Wuhan to World: The COVID-19 Pandemic

Ashok Kumar, Rita Singh, Jaskaran Kaur, Sweta Pandey, Vinita Sharma, Lovnish Thakur, Sangeeta Sati, Shailendra Mani, Shailendra Asthana, Tarun Kumar Sharma, Susmita Chaudhuri, Sankar Bhattacharyya, Niraj Kumar, Ashok Kumar, Rita Singh, Jaskaran Kaur, Sweta Pandey, Vinita Sharma, Lovnish Thakur, Sangeeta Sati, Shailendra Mani, Shailendra Asthana, Tarun Kumar Sharma, Susmita Chaudhuri, Sankar Bhattacharyya, Niraj Kumar

Abstract

COVID-19 is a Severe Acute Respiratory Syndrome (SARS), caused by SARS-CoV-2, a novel virus which belongs to the family Coronaviridae. It was first reported in December 2019 in the Wuhan city of China and soon after, the virus and hence the disease got spread to the entire world. As of February 26, 2021, SARS-CoV-2 has infected ~112.20 million people and caused ~2.49 million deaths across the globe. Although the case fatality rate among SARS-CoV-2 patient is lower (~2.15%) than its earlier relatives, SARS-CoV (~9.5%) and MERS-CoV (~34.4%), the SARS-CoV-2 has been observed to be more infectious and caused higher morbidity and mortality worldwide. As of now, only the knowledge regarding potential transmission routes and the rapidly developed diagnostics has been guiding the world for managing the disease indicating an immediate need for a detailed understanding of the pathogen and the disease-biology. Over a very short period of time, researchers have generated a lot of information in unprecedented ways in the key areas, including viral entry into the host, dominant mutation, potential transmission routes, diagnostic targets and their detection assays, potential therapeutic targets and drug molecules for inhibiting viral entry and/or its replication in the host including cross-neutralizing antibodies and vaccine candidates that could help us to combat the ongoing COVID-19 pandemic. In the current review, we have summarized the available knowledge about the pathogen and the disease, COVID-19. We believe that this readily available knowledge base would serve as a valuable resource to the scientific and clinical community and may help in faster development of the solution to combat the disease.

Keywords: COVID-19; SARS-CoV-2; coronaviruses; diagnostics; therapeutics; transmission.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Kumar, Singh, Kaur, Pandey, Sharma, Thakur, Sati, Mani, Asthana, Sharma, Chaudhuri, Bhattacharyya and Kumar.

Figures

Figure 1
Figure 1
Overview of COVID-19 progression and key four-arms for its management.
Figure 2
Figure 2
The major chronological events in the emergences of SARS-CoV-2.
Figure 3
Figure 3
The molecular mechanism of SARS-CoV-2 infection.

References

    1. Afzal A. (2020). Molecular diagnostic technologies for COVID-19: Limitations and challenges. J. Adv. Res. 26, 149–159. 10.1016/j.jare.2020.08.002
    1. Ali S., Noreen S., Farooq I., Bugshan A., Vohra F. (2020). Risk Assessment of Healthcare Workers at the Frontline against COVID-19. PaK J. Med. Sci. 36 (COVID19-S4), S99–S103. 10.12669/pjms.36.COVID19-S4.2790
    1. Alonzo F. III., Kozhaya L., Rawlings S. A., Reyes-Robles T., DuMont A. L., Myszka D. G., et al. . (2013). CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature 493 (7430), 51–55. 10.1038/nature11724
    1. Amirian E. S. (2020). Potential fecal transmission of SARS-CoV-2: Current evidence and implications for public health. Int. J. Infect. Dis. 95, 363–370. 10.1016/j.ijid.2020.04.057
    1. Armitage R., Nellums L. B. (2020). COVID-19 and the consequences of isolating the elderly. Lancet Public Health 5 (5), e256–e256. 10.1016/S2468-2667(20)30061-X
    1. Báez-Santos Y. M., St John S. E., Mesecar A. D. (2015). The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antivir. Res. 115, 21–38. 10.1016/j.antiviral.2014.12.015
    1. Baker W. L., Couch K. A. (2007). Azithromycin for the secondary prevention of coronary artery disease: a meta-analysis. Am. J. Health Syst. Pharm. 64 (8), 830–836. 10.2146/ajhp060539
    1. Banerjee A., Kulcsar K., Misra V., Frieman M., Mossman K. (2019). Bats and Coronaviruses. Viruses 11 (1):41. 10.3390/v11010041
    1. Bell D. M., World Health Organization Working Group on, I. Community Transmission of, S (2004). Public health interventions and SARS sprea. Emerg. Infect. Dis. 10 (11), 1900–1906. 10.3201/eid1011.040729
    1. Belouzard S., Millet J. K., Licitra B. N., Whittaker G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4 (6), 1011–1033. 10.3390/v4061011
    1. Benigni A., Cassis P., Remuzzi G. (2010). Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol. Med. 2 (7), 247–257. 10.1002/emmm.201000080
    1. Böhmer M. M., Buchholz U., Corman V. M., Hoch M., Katz K., Marosevic D. V., et al. . (2020). Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: a case series. Lancet Infect. Dis. 20 (8), 920–928. 10.1016/S1473-3099(20)30314-5
    1. Bonelli F., Sarasini A., Zierold C., Calleri M., Bonetti A., Vismara C., et al. . (2020). Clinical and Analytical Performance of an Automated Serological Test That Identifies S1/S2-Neutralizing IgG in COVID-19 Patients Semiquantitatively. J. Clin. Microbiol. 58 (9), e01224–e01220. 10.1128/JCM.01224-20
    1. Burki T. K. (2020). Testing for COVID-19. Lancet Respir. Med. 8 (7), e63–e64. 10.1016/S2213-2600(20)30247-2
    1. Callaway E. (2020). Coronavirus vaccine trials have delivered their first results-but their promise is still unclear. Nature 581 (7809), 363–364. 10.1038/d41586-020-01092-3
    1. Candotto V., Lauritano D., Nardone M., Baggi L., Arcuri C., Gatto R., et al. . (2017). HPV infection in the oral cavity: epidemiology, clinical manifestations and relationship with oral cancer. Oral. Implantol. 10 (3), 209–220. 10.11138/orl/2017.10.3.209
    1. Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., et al. . (2020. a). A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N. Engl. J. Med. 382 (19), 1787–1799. 10.1056/NEJMoa2001282
    1. Cao Y.-C., Deng Q.-X., Dai S.-X. (2020. b). Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med. Infect. Dis. 35, 101647–101647. 10.1016/j.tmaid.2020.101647
    1. Chary M. A., Barbuto A. F., Izadmehr S., Hayes B. D., Burns M. M. (2020). COVID-19: Therapeutics and Their Toxicities. J. Med. Toxicol. 16 (3), 284–294. 10.1007/s13181-020-00777-5
    1. Chen H., Guo J., Wang C., Luo F., Yu X., Zhang W., et al. . (2020. a). Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 395 (10226), 809–815. 10.1016/S0140-6736(20)30360-3
    1. Chen Z., Yuan G., Duan F., Wu K. (2020. b). Ocular Involvement in Coronavirus Disease 2019: Up-to-Date Information on Its Manifestation, Testing, Transmission, and Prevention. Front. Med. 7, 569126. 10.3389/fmed.2020.569126
    1. Cheng V. C.-C., Wong S.-C., Chan V. W.-M., So S. Y.-C., Chen J. H.-K., Yip C. C.-Y., et al. . (2020). Air and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19). Infect. Control Hosp. Epidemiol. 41, 1258–65. 10.1017/ice.2020.282
    1. Chia P. Y., Coleman K. K., Tan Y. K., Ong S. W. X., Gum M., Lau S. K., et al. . (2020). Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat. Commun. 11 (1), 2800. 10.1038/s41467-020-16670-2
    1. Choi Y., Chang J. (2013). Viral vectors for vaccine applications. Clin. Exp. Vaccine Res. 2 (2), 97–105. 10.7774/cevr.2013.2.2.97
    1. Coronaviridae Study Group of the International Committee on Taxonomy of V. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5 (4), 536–544. 10.1038/s41564-020-0695-z
    1. Corstjens P. L. A. M., Abrams W. R., Malamud D. (2012). Detecting viruses by using salivary diagnostics. J. Am. Dent. Assoc. 143 (10 Suppl), 12S–18S. 10.14219/jada.archive.2012.0338
    1. Cox R. M., Wolf J. D., Plemper R. K. (2020). Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets. Nat. Microbiol. 3, 11–18 10.1038/s41564-020-00835-2
    1. Cui J., Li F., Shi Z.-L. (2019). Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17 (3), 181–192. 10.1038/s41579-018-0118-9
    1. Daniloski Z., Jordan T. X., Ilmain J. K., Guo X., Bhabha G., tenOever B. R., et al. . (2020). The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. eLife 10, e65365 10.1101/2020.06.14.151357
    1. De Groot R. J., Baker S. C., Baric R. S., Brown C. S., Drosten C., Enjuanes L., et al. . (2013). Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J. Virol. 87 (14), 7790–7792. 10.1128/JVI.01244-13
    1. Ding S., Liang T. J. (2020). Is SARS-CoV-2 Also an Enteric Pathogen With Potential Fecal-Oral Transmission? A COVID-19 Virological and Clinical Review. Gastroenterology 159 (1), 53–61. 10.1053/j.gastro.2020.04.052
    1. Dobaño C., Vidal M., Santano R., Jiménez A., Chi J., Barrios D., et al. . (2020). Highly sensitive and specific multiplex antibody assays to quantify immunoglobulins M, A and G against SARS-CoV-2 antigens. J. Clin. Microbiol. 59 (2), e01731–20. 10.1101/2020.06.11.147363
    1. Dong L., Tian J., He S., Zhu C., Wang J., Liu C., et al. . (2020). Possible Vertical Transmission of SARS-CoV-2 From an Infected Mother to Her Newborn. Jama 323 (18), 1846–1848. 10.1001/jama.2020.4621
    1. Duan K., Liu B., Li C., Zhang H., Yu T., Qu J., et al. . (2020). Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. U. S. A. 117 (17), 9490–9496. 10.1073/pnas.2004168117
    1. El-Tholoth M., Bau H. H., Song J. (2020). A Single and Two-Stage, Closed-Tube, Molecular Test for the 2019 Novel Coronavirus (COVID-19) at Home, Clinic, and Points of Entry. ChemRxiv. 10.26434/chemrxiv.11860137.v110.26434/chemrxiv.11860137
    1. Fakruddin M., Mannan K. S. B., Chowdhury A., Mazumdar R. M., Hossain M. N., Islam S., et al. . (2013). Nucleic acid amplification: Alternative methods of polymerase chain reaction. J. Pharm. Bioallied Sci. 5 (4), 245–252. 10.4103/0975-7406.120066
    1. Ferraiolo A., Barra F., Kratochwila C., Paudice M., Vellone V. G., Godano E., et al. . (2020). Report of Positive Placental Swabs for SARS-CoV-2 in an Asymptomatic Pregnant Woman with COVID-19. Med. (Kaunas Lithuania) 56 (6), 306. 10.3390/medicina56060306
    1. Folegatti P. M., Ewer K. J., Aley P. K., Angus B., Becker S., Belij-Rammerstorfer S., et al. . (2020). Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 396 (10249), 467–478. 10.1016/S0140-6736(20)31604-4
    1. Fosun (2020). Fosun COVID-19 RT-PCR Detection Kit [Online]. Available at: (Accessed 17 01 2021).
    1. Furuhashi M., Moniwa N., Takizawa H., Ura N., Shimamoto K. (2020). Potential differential effects of renin-angiotensin system inhibitors on SARS-CoV-2 infection and lung injury in COVID-19. Hypertens. Res. 43 (8), 837–840. 10.1038/s41440-020-0478-1
    1. Gao J., Hu X., Sun X., Luo X., Chen L. (2020. a). Possible intrauterine SARS-CoV-2 infection: Positive nucleic acid testing results and consecutive positive SARS-CoV-2-specific antibody levels within 50 days after birth. J. Infect. Dis. 99, 272–275. 10.1016/j.ijid.2020.07.063
    1. Gao M., Yang L., Chen X., Deng Y., Yang S., Xu H., et al. . (2020. b). A study on infectivity of asymptomatic SARS-CoV-2 carriers. Respir. Med. 169, 106026–106026. 10.1016/j.rmed.2020.106026
    1. Gao Q., Bao L., Mao H., Wang L., Xu K., Yang M., et al. . (2020. c). Development of an inactivated vaccine candidate for SARS-CoV-2. Science 369 (6499), 77–81. 10.1126/science.abc1932
    1. Gheblawi M., Wang K., Viveiros A., Nguyen Q., Zhong J.-C., Turner A. J., et al. . (2020). Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ. Res. 126 (10), 1456–1474. 10.1161/CIRCRESAHA.120.317015
    1. Groß S., Jahn C., Cushman S., Bär C., Thum T. (2020). SARS-CoV-2 receptor ACE2-dependent implications on the cardiovascular system: From basic science to clinical implications. J. Mol. Cell. Cardiol. 144, 47–53. 10.1016/j.yjmcc.2020.04.031
    1. Guan W.-J., Liang W.-H., Zhao Y., Liang H.-R., Chen Z.-S., Li Y.-M., et al. . (2020). Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur. Respir. J. 55 (5):2000547. 10.1183/13993003.00547-2020
    1. Gupta S., Ajith C., Kanwar A. J., Sehgal V. N., Kumar B., Mete U. (2006). Genital elephantiasis and sexually transmitted infections - revisited. Int. J. STD AIDS 17 (3), 157–165. 10.1258/095646206775809150. quiz 166.
    1. Guzzi P. H., Mercatelli D., Ceraolo C., Giorgi F. M. (2020). Master Regulator Analysis of the SARS-CoV-2/Human Interactome. J. Clin. Med. 9 (4), 982. 10.3390/jcm9040982
    1. Hahn S. M. (2020). Coronavirus (COVID-19) Update: Serological Tests [Online]. Available at: (Accessed April 07, 2020).
    1. Hoffmann M., Kleine-Weber H., Pöhlmann S. (2020). A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol. Cell. 78 (4), 779–784.e775. 10.1016/j.molcel.2020.04.022
    1. Hou Y. J., Okuda K., Edwards C. E., Martinez D. R., Asakura T., Dinnon K. H., et al. . (2020). SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 182 (2), 429–446.e414. 10.1016/j.cell.2020.05.042
    1. Huang D., Yu H., Wang T., Yang H., Yao R., Liang Z. (2020). Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J. Med. Virol. 93 (1), 481–490. 10.1002/jmv.26256
    1. ICMR (2020. a). Feluda paper strip test for COVID-19 to be available in Indian markets by November-end [Online]. Available at: (Accessed December 14, 2020).
    1. ICMR (2020. b). Advisory on CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology-based SARS-COV-2 test [Online]. Available at: (Accessed September 22, 2020).
    1. Imai M., Iwatsuki-Horimoto K., Hatta M., Loeber S., Halfmann P. J., Nakajima N., et al. . (2020). Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. PNAS U. S. A. 117 (28), 16587–16595. 10.1073/pnas.2009799117
    1. Isabel S., Graña-Miraglia L., Gutierrez J. M., Bundalovic-Torma C., Groves H. E., Isabel M. R., et al. . (2020). Evolutionary and structural analyses of SARS-CoV-2 D614G spike protein mutation now documented worldwide. Sci. Rep. 10 (1), 14031–14031. 10.1038/s41598-020-70827-z
    1. Jääskeläinen A. J., Kekäläinen E., Kallio-Kokko H., Mannonen L., Kortela E., Vapalahti O., et al. . (2020). Evaluation of commercial and automated SARS-CoV-2 IgG and IgA ELISAs using coronavirus disease (COVID-19) patient samples. Euro Surveillance 25 (18):2000603. 10.2807/1560-7917.ES.2020.25.18.2000603
    1. Jacofsky D., Jacofsky E. M., Jacofsky M. (2020). Understanding Antibody Testing for COVID-19. J. Arthroplasty 35 (7S), S74–S81. 10.1016/j.arth.2020.04.055
    1. Jaimes J. A., Millet J. K., Whittaker G. R. (2020). Proteolytic Cleavage of the SARS-CoV-2 Spike Protein and the Role of the Novel S1/S2 Site. iScience 23 (6):101212. 10.1016/j.isci.2020.101212
    1. Jia H. P., Look D. C., Shi L., Hickey M., Pewe L., Netland J., et al. . (2005). ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol. 79 (23), 14614–14621. 10.1128/JVI.79.23.14614-14621.2005
    1. Jiao X., Nawab O., Patel T., Kossenkov A. V., Halama N., Jaeger D., et al. . (2019). Recent Advances Targeting CCR5 for Cancer and Its Role in Immuno-Oncology. Cancer Res. 79 (19), 4801–4807. 10.1158/0008-5472.Can-19-1167
    1. Jin Z., Smith L. K., Rajwanshi V. K., Kim B., Deval J. (2013). The ambiguous base-pairing and high substrate efficiency of T-705 (Favipiravir) Ribofuranosyl 5’-triphosphate towards influenza A virus polymerase. PLoS One 8 (7), e68347. 10.1371/journal.pone.0068347
    1. Jing Y., Run-Qian L., Hao-Ran W., Hao-Ran C., Ya-Bin L., Yang G., et al. . (2020). Potential influence of COVID-19/ACE2 on the female reproductive system. Mol. Hum. Reprod. 26 (6), 367–373. 10.1093/molehr/gaaa030
    1. Kawai T., Forrester S. J., O’Brien S., Baggett A., Rizzo V., Eguchi S. (2017). AT1 receptor signaling pathways in the cardiovascular system. Pharmacol. Res. Commun. 125 (Pt A), 4–13. 10.1016/j.phrs.2017.05.008
    1. Khan S., Siddique R., Shereen M. A., Ali A., Liu J., Bai Q., et al. . (2020). Emergence of a Novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2: Biology and Therapeutic Options. J. Clin. Microbiol. 58 (5), e00187–e00120. 10.1128/JCM.00187-20
    1. Kim D., Lee J. Y., Yang J. S., Kim J. W., Kim V. N., Chang H. (2020. a). The Architecture of SARS-CoV-2 Transcriptome. Cell 181 (4), 914–921.e910. 10.1016/j.cell.2020.04.011
    1. Kim Y.-I., Kim S.-G., Kim S.-M., Kim E.-H., Park S.-J., Yu K.-M., et al. . (2020. b). Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe 27 (5), 704–709.e702. 10.1016/j.chom.2020.03.023
    1. Kiran U., Gokulan C. G., Kuncha S. K., Vedagiri D., Chander B. T., Sekhar A. V., et al. . (2020). Easing diagnosis and pushing the detection limits of SARS-CoV-2. Biol. Methods Protoc. 5 (1), bpaa017. 10.1093/biomethods/bpaa017
    1. Kitagawa Y., Orihara Y., Kawamura R., Imai K., Sakai J., Tarumoto N., et al. . (2020). Evaluation of rapid diagnosis of novel coronavirus disease (COVID-19) using loop-mediated isothermal amplification. J. Clin. Virol. 129:104446. 10.1016/j.jcv.2020.104446
    1. Knoll M. D., Wonodi C. (2020). Oxford–AstraZeneca COVID-19 vaccine efficacy. Lancet 397 (10269), 72–74. 10.1016/S0140-6736(20)32623-4
    1. Korsman S. N. J., van Zyl G. U., Nutt L., Andersson M. I., Preiser W. (2012). Human coronaviruses. Virology, 94–95. 10.1016/B978-0-443-07367-0.00040-9
    1. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., et al. . (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 11 (8), 875–879. 10.1038/nm1267
    1. Kumar A., Faiq M. A., Pareek V., Raza K., Narayan R. K., Prasoon P., et al. . (2020. a). Relevance of enriched expression of SARS-CoV-2 binding receptor ACE2 in gastrointestinal tissue with pathogenesis of digestive symptoms, diabetes-associated mortality, and disease recurrence in COVID-19 patients. bioRxiv. 2020.2004.2014.040204. 10.1101/2020.04.14.040204
    1. Kumar K., Prakash A., Gangasagara S., Rathod S., Ravi K., Rangaiah A., et al. . (2020. b). Presence of viral RNA of SARS-CoV-2 in conjunctival swab specimens of COVID-19 patients. Indian J. Ophthalmol. 68 (6), 1015–1017. 10.4103/ijo.IJO_1287_20
    1. LabGenomics (2020). LabGun™ COVID-19 RT-PCR Kit [Online]. Available at: (Accessed December 8, 2020).
    1. Ledford H. (2020). Moderna COVID vaccine becomes second to get US authorization [Online]. Available at: (Accessed 19 DECEMBER 2020).
    1. Li T., Jiang S., Ni B., Cui Q., Liu Q., Zhao H. (2019). Discontinued Drugs for the Treatment of Cardiovascular Disease from 2016 to 2018. Int. J. Mol. Sci. 20 (18):4513. 10.3390/ijms20184513
    1. Lian N., Xie H., Lin S., Huang J., Zhao J., Lin Q. (2020). Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clin. Microbiol. Infect. 26 (7), 917–921. 10.1016/j.cmi.2020.04.026
    1. Liu D. X., Liang J. Q., Fung T. S. (2020. a). Human Coronavirus-229E, -OC43, -NL63, and -HKU1. Reference Module Life Sci. B978-970-912-809633-809638.821501-X. 10.1016/B978-0-12-809633-8.21501-X
    1. Liu M., Wang T., Zhou Y., Zhao Y., Zhang Y., Li J. (2020. b). Potential Role of ACE2 in Coronavirus Disease 2019 (COVID-19) Prevention and Management. J. Translat. Intern. Med. 8 (1), 9–19. 10.2478/jtim-2020-0003
    1. Loeffelholz M. J., Alland D., Butler-Wu S. M., Pandey U., Perno C. F., Nava A., et al. . (2020). Multicenter Evaluation of the Cepheid Xpert Xpress SARS-CoV-2 Test. J. Clin. Microbiol. 58 (8), e00926–20. 10.1128/jcm.00926-20
    1. Lora-Tamayo J., Maestro G., Lalueza A., Rubio-Rivas M., Villarreal Paul G., Arnalich Fernández F., et al. . (2021). Early Lopinavir/ritonavir does not reduce mortality in COVID-19 patients: Results of a large multicenter study. J. Infect. 10.1016/j.jinf.2021.02.011
    1. Lou Y., Liu L., Yao H., Hu X., Su J., Xu K., et al. . (2021). Clinical Outcomes and Plasma Concentrations of Baloxavir Marboxil and Favipiravir in COVID-19 Patients: An Exploratory Randomized, Controlled Trial. Eur. J. Pharm. Sci. 157, 105631. 10.1016/j.ejps.2020.105631
    1. Lu C. W., Liu X. F., Jia Z. F. (2020. a). 2019-nCoV transmission through the ocular surface must not be ignored. Lancet 395 (10224), e39. 10.1016/s0140-6736(20)30313-5
    1. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., et al. . (2020. b). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395 (10224), 565–574. 10.1016/s0140-6736(20)30251-8
    1. Ma T. K. W., Kam K. K. H., Yan B. P., Lam Y.-Y. (2010). Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br. J. Pharmacol. 160 (6), 1273–1292. 10.1111/j.1476-5381.2010.00750.x
    1. Mackenzie J. S., Smith D. W. (2020). COVID-19: a novel zoonotic disease caused by a coronavirus from China: what we know and what we don’t. Microbiol. Aust. 41:45–50. 10.1071/MA20013
    1. Mair-Jenkins J., Saavedra-Campos M., Baillie J. K., Cleary P., Khaw F. M., Lim W. S., et al. . (2015). The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J. Infect. Dis. 211 (1), 80–90. 10.1093/infdis/jiu396
    1. Masters P. S. (2006). The molecular biology of coronaviruses. Adv. Virus Res. 66, 193–292. 10.1016/S0065-3527(06)66005-3
    1. Mercatelli D., Giorgi F. M. (2020). Geographic and Genomic Distribution of SARS-CoV-2 Mutations 11, 1800. 10.3389/fmicb.2020.01800
    1. Minor P. D. (2015). Live attenuated vaccines: Historical successes and current challenges. J. Virol. 479, 379–392. 10.1016/j.virol.2015.03.032
    1. Montesinos I., Gruson D., Kabamba B., Dahma H., Van den Wijngaert S., Reza S., et al. . (2020). Evaluation of two automated and three rapid lateral flow immunoassays for the detection of anti-SARS-CoV-2 antibodies. J. Clin. Virol. 128:104413. 10.1016/j.jcv.2020.104413
    1. Morawska L., Cao J. (2020). Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 139, 105730–105730. 10.1016/j.envint.2020.105730
    1. Morris D. H., Yinda K. C., Gamble A., Rossine F. W., Huang Q., Bushmaker T., et al. . (2020). The effect of temperature and humidity on the stability of SARS-CoV-2 and other enveloped viruses. bioRxiv: the preprint server for biology. [Online]. Available:
    1. Muñoz-Durango N., Fuentes C. A., Castillo A. E., González-Gómez L. M., Vecchiola A., Fardella C. E., et al. . (2016). Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension. Int. J. Mol. Sci. 17 (7):797. 10.3390/ijms17070797
    1. mylabdiscovery (2020). Pathodetect Coronavirus (COVID-19) Qualitative PCR Kit [Online]. Available at: (Accessed December 14, 2020).
    1. Nicol T., Lefeuvre C., Serri O., Pivert A., Joubaud F., Dubée V., et al. . (2020). Assessment of SARS-CoV-2 serological tests for the diagnosis of COVID-19 through the evaluation of three immunoassays: Two automated immunoassays (Euroimmun and Abbott) and one rapid lateral flow immunoassay (NG Biotech). J. Clin. Virol. 129, 104511. 10.1016/j.jcv.2020.104511
    1. Niemz A., Ferguson T. M., Boyle D. S. (2011). Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 29 (5), 240–250. 10.1016/j.tibtech.2011.01.007
    1. Nojomi M., Yassin Z., Keyvani H., Makiani M. J., Roham M., Laali A., et al. . (2020). Effect of Arbidol (Umifenovir) on COVID-19: a randomized controlled trial. BMC Infect. Dis. 20 (1), 954. 10.1186/s12879-020-05698-w
    1. Oliver T. G. (2020). BCG Vaccination to Prevent Covid-19 (NUEVA). [Online]. Available at: (Accessed December 12, 2020).
    1. Onder G., Rezza G., Brusaferro S. (2020). Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA 323 (18), 1775–1776. 10.1001/jama.2020.4683
    1. O’Neill L. A., Netea M. G. J. N. R. I. (2020). BCG-induced trained immunity: can it offer protection against COVID-19? Nat. Rev. Immunol. 20 (6), 335–337. 10.1038/s41577-020-0337-y
    1. Pal M., Berhanu G., Desalegn C., Kandi V. (2020). Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus 12 (3), e7423–e7423. 10.7759/cureus.7423
    1. Palacios R. (December 11, 2020. b). Clinical Trial of Efficacy and Safety of Sinovac"s Adsorbed COVID-19 (Inactivated) Vaccine in Healthcare Professionals (PROFISCOV), Identifier: NCT04456595 [Online]. Available at: (Accessed December 20, 2020).
    1. Pandey S., Vyas G. N. (2012). Adverse effects of plasma transfusion. Transfusion 52 (Suppl 1), 65s–79s. 10.1111/j.1537-2995.2012.03663.x
    1. Patel K. P., Vunnam S. R., Patel P. A., Krill K. L., Korbitz P. M., Gallagher J. P., et al. . (2020). Transmission of SARS-CoV-2: an update of current literature. J. Clin. Microbiol. 39, 2005–2011. 10.1007/s10096-020-03961-1
    1. Payne S. (2017). Family Coronaviridae. Viruses, 149–158. 10.1016/B978-0-12-803109-4.00017-9
    1. Peeri N. C., Shrestha N., Rahman M. S., Zaki R., Tan Z., Bibi S., et al. . (2020). The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int. J. Epidemiol. 499, 717–726. 10.1093/ije/dyaa033
    1. Piersigilli F., Carkeek K., Hocq C., van Grambezen B., Hubinont C., Chatzis O., et al. . (2020). COVID-19 in a 26-week preterm neonate. Lancet Child Adolesc. Health 4 (6), 476–478. 10.1016/S2352-4642(20)30140-1
    1. PIH (2020). Testing, Contact Tracing and Community Management of COVID-19 [Online]. Available at: (Accessed April 21, 2020).
    1. Plante J. A., Liu Y., Liu J., Xia H., Johnson B. A., Lokugamage K. G., et al. . (2020. a). Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 10.1038/s41586-020-2895-3
    1. Plante J. A., Liu Y., Liu J., Xia H., Johnson B. A., Lokugamage K. G., et al. . (2020. b). Spike mutation D614G alters SARS-CoV-2 fitness and neutralization susceptibility. bioRxiv. 10.1101/2020.09.01.278689. 2020.2009.2001.278689.
    1. Prasad S., Potdar V., Cherian S., Abraham P., Basu A. (2020). Transmission electron microscopy imaging of SARS-CoV-2. Indian J. Med. Res. 151 (2 & 3), 241–243. 10.4103/ijmr.IJMR_577_20
    1. Proskurnina E. V., Izmailov D. Y., Sozarukova M. M., Zhuravleva T. A., Leneva I. A., Poromov A. A. (2020). Antioxidant Potential of Antiviral Drug Umifenovir. Molecules 25, 1577 (7). 10.3390/molecules25071577
    1. Qu J., Wu C., Li X., Zhang G., Jiang Z., Li X., et al. . (2020). Profile of Immunoglobulin G and IgM Antibodies Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 71 (16), 2255–2258 10.1093/cid/ciaa489
    1. Ray W. A., Murray K. T., Hall K., Arbogast P. G., Stein C. M. (2012). Azithromycin and the risk of cardiovascular death. N Engl. J. Med. 366 (20), 1881–1890. 10.1056/NEJMoa1003833
    1. Raybiotech (2020). COVID-19 Rapid Isothermal PCR Kit [Online]. Available at: (Accessed 17 01 2021).
    1. Rojas M., Rodríguez Y., Monsalve D. M., Acosta-Ampudia Y., Camacho B., Gallo J. E., et al. . (2020). Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun. Rev. 19 (7), 102554–102554. 10.1016/j.autrev.2020.102554
    1. Roshanravan N., Ghaffari S., Hedayati M. (2020). Angiotensin converting enzyme-2 as therapeutic target in COVID-19. Diabetes Metab. Syndr. 14 (4), 637–639. 10.1016/j.dsx.2020.05.022
    1. Sapkal G., Shete-Aich A., Jain R., Yadav P., Sarkale P., Lakra R., et al. . (2020). Development of indigenous IgG ELISA for the detection of anti-SARS-CoV-2 IgG. Indian J. Med. Res. 151 (5), 444–449. 10.4103/ijmr.IJMR_2232_20
    1. Scagliarini A., Alberti A. (2020). COVID-19: An Appeal for an Intersectoral Approach to Tackle With the Emergency. Public Health Front. 8:302. 10.3389/fpubh.2020.00302
    1. Schoeman D., Fielding B. C. (2019). Coronavirus envelope protein: current knowledge. Virol. J. 16 (1), 69. 10.1186/s12985-019-1182-0
    1. Scohy A., Anantharajah A., Bodéus M., Kabamba-Mukadi B., Verroken A., Rodriguez-Villalobos H. (2020). Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. J. Clin. Virol. 129:104455. 10.1016/j.jcv.2020.104455
    1. SDBiosensor (2020). STANDARD M nCoV Real-Time Detection kit [Online]. Available at: (Accessed December 14, 2020).
    1. Shah A. (July 13, 2020). Trends in COVID-19 Testing: Diagnostics and Serological. Biocompare. Online Editorial Article.
    1. She J., Jiang J., Ye L., Hu L., Bai C., Song Y. (2020). 2019 novel coronavirus of pneumonia in Wuhan, China: emerging attack and management strategies. J. Transl. Med. 9 (1), 19–19. 10.1186/s40169-020-00271-z
    1. Sheahan T. P., Sims A. C., Zhou S., Graham R. L., Pruijssers A. J., Agostini M. L., et al. . (2020). An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med. 12 (541), eabb5883. 10.1126/scitranslmed.abb5883
    1. Sheikhzadeh E., Eissa S., Ismail A., Zourob M. (2020). Diagnostic techniques for COVID-19 and new developments. Talanta 220, 121392–121392. 10.1016/j.talanta.2020.121392
    1. Shen C., Wang Z., Zhao F., Yang Y., Li J., Yuan J., et al. . (2020). Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA 323 (16), 1582–1589. 10.1001/jama.2020.4783
    1. Singh A. K., Singh A., Shaikh A., Singh R., Misra A. (2020). Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab. Syndr. 14 (3), 241–246. 10.1016/j.dsx.2020.03.011
    1. Smith T. R., Patel A., Ramos S., Elwood D., Zhu X., Yan J., et al. . (2020). Immunogenicity of a DNA vaccine candidate for COVID-19. Nat. Commun. 11 (1), 1–13. 10.1038/s41467-020-16505-0
    1. Smithgall M. C., Dowlatshahi M., Spitalnik S. L., Hod E. A., Rai A. J. (2020). Types of Assays for SARS-CoV-2 Testing: A Review. Lab. Med. 51 (5), e59–e65. 10.1093/labmed/lmaa039
    1. Sparks M. A., Crowley S. D., Gurley S. B., Mirotsou M., Coffman T. M. (2014). Classical Renin-Angiotensin system in kidney physiology. Compr. Physiol. 4 (3), 1201–1228. 10.1002/cphy.c130040
    1. Tahamtan A., Ardebili A. (2020). Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev. Mol. Diagn. 20 (5), 453–454. 10.1080/14737159.2020.1757437
    1. Tang X. C., Agnihothram S. S., Jiao Y., Stanhope J., Graham R. L., Peterson E. C., et al. . (2014). Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. Proc. Natl. Acad. Sci. U. S. A. 111 (19), E2018–E2026. 10.1073/pnas.1402074111
    1. Tchesnokov E. P., Feng J. Y., Porter D. P., Götte M. (2019). Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir. Viruses 11 (4):326. 10.3390/v11040326
    1. Traebert M., Dumotier B. (2005). Antimalarial drugs: QT prolongation and cardiac arrhythmias. Expert Opin. Drug Saf. 4 (3), 421–431. 10.1517/14740338.4.3.421
    1. Trivitron (2020). BIOCARD PRO COVID-19 [Online]. Available at: (Accessed December 20, 2020).
    1. Tu Y.-F., Chien C.-S., Yarmishyn A. A., Lin Y.-Y., Luo Y.-H., Lin Y.-T., et al. . (2020). A Review of SARS-CoV-2 and the Ongoing Clinical Trials. Int. J. Mol. Sci. 21(7), 2657. 10.3390/ijms21072657
    1. Udugama B., Kadhiresan P., Kozlowski H. N., Malekjahani A., Osborne M., Li V. Y. C., et al. . (2020). Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano 14 (4), 3822–3835. 10.1021/acsnano.0c02624
    1. USFDA (2020). Pfizer-BioNTech COVID-19 Vaccine [Online]. Available at: (Accessed December 11, 2020).
    1. Vajo Z., Kosa L., Visontay I., Jankovics M., Jankovics I.J.E. i. d. (2007). Inactivated whole virus influenza A (H5N1) vaccine. Emerg. Infect. Dis. 13 (5), 807. 10.3201/eid1305.061248
    1. Van Doremalen N., Bushmaker T., Munster V. J. (2013). Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Euro Surveill. 18 (38), 20590–20594. 10.2807/1560-7917.es2013.18.38.20590
    1. Van Doremalen N., Bushmaker T., Morris D., Holbrook M., Gamble A., Williamson B., et al. . (2020. a). Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1. N Engl J Med. 382 (16), 1564–1567.
    1. Van Doremalen N., Lambe T., Spencer A., Belij-Rammerstorfer S., Purushotham J. N., Port J. R., et al. . (2020. b). ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 586 (7830), 1–8. 10.1038/s41586-020-2608-y
    1. Verdecchia P., Cavallini C., Spanevello A., Angeli F. (2020). The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med. 76, 14–20. 10.1016/j.ejim.2020.04.037
    1. Villapol S., Yaszemski A. K., Logan T. T., Sánchez-Lemus E., Saavedra J. M., Symes A. J. (2012). Candesartan, an angiotensin II AT1receptor blocker and PPAR-γ agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice. NEROEW 37 (13), 2817–2829. 10.1038/npp.2012.152
    1. Vincent M. J., Bergeron E., Benjannet S., Erickson B. R., Rollin P. E., Ksiazek T. G., et al. . (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2, 69–69. 10.1186/1743-422X-2-69
    1. Walls A. C., Park Y.-J., Tortorici M. A., Wall A., McGuire A. T., Veesler D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181 (2), 281–292.e286. 10.1016/j.cell.2020.02.058
    1. Wan Y., Shang J., Graham R., Baric R. S., Li F. (2020). Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol. 94, e00127–00120. 10.1128/jvi.00127-20
    1. Wang L.-F., Shi Z., Zhang S., Field H., Daszak P., Eaton B. T. (2006). Review of bats and SARS. Emerg. Infect. Dis. 12 (12), 1834–1840. 10.3201/eid1212.060401
    1. Wang D., Li Z., Liu Y. (2020. a). An overview of the safety, clinical application and antiviral research of the COVID-19 therapeutics. J. Infect. Public Health. 10.1016/j.jiph.2020.07.004
    1. Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., et al. . (2020. b). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronaviru -nCoV) in vitro. Cell Res. 30 (3), 269–271. 10.1038/s41422-020-0282-0
    1. Wang S., Guo L., Chen L., Liu W., Cao Y., Zhang J., et al. . (2020. c). A Case Report of Neonatal 2019 Coronavirus Disease in China. Clin. Infect. Dis. 71 (15), 853–857. 10.1093/cid/ciaa225
    1. Wang X., Cao R., Zhang H., Liu J., Xu M., Hu H., et al. . (2020. d). The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov. 6, 28. 10.1038/s41421-020-0169-8
    1. Wang X., Tan L., Wang X., Liu W., Lu Y., Cheng L., et al. . (2020. e). Comparison of nasopharyngeal and oropharyngeal swabs for SARS-CoV-2 detection in 353 patients received tests with both specimens simultaneously. J. Infect. Dis. 94, 107–109. 10.1016/j.ijid.2020.04.023
    1. Wang Y., Teunis P. (2020). Strongly Heterogeneous Transmission of COVID-19 in Mainland China: Local and Regional Variation. Front. Med. 7:329. 10.3389/fmed.2020.00329
    1. WHO (2020. a). Coronavirus disease (COVID-19) advice for the public [Online]. Available at: (Accessed 4 June, 2020).
    1. WHO (2020. b). Coronavirus disease (COVID-19) pandemic [Online]. Available at: (Accessed December 12, 2020).
    1. WHO (2020. c). Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) [Online]. Available at: (Accessed December 20, 2020).
    1. Wilen C. B., Tilton J. C., Doms R. W. (2012). HIV: cell binding and entry. Cold Spring Harb. Perspect. Med. 2 (8):a006866. 10.1101/cshperspect.a006866
    1. Wolters F., van de Bovenkamp J., van den Bosch B., van den Brink S., Broeders M., Chung N. H., et al. . (2020). Multi-center evaluation of cepheid xpert® xpress SARS-CoV-2 point-of-care test during the SARS-CoV-2 pandemic. J. Clin. Virol. 128:104426. 10.1016/j.jcv.2020.104426
    1. Wu C., Liu Y., Yang Y., Zhang P., Zhong W., Wang Y., et al. . (2020. a). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B. 10 (5), 766–788. 10.1016/j.apsb.2020.02.008
    1. Wu J.-L., Tseng W.-P., Lin C.-H., Lee T.-F., Chung M.-Y., Huang C.-H., et al. . (2020. b). Four point-of-care lateral flow immunoassays for diagnosis of COVID-19 and for assessing dynamics of antibody responses to SARS-CoV-2. J. Infect. S0163-4453 (0120), 30404–30407. 10.1016/j.jinf.2020.06.023
    1. Wu Y., Guo C., Tang L., Hong Z., Zhou J., Dong X., et al. . (2020. c). Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 5 (5), 434–435. 10.1016/s2468-1253(20)30083-2
    1. Xiao F., Tang M., Zheng X., Liu Y., Li X., Shan H. (2020). Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology 158 (6), 1831–1833.e1833. 10.1053/j.gastro.2020.02.055
    1. Xiao T., Lu J., Zhang J., Johnson R. I., McKay L. G. A., Storm N., et al. . (2021). A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent. Nat. Struct. Mol. Biol. 28 (2), 202–209. 10.1038/s41594-020-00549-3
    1. Yang S., Rothman R. E. (2004). PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect. Dis. 4 (6), 337–348. 10.1016/S1473-3099(04)01044-8
    1. Yasuda H., Leelahavanichkul A., Tsunoda S., Dear J. W., Takahashi Y., Ito S., et al. . (2008). Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 294 (5), F1050–F1058. 10.1152/ajprenal.00461.2007
    1. Ye Z.-W., Yuan S., Yuen K.-S., Fung S.-Y., Chan C.-P., Jin D.-Y. (2020). Zoonotic origins of human coronaviruses. Int. J. Biol. Sci. 16 (10), 1686–1697. 10.7150/ijbs.45472
    1. Yuen K.-S., Ye Z.-W., Fung S.-Y., Chan C.-P., Jin D.-Y. (2020). SARS-CoV-2 and COVID-19: The most important research questions. Cell Biosci. 10, 40–40. 10.1186/s13578-020-00404-4
    1. Zhang B., Liu S., Tan T., Huang W., Dong Y., Chen L., et al. . (2020. a). Treatment With Convalescent Plasma for Critically Ill Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Chest 158 (1), e9–e13. 10.1016/j.chest.2020.03.039
    1. Zhang Y., Zeng G., Pan H., Li C., Hu Y., Chu K., et al. . (2020. b). Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis 21 (2), 181–192. 10.1016/s1473-3099(20)30843-4
    1. Zheng J. (2020). SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat. Int. J. Biol. Sci. 16 (10), 1678–1685. 10.7150/ijbs.45053
    1. Zhu F.-C., Li Y.-H., Guan X.-H., Hou L.-H., Wang W.-J., Li J.-X., et al. . (2020. a). Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 395 (10240), 1845–1854. 10.1016/S0140-6736(20)31208-3
    1. Zhu Z., Lian X., Su X., Wu W., Marraro G. A., Zeng Y. (2020. b). From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res. 21 (1), 224. 10.1186/s12931-020-01479-w

Source: PubMed

3
Tilaa