. Illustration of how a reduction in alpha reactivity can be mainly due to a decrease in eyes-closed alpha power (in AD) or an increase in eyes-open alpha power (in LBD) compared to controls. AD, Alzheimer’s disease; LBD, Lewy body dementia; HC, healthy controls

References

    1. McKeith IG, O’Brien JT, Walker Z, Tatsch K, Booij J, Darcourt J, et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol. 2007;6:305–313. doi: 10.1016/S1474-4422(07)70057-1.
    1. McKeith IG, Boeve BF, Dickson DW, Halliday G, Aarsland D, Attems J, et al. Diagnosis and management of dementia with Lewy bodies fourth consensus report of the DLB consortium. Neurology. 2017;0:1–13.
    1. Tiraboschi P, Hansen LA, Alford M, Merdes A, Masliah E, Thal LJ, et al. Early and widespread cholinergic losses differentiate dementia with Lewy bodies from Alzheimer disease. Arch Gen Psychiatry. 2002;59:946–951. doi: 10.1001/archpsyc.59.10.946.
    1. Francis PT, Perry EK. Cholinergic and other neurotransmitter mechanisms in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies. Mov Disord. 2007;22:S351–S357. doi: 10.1002/mds.21683.
    1. Perry EK, Irving D, Kerwin JM, McKeith IG, Thompson P, Collerton D, et al. Cholinergic transmitter and neurotrophic activities in Lewy body dementia. Alzheimer Dis Assoc Disord. 1993;7:69–79. doi: 10.1097/00002093-199307020-00002.
    1. Mesulam M-M. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J Comp Neurol. 2013;521:4124–4144. doi: 10.1002/cne.23415.
    1. Colloby SJ, Elder GJ, Rabee R, O’Brien JT, Taylor J-P. Structural grey matter changes in the substantia innominata in Alzheimer’s disease and dementia with Lewy bodies: a DARTEL-VBM study. Int J Geriatr Psychiatry. 2017;32:615–623. doi: 10.1002/gps.4500.
    1. Kim HJ, Lee JE, Shin SJ, Sohn YH, Lee PH. Analysis of the substantia innominata volume in patients with Parkinson’s disease with dementia, dementia with Lewy bodies, and Alzheimer’s disease. J Mov Disord. 2011;4:68–72. doi: 10.14802/jmd.11014.
    1. Hall H, Reyes S, Landeck N, Bye C, Leanza G, Double K, et al. Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson’s disease. Brain. 2014;137:2493–2508. doi: 10.1093/brain/awu193.
    1. Kehagia AA, Barker RA, Robbins TW. Cognitive impairment in Parkinson’s disease: the dual syndrome hypothesis. Neurodegener Dis. 2013;11:79–92. doi: 10.1159/000341998.
    1. Schulz J, Pagano G, Fernández Bonfante JA, Wilson H, Politis M. Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson’s disease. Brain. 2018;141:1501–1516. doi: 10.1093/brain/awy072.
    1. Hanyu H, Asano T, Sakurai H, Tanaka Y, Takasaki M, Abe K. MR analysis of the substantia innominata in normal aging, Alzheimer disease, and other types of dementia. Am J Neuroradiol. 2002;23:27–32.
    1. O’Dowd S, Schumacher J, Burn DJ, Bonanni L, Onofrj M, Thomas A, et al. Fluctuating cognition in the Lewy body dementias. Brain. 2019; Available from: .
    1. Edwards K, Royall D, Hershey L, Lichter D, Hake A, Farlow M, et al. Efficacy and safety of galantamine in patients with dementia with Lewy bodies: a 24-week open-label study. Dement Geriatr Cogn Disord. 2007;23:401–405. doi: 10.1159/000101512.
    1. Markand ON. Alpha Rhythms. J Clin Neurophysiol. 1990;7(2):163–90.
    1. Könönen M, Partanen JV. Blocking of EEG alpha activity during visual performance in healthy adults. A quantitative study. Electroencephalogr Clin Neurophysiol. 1993;87:164–166. doi: 10.1016/0013-4694(93)90122-C.
    1. Wan L, Huang H, Schwab N, Tanner J, Rajan A, Lam NB, et al. From eyes-closed to eyes-open: role of cholinergic projections in EC-to-EO alpha reactivity revealed by combining EEG and MRI. Hum Brain Mapp. 2019;40:566–577. doi: 10.1002/hbm.24395.
    1. Osipova D, Ahveninen J, Kaakkola S, Jääskeläinen IP, Huttunen J, Pekkonen E. Effects of scopolamine on MEG spectral power and coherence in elderly subjects. Clin Neurophysiol. 2003;114:1902–1907. doi: 10.1016/S1388-2457(03)00165-2.
    1. Fonseca LC, Tedrus GMAS, Fondello MA, Reis IN, Fontoura DS. EEG theta and alpha reactivity on opening the eyes in the diagnosis of Alzheimer’s disease. Clin EEG Neurosci. 2011;42:185–189. doi: 10.1177/155005941104200308.
    1. Babiloni C, Lizio R, Vecchio F, Frisoni GB, Pievani M, Geroldi C, et al. Reactivity of cortical alpha rhythms to eye opening in mild cognitive impairment and Alzheimer’s disease: an EEG study. J Alzheimer’s Dis. 2011;22:1047–1064. doi: 10.3233/JAD-2010-100798.
    1. Franciotti R, Iacono D, Della PS, Pizzella V, Torquati K, Onofrj M, et al. Cortical rhythms reactivity in AD, LBD and normal subjects: a quantitative MEG study. Neurobiol Aging. 2006;27:1100–1109. doi: 10.1016/j.neurobiolaging.2005.05.027.
    1. Bosboom JLW, Stoffers D, Stam CJ, van Dijk BW, Verbunt J, Berendse HW, et al. Resting state oscillatory brain dynamics in Parkinson’s disease: an MEG study. Clin Neurophysiol. 2006;117:2521–2531. doi: 10.1016/j.clinph.2006.06.720.
    1. Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22:1689–1707. doi: 10.1002/mds.21507.
    1. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–269. doi: 10.1016/j.jalz.2011.03.005.
    1. Ferman TJ, Smith GE, Boeve BF, Ivnik RJ, Petersen RC, Knopman D, et al. DLB fluctuations: specific features that reliably differentiate DLB from AD and normal aging. Neurol Int. 2004;62:181–187.
    1. Peraza LR, Cromarty RA, Kobeleva X, Firbank MJ, Killen A, Graziadio S, et al. Electroencephalographic derived network differences in Lewy body dementia compared to Alzheimer’s disease patients. Sci Rep. 2018;8:4637. doi: 10.1038/s41598-018-22984-5.
    1. Stylianou M, Murphy N, Peraza LR, Graziadio S, Cromarty RA, Killen A, et al. Quantitative electroencephalography as a marker of cognitive fluctuations in dementia with Lewy bodies and an aid to differential diagnosis. Clin Neurophysiol. 2018;129:1209–1220. doi: 10.1016/j.clinph.2018.03.013.
    1. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95–113. doi: 10.1016/j.neuroimage.2007.07.007.
    1. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage. 2005;25:1325–1335. doi: 10.1016/j.neuroimage.2004.12.034.
    1. Zaborszky L, Hoemke L, Mohlberg H, Schleicher A, Amunts K, Zilles K. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. Neuroimage. 2008;42:1127–1141. doi: 10.1016/j.neuroimage.2008.05.055.
    1. Mesulam M-M, Mufson EJ, Levey AI, Wainer BH. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol. 1983;214:170–197. doi: 10.1002/cne.902140206.
    1. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord. 2010;25:2649–2653. doi: 10.1002/mds.23429.
    1. Hanslmayr S, Gross J, Klimesch W, Shapiro KL. The role of alpha oscillations in temporal attention. Brain Res Rev. 2011;67:331–343. doi: 10.1016/j.brainresrev.2011.04.002.
    1. Hanslmayr S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, Bäuml K-H. Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage. 2007;37:1465–1473. doi: 10.1016/j.neuroimage.2007.07.011.
    1. Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud A-L, Kleinschmidt A. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J Neurosci. 2010;30:10243–10250. doi: 10.1523/JNEUROSCI.1004-10.2010.
    1. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev. 1999;29:169–195. doi: 10.1016/S0165-0173(98)00056-3.
    1. Stipacek A, Grabner RH, Neuper C, Fink A, Neubauer AC. Sensitivity of human EEG alpha band desynchronization to different working memory components and increasing levels of memory load. Neurosci Lett. 2003;353:193–196. doi: 10.1016/j.neulet.2003.09.044.
    1. Feige B, Scheffler K, Esposito F, Di Salle F, Hennig J, Seifritz E. Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. J Neurophysiol. 2005;93:2864–2872. doi: 10.1152/jn.00721.2004.
    1. Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, et al. Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage. 2003;20:145–158. doi: 10.1016/S1053-8119(03)00344-6.
    1. Gomperts SN, Rentz DM, Moran E, Becker JA, Locascio JJ, Klunk WE, et al. Imaging amyloid deposition in Lewy body diseases. Neurol Int. 2008;71:903–910. doi: 10.1212/01.wnl.0000326146.60732.d6.
    1. Bonanni L, Thomas A, Tiraboschi P, Perfetti B, Varanese S, Onofrj M. EEG comparisons in early Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease with dementia patients with a 2-year follow-up. Brain. 2008;131:690–705. doi: 10.1093/brain/awm322.
    1. Bonanni L, Franciotti R, Nobili F, Kramberger MG, Taylor JP, Garcia-Ptacek S, et al. EEG markers of dementia with Lewy bodies: a multicenter cohort study. J Alzheimers Dis. 2016;54:1649–1657. doi: 10.3233/JAD-160435.
    1. Babiloni C, Del Percio C, Bordet R, Bourriez JL, Bentivoglio M, Payoux P, et al. Effects of acetylcholinesterase inhibitors and memantine on resting-state electroencephalographic rhythms in Alzheimer’s disease patients. Clin Neurophysiol. 2013;124:837–850. doi: 10.1016/j.clinph.2012.09.017.
    1. Onofrj M, Thomas A, Iacono D, Luciano AL, Di Iorio A. The effects of a cholinesterase inhibitor are prominent in patients with fluctuating cognition: a part 3 study of the main mechanism of cholinesterase inhibitors in dementia. Clin Neuropharmacol. 2003;26:239–251. doi: 10.1097/00002826-200309000-00008.
    1. Fogelson N, Kogan E, Korczyn AD, Giladi N, Shabtai H, Neufeld MY. Effects of rivastigmine on the quantitative EEG in demented Parkinsonian patients. Acta Neurol Scand. 2003;107:252–255. doi: 10.1034/j.1600-0404.2003.00081.x.
    1. Babiloni C, Del Percio C, Lizio R, Noce G, Lopez S, Soricelli A, et al. Levodopa may affect cortical excitability In Parkinson’s disease patients with cognitive deficits as revealed by reduced activity of cortical sources of resting state electroencephalographic rhythms. Neurobiol Aging. 2018; Available from: . Elsevier Inc.
    1. Melgari J-M. Alpha and beta EEG power reflects L-dopa acute administration in parkinsonian patients. Front Aging. 2014;6:1–7.

Source: PubMed

3
Tilaa