Effects of dexmedetomidine on smooth emergence from anaesthesia in elderly patients undergoing orthopaedic surgery

Dong Jun Kim, Sang Hun Kim, Keum Young So, Ki Tae Jung, Dong Jun Kim, Sang Hun Kim, Keum Young So, Ki Tae Jung

Abstract

Background: Intraoperative dexmedetomidine may decrease postoperative emergence agitation in elderly patients due to its sedative effect. In this study, we evaluated the effect of adjuvant dexmedetomidine on smooth emergence from anaesthesia after orthopaedic surgery in elderly patients.

Methods: A total 115 patients (ASA I-II, aged over 65 years) were randomly allocated into four groups. Anaesthesia was maintained with either sevoflurane or total intravenous anaesthesia (TIVA) comprising propofol and remifentanil. Patients were also administered either dexmedetomidine (0.4 μg kg(-1) hr(-1); SD and TD) intraoperatively or normal saline (SN or TN) as a control. The bispectral index (BIS) score was maintained from 40-60 intraoperatively. All anaesthetics and dexmedetomidine were discontinued at surgical conclusion, and the recovery times (durations to a BIS = 60, 70, and 80; eye opening; and extubation) were measured. The mean arterial pressure, heart rate, Ricker's agitation-sedation scale (RSAS), visual analogue scale (VAS) for pain, and incidences of emergence agitation and postoperative nausea and vomiting (PONV) were measured in the recovery room.

Results: Dexmedetomidine significantly decreased the RSAS score in the SD and TD groups, and a calm state postoperatively occurred more frequently in these groups than in the control groups. The heart rate and incidence of emergence agitation were lower in the dexmedetomidine groups. Recovery time was higher in the SD group than in the SN group, and no significant differences occurred between the TN and TD groups. The VAS score was lower in the SD group than in the SN group, and the PONV did not differ regardless of the use of dexmedetomidine.

Conclusions: Dexmedetomidine may be an effective intraoperative adjuvant for a reducing emergence agitation and smooth emergence from anaesthesia after orthopaedic surgery in elderly patients.

Trial registration: Current Controlled Trials NCT01851005 .

Figures

Fig. 1
Fig. 1
Consort flow diagram for the study. Group SN, inhalation anaesthesia using sevoflurane and normal saline administered as a control; Group SD, inhalation anaesthesia using sevoflurane and adjuvant dexmedetomidine; Group TN, TIVA using propofol and remifentanil and normal saline administered as a control; Group TD, TIVA using propofol and remifentanil, and adjuvant dexmedetomidine
Fig. 2
Fig. 2
End-tidal concentration of sevoflurane (a), the effect site concentration of propofol (b), and the effect site concentration of remifentanil (c) during anaesthesia. Group SN, inhalation anaesthesia using sevoflurane and normal saline administered as a control; Group SD, inhalation anaesthesia using sevoflurane and adjuvant dexmedetomidine; Group TN, TIVA using propofol and remifentanil and normal saline administered as a control; Group TD, TIVA using propofol and remifentanil, and adjuvant dexmedetomidine; TIVA, total intravenous anaesthesia; Ce, effect site concentration. *P < 0.05 compared with the control group
Fig. 3
Fig. 3
Recovery times following orthopaedic surgery. Group SN, inhalation anaesthesia using sevoflurane and normal saline administered as a control; Group SD, inhalation anaesthesia using sevoflurane and adjuvant dexmedetomidine; Group TN, TIVA using propofol and remifentanil and normal saline administered as a control; Group TD, TIVA using propofol and remifentanil, and adjuvant dexmedetomidine; TIVA, total intravenous anaesthesia; BIS, bispectral index. *P < 0.05 compared with SN
Fig. 4
Fig. 4
Incidence of emergence agitation and dangerous emergence agitation in the recovery room 30 min after arrival. Group SN, inhalation anaesthesia using sevoflurane and normal saline administered as a control; Group SD, inhalation anaesthesia using sevoflurane and adjuvant dexmedetomidine; Group TN, TIVA using propofol and remifentanil and normal saline administered as a control; Group TD, TIVA using propofol and remifentanil, and adjuvant dexmedetomidine; TIVA, total intravenous administration; EA, emergence agitation. Emergence agitation was defined as a Riker’s sedation-agitation scale greater than 5, and dangerous EA was defined as a score greater than 7
Fig. 5
Fig. 5
Hemodynamic changes during infusion of adjuvant drugs and during anaesthetic emergence. a Mean arterial pressure and (b) heart rate measured. Pre-infusion, before infusion of adjuvant drugs; In-10 min, 10 min after infusion of adjuvant drugs; In-30 min, 30 min after infusion of adjuvant drugs; RR, at arrival to recovery room;, RR-15 min, 15 min after arrival to recovery room; RR-30 min, 30 min after arrival to recovery room. Group SN, inhalation anaesthesia using sevoflurane and normal saline administered as a control; Group SD, inhalation anaesthesia using sevoflurane and adjuvant dexmedetomidine; Group TN, TIVA using propofol and remifentanil and normal saline administered as a control; Group TD, TIVA using propofol and remifentanil, and adjuvant dexmedetomidine. *P < 0.05 compared with the SN group. †P < 0.05 compared with the TN group

References

    1. Silverstein JH, Timberger M, Reich DL, Uysal S. Central nervous system dysfunction after noncardiac surgery and anesthesia in the elderly. Anesthesiology. 2007;106(3):622–628. doi: 10.1097/00000542-200703000-00026.
    1. Kwak KH. Emergence agitation/delirium: we still don’t know. Korean J Anesthesiol. 2010;59(2):73–74. doi: 10.4097/kjae.2010.59.2.73.
    1. Lepouse C, Lautner CA, Liu L, Gomis P, Leon A. Emergence delirium in adults in the post-anaesthesia care unit. Br J Anaesth. 2006;96(6):747–753. doi: 10.1093/bja/ael094.
    1. Bekker AY, Weeks EJ. Cognitive function after anaesthesia in the elderly. Best Pract Res Clin Anaesthesiol. 2003;17(2):259–272. doi: 10.1016/S1521-6896(03)00005-3.
    1. Ozcengiz D, Gunes Y, Ozmete O. Oral melatonin, dexmedetomidine, and midazolam for prevention of postoperative agitation in children. J Anesth. 2011;25(2):184–188. doi: 10.1007/s00540-011-1099-2.
    1. Kim SY, Kim JM, Lee JH, Song BM, Koo BN. Efficacy of intraoperative dexmedetomidine infusion on emergence agitation and quality of recovery after nasal surgery. Br J Anaesth. 2013;111(2):222–228. doi: 10.1093/bja/aet056.
    1. Ohtani N, Kida K, Shoji K, Yasui Y, Masaki E. Recovery profiles from dexmedetomidine as a general anesthetic adjuvant in patients undergoing lower abdominal surgery. Anesth Analg. 2008;107(6):1871–1874. doi: 10.1213/ane.0b013e3181887fcc.
    1. Juvin P, Servin F, Giraud O, Desmonts JM. Emergence of elderly patients from prolonged desflurane, isoflurane, or propofol anesthesia. Anesth Analg. 1997;85(3):647–651. doi: 10.1213/00000539-199709000-00029.
    1. Riker RR, Picard JT, Fraser GL. Prospective evaluation of the Sedation-Agitation Scale for adult critically ill patients. Crit Care Med. 1999;27(7):1325–1329. doi: 10.1097/00003246-199907000-00022.
    1. Keith I. Anaesthesia and blood loss in total hip replacement. Anaesthesia. 1977;32(5):444–450. doi: 10.1111/j.1365-2044.1977.tb09981.x.
    1. Chen X, Zhao M, White PF, Li S, Tang J, Wender RH, Sloninsky A, Naruse R, Kariger R, Webb T, et al. The recovery of cognitive function after general anesthesia in elderly patients: a comparison of desflurane and sevoflurane. Anesth Analg. 2001;93(6):1489–1494. doi: 10.1097/00000539-200112000-00029.
    1. Lynch EP, Lazor MA, Gellis JE, Orav J, Goldman L, Marcantonio ER. The impact of postoperative pain on the development of postoperative delirium. Anesth Analg. 1998;86(4):781–785. doi: 10.1213/00000539-199804000-00019.
    1. Pun BT, Ely EW. The importance of diagnosing and managing ICU delirium. Chest. 2007;132(2):624–636. doi: 10.1378/chest.06-1795.
    1. Maddocks I, Somogyi A, Abbott F, Hayball P, Parker D. Attenuation of morphine-induced delirium in palliative care by substitution with infusion of oxycodone. J Pain Symptom Manage. 1996;12(3):182–189. doi: 10.1016/0885-3924(96)00050-4.
    1. Nishikawa K, Nakayama M, Omote K, Namiki A. Recovery characteristics and post-operative delirium after long-duration laparoscope-assisted surgery in elderly patients: propofol-based vs. sevoflurane-based anesthesia. Acta Anaesthesiol Scand. 2004;48(2):162–168. doi: 10.1111/j.0001-5172.2004.00264.x.
    1. Maldonado JR, Wysong A, van der Starre PJ, Block T, Miller C, Reitz BA. Dexmedetomidine and the reduction of postoperative delirium after cardiac surgery. Psychosomatics. 2009;50(3):206–217. doi: 10.1176/appi.psy.50.3.206.
    1. Gerlach AT, Murphy CV, Dasta JF. An updated focused review of dexmedetomidine in adults. Ann Pharmacother. 2009;43(12):2064–2074. doi: 10.1345/aph.1M310.
    1. Nakamura J, Uchimura N, Yamada S, Nakazawa Y. Does plasma free-3-methoxy-4-hydroxyphenyl(ethylene)glycol increase in the delirious state? A comparison of the effects of mianserin and haloperidol on delirium. Int Clin Psychopharmacol. 1997;12(3):147–152. doi: 10.1097/00004850-199705000-00005.
    1. Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93(2):382–394. doi: 10.1097/00000542-200008000-00016.
    1. Patel CR, Engineer SR, Shah BJ, Madhu S. The effect of dexmedetomidine continuous infusion as an adjuvant to general anesthesia on sevoflurane requirements: a study based on entropy analysis. J Anaesthesiol Clin Pharmacol. 2013;29(3):318–322. doi: 10.4103/0970-9185.117066.
    1. Kang WS, Kim SY, Son JC, Kim JD, Muhammad HB, Kim SH, Yoon TG, Kim TY. The effect of dexmedetomidine on the adjuvant propofol requirement and intraoperative hemodynamics during remifentanil-based anesthesia. Korean J Anesthesiol. 2012;62(2):113–118. doi: 10.4097/kjae.2012.62.2.113.
    1. Le Guen M, Liu N, Tounou F, Auge M, Tuil O, Chazot T, Dardelle D, Laloe PA, Bonnet F, Sessler DI, et al. Dexmedetomidine reduces propofol and remifentanil requirements during bispectral index-guided closed-loop anesthesia: a double-blind, placebo-controlled trial. Anesth Analg. 2014;118(5):946–955. doi: 10.1213/ANE.0000000000000185.
    1. Karol MD, Maze M. Pharmacokinetics and interaction pharmacodynamics of dexmedetomidine in humans. Best Pract Res Clin Anaesthesiol. 2000;14(2):261–269. doi: 10.1053/bean.2000.0081.
    1. Lee S, Kim BH, Lim K, Stalker D, Wisemandle W, Shin SG, Jang IJ, Yu KS. Pharmacokinetics and pharmacodynamics of intravenous dexmedetomidine in healthy Korean subjects. J Clin Pharm Ther. 2012;37(6):698–703. doi: 10.1111/j.1365-2710.2012.01357.x.
    1. Cortinez LI, Hsu YW, Sum-Ping ST, Young C, Keifer JC, Macleod D, Robertson KM, Wright DR, Moretti EW, Somma J. Dexmedetomidine pharmacodynamics: Part II: Crossover comparison of the analgesic effect of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology. 2004;101(5):1077–1083. doi: 10.1097/00000542-200411000-00006.
    1. Dutta S, Karol MD, Cohen T, Jones RM, Mant T. Effect of dexmedetomidine on propofol requirements in healthy subjects. J Pharm Sci. 2001;90(2):172–181. doi: 10.1002/1520-6017(200102)90:2<172::AID-JPS8>;2-J.
    1. Venn RM, Karol MD, Grounds RM. Pharmacokinetics of dexmedetomidine infusions for sedation of postoperative patients requiring intensive caret. Br J Anaesth. 2002;88(5):669–675. doi: 10.1093/bja/88.5.669.

Source: PubMed

3
Tilaa