Influence of dialysate temperature on creatinine peritoneal clearance in peritoneal dialysis patients: a randomized trial

Francesco Fontana, Chiara Torelli, Silvia Giovanella, Giulia Ligabue, Gaetano Alfano, Karin Gerritsen, Rafael Selgas, Gianni Cappelli, Francesco Fontana, Chiara Torelli, Silvia Giovanella, Giulia Ligabue, Gaetano Alfano, Karin Gerritsen, Rafael Selgas, Gianni Cappelli

Abstract

Background: Patients on continuous ambulatory peritoneal dialysis (PD) are encouraged to warm dialysate to 37 °C before peritoneal infusion; main international PD guidelines do not provide specific recommendation, and patients generally warm dialysate batches partially or do not warm them at all. Warming of dialysate is a time-consuming procedure, not free from potential risks (i.e. degradation of glucose), and should be justified by a clear clinical benefit.

Methods: We designed a single blind randomized controlled trial where 18 stable PD patients were randomized to receive a peritoneal equilibration test either with dialysate at a controlled temperature of 37 °C (intervention group) or with dialysate warmed with conventional methods (control group). Primary end-point was a higher peritoneal creatinine clearance in patients in the intervention group.

Results: Patients in the intervention group did not show a significantly higher peritoneal creatinine clearance when compared to the control group (6.38 ± 0.52 ml/min vs 5.65 ± 0.37 ml/min, p = 0.2682). Similar results were obtained for urea peritoneal clearance, mass transfer area coefficient of creatinine and urea. There were no significant differences in total abdominal discomfort questionnaire score, blood pressure and body temperature between the two groups.

Conclusions: Using peritoneal dialysate at different temperatures without causing significant side effects to patients appears feasible. We report a lack of benefit of warming peritoneal dialysate to 37 °C on peritoneal clearances; future PD guidelines should not reinforce this recommendation.

Trial registration: NCT04302649, ClinicalTrials.gov ; date of registration 10/3/2020 (retrospectively registered).

Keywords: Dialysate temperature; Peritoneal clearance; Peritoneal dialysis.

Conflict of interest statement

We have read and understood BMC Nephrology policy on conflicts of interest disclosure and declare that we have none.

Figures

Fig. 1
Fig. 1
Study flow diagram
Fig. 2
Fig. 2
Peritoneal creatinine clearance in the uncontrolled dialysate temperature group (light grey bar) and 37° dialysate temperature group (dark grey bar)
Fig. 3
Fig. 3
Peritoneal urea clearance in the uncontrolled dialysate temperature group (light grey bar) and 37° dialysate temperature group (dark grey bar)
Fig. 4
Fig. 4
Dialysate to plasma ratio for creatinine and urea (left and middle panel, left y axis) and dialysate drained volume (right panel, right y axis) for the uncontrolled dialysate temperature group (light grey bar) and 37° dialysate temperature group (dark grey bar)
Fig. 5
Fig. 5
Peritoneal mass transfer urea coefficients (MTAC) for creatinine (left panel) and urea (right panel) in the uncontrolled dialysate temperature group (light grey bars) and 37° dialysate temperature group (dark grey bars)

References

    1. Fernandez-Reyes MJ, Bajo MA, Del Peso G, Ossorio M, Diaz R, Carretero B, Selgas R. The influence of initial peritoneal transport characteristics, inflammation, and high glucose exposure on prognosis for peritoneal membrane function. Perit Dial Int. 2012;32(6):636–644. doi: 10.3747/pdi.2011.00137.
    1. Bargman JM, Krediet RT, Lo WK, Selgas R, del Peso G, Auxiliadora Bajo M, Mujais S. Opinion: what are the problems with using the peritoneal membrane for long-term dialysis? Semin Dial. 2007;21(1):11–13. doi: 10.1111/j.1525-139X.2007.00385_1.x.
    1. Aroeira LS, Aguilera A, Sanchez-Tomero JA, Bajo MA, del Peso G, Jimenez-Heffernan JA, Selgas R, Lopez-Cabrera M. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol. 2007;18(7):2004–2013. doi: 10.1681/ASN.2006111292.
    1. KDOQI Clinical practice guidelines and recommendations 2006 updates: hemodialysis adequacy, peritoneal dialysis adequacy, vascular access. Am J Kidney Dis. 2006;48:1–322. doi: 10.1053/j.ajkd.2006.03.048.
    1. European best practice guidelines for peritoneal dialysis: adequacy of peritoneal dialysis. Nephrol Dial Transplant. 2005;20(SUPPL. 9):ix24-ix27. 10.1093/ndt/gfi1121.
    1. Agency BR. Warming peritoneal dialysis solutions. . Published 2013. Accessed 31 Oct 2017.
    1. Welten AGA, Schalkwijk CG, ter Wee PM, Meijer S, van den Born J, Beelen RJH. Single exposure of mesothelial cells to glucose degradation products (GDPs) yields early advanced glycation end-products (AGEs) and a proinflammatory response. Perit Dial Int J Int Soc Perit Dial. 2003;23(3):213–221. doi: 10.1177/089686080302300301.
    1. Fontana F, Ballestri M, Makomi C, Morandi R, Cappelli G. Hemorheologic alterations in peritoneal dialysis. Clin Hemorheol Microcirc. 2017;65(2):175–183. doi: 10.3233/CH-16152.
    1. Gross M, McDonald HP. Effect of dialysate temperature and flow rate on peritoneal clearance. JAMA. 1967;202(4):363–365. doi: 10.1001/jama.1967.03130170163035.
    1. Indraprasit S, Namwongprom A, Sooksriwongse C, Buri PS. Effect of dialysate temperature on peritoneal clearances. Nephron. 1983;34(1):45–47. doi: 10.1159/000182977.
    1. Saghaei M. Random allocation software for parallel group randomized trials. BMC Med Res Methodol. 2004;4:26. doi: 10.1186/1471-2288-4-26.
    1. Teixidó-Planas J. Peritoneal function and adequacy calculations: current programs versus PD Adequest 2.0. Perit Dial Int. 2002;22(3):386–393. doi: 10.1177/089686080202200314.
    1. Krediet RT. The peritoneal membrane in chronic peritoneal dialysis. Kidney Int. 1999;55(1):341–356. doi: 10.1046/j.1523-1755.1999.00264.x.
    1. Figueiredo AE, Goodlad C, Clemenger M, Haddoub SS, McGrory J, Pryde K, Tonkins E, Hisole N, Brown EA. Evaluation of physical symptoms in patients on peritoneal dialysis. Int J Nephrol. 2012;2012:305424. doi: 10.1155/2012/305424.
    1. Twardowski ZJ. Clinical value of standardized equilibration tests in CAPD patients. Blood Purif. 1989;7(2–3):95–108. doi: 10.1159/000169582.
    1. La Milia V. Peritoneal transport testing. J Nephrol. 2010;23(6):633–647.
    1. Rippe B, Rosengren BI, Venturoli D. The peritoneal microcirculation in peritoneal dialysis. Microcirculation. 2001;8(5):303–320. doi: 10.1038/sj/mn/7800106.
    1. Waniewski J, Werynski A, Lindholm B. Effect of blood perfusion on diffusive transport in peritoneal dialysis. Kidney Int. 1999;56(2):707–713. doi: 10.1046/j.1523-1755.1999.00595.x.
    1. Zakaria ER, Patel AA, Li N, Matheson PJ, Garrison RN. Vasoactive components of dialysis solution. Perit Dial Int. 2008;28(3):283–295. doi: 10.1177/089686080802800316.
    1. Ashei ZER, Althani A, Fawzi AA, Fituri OM. Hyperosmolality-mediated peritoneal microvascular vasodilation is linked to aquaporin function. Adv Perit Dial. 2014;30:63.
    1. Stachowska-Pietka J, Waniewski J, Vonesh E, Lindholm B. Changes in free water fraction and aquaporin function with dwell time during continuous ambulatory peritoneal dialysis. Artif Organs. 2010. 10.1111/j.1525-1594.2010.01036.x.
    1. Stachowska-Pietka J, Poleszczuk J, Flessner MF, Lindholm B, Waniewski J. Alterations of peritoneal transport characteristics in dialysis patients with ultrafiltration failure: tissue and capillary components. Nephrol Dial Transplant. 2019. 10.1093/ndt/gfy313.
    1. Fontana F, Torelli C, Giovanella S, Ligabue G, Alfano G, Cappelli G. FP561 influence of dialysate temperature on creatinine peritoneal clearance in peritoneal dialysis patients. Nephrol Dial Transplant. 2019;34(Supplement_1). 10.1093/ndt/gfz106.fp561.

Source: PubMed

3
Tilaa