Mechanisms and Effects of Transcranial Direct Current Stimulation

James Giordano, Marom Bikson, Emily S Kappenman, Vincent P Clark, H Branch Coslett, Michael R Hamblin, Roy Hamilton, Ryan Jankord, Walter J Kozumbo, R Andrew McKinley, Michael A Nitsche, J Patrick Reilly, Jessica Richardson, Rachel Wurzman, Edward Calabrese, James Giordano, Marom Bikson, Emily S Kappenman, Vincent P Clark, H Branch Coslett, Michael R Hamblin, Roy Hamilton, Ryan Jankord, Walter J Kozumbo, R Andrew McKinley, Michael A Nitsche, J Patrick Reilly, Jessica Richardson, Rachel Wurzman, Edward Calabrese

Abstract

The US Air Force Office of Scientific Research convened a meeting of researchers in the fields of neuroscience, psychology, engineering, and medicine to discuss most pressing issues facing ongoing research in the field of transcranial direct current stimulation (tDCS) and related techniques. In this study, we present opinions prepared by participants of the meeting, focusing on the most promising areas of research, immediate and future goals for the field, and the potential for hormesis theory to inform tDCS research. Scientific, medical, and ethical considerations support the ongoing testing of tDCS in healthy and clinical populations, provided best protocols are used to maximize safety. Notwithstanding the need for ongoing research, promising applications include enhancing vigilance/attention in healthy volunteers, which can accelerate training and support learning. Commonly, tDCS is used as an adjunct to training/rehabilitation tasks with the goal of leftward shift in the learning/treatment effect curves. Although trials are encouraging, elucidating the basic mechanisms of tDCS will accelerate validation and adoption. To this end, biomarkers (eg, clinical neuroimaging and findings from animal models) can support hypotheses linking neurobiological mechanisms and behavioral effects. Dosage can be optimized using computational models of current flow and understanding dose-response. Both biomarkers and dosimetry should guide individualized interventions with the goal of reducing variability. Insights from other applied energy domains, including ionizing radiation, transcranial magnetic stimulation, and low-level laser (light) therapy, can be prudently leveraged.

Keywords: biphasic; dose–response; electrical stimulation; hormesis; hormetic; tDCS.

Conflict of interest statement

Declaration of Conflicting Interests: The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: CUNY has patents on brain stimulation with Bikson as an inventor. Bikson has equity in Soterix Medical Inc. Nitsche is on the advisory board of neuroelectrics—producing DC stimulators.

Figures

Figure 1.
Figure 1.
Schematics of the 3 major toxicological dose–response models, LNT, threshold, and hormesis, are illustrated above. Toxic responses to increasing doses of a hypothetical toxicant are represented as a percentage of untreated controls. Note that the threshold points for both the threshold and hormetic models are the same (at dose 5) and that only the hormesis model actually characterizes the observed reductions in toxicity (beneficial effects) occurring over a portion of the subthreshold range (ie, between doses 1 and 5). LNT indicates linearity no-threshold.
Figure 2.
Figure 2.
Mechanism of action of LLLT at a cellular level. Near-infrared (NIR) light is absorbed in mitochondria, leading to the activation of signaling pathways (cyclic adenosine monophosphate [cAMP], reactive oxygen species [ROS], NO) that in turn activate transcription factors such as nuclear factor kappa B (NF-kB) and activator protein 1 (AP1) (see text for details). LLLT indicates low-level laser (light) therapy; NIR, near-infrared; ROS reactive oxygen species.
Figure 3.
Figure 3.
Mechanism of action of tNIR in the brain. The transcription factor activation as discussed in Figure 1 leads to upregulation of neurotrophins such as BDNF leading to neuroplasticity (synaptogenesis) and newly formed neurons (neurogenesis). Neuroinflammation is reduced. BDNF indicates brain derived neurotropic factor; IL-1, interleukin 1; NGF, nerve growth factor; TNF-α, tumor necrotic factor α; tNIR, transcranial near-infrared.
Figure 4.
Figure 4.
Hormetic dose–response curve depicting the quantitative features of hormesis.

References

    1. Calabrese EJ. Biphasic dose responses in biology, toxicology and medicine: accounting for their generalizability and quantitative features. Environ Pollut. 2013;182:452–460.
    1. Calabrese EJ. Hormetic mechanisms. Crit Rev Toxicol. 2013;43(7):580–606.
    1. Calabrese EJ. Origin of the linearity no threshold (LNT) dose-response concept. Arch Toxicol. 2013;87(9):1621–1633.
    1. Calabrese EJ. Model uncertainty via the integration of hormesis and LNT as the default in cancer risk assessment. Dose Response. 2015;13(4):1–5.
    1. Bhakta-Guha D, Efferth T. Hormesis: decoding two sides of the same coin. Pharmaceuticals (Basel). 2015;8(4):865–883;doi:10.3390/ph8040865.
    1. Berryhill ME, Peterson DJ, Jones KT, Stephens JA. Hits and misses: leveraging tDCS to advance cognitive research. Front Psychol. 2014;5:800.
    1. Calabrese EJ, Blain RB. The hormesis database: the occurrence of hormetic dose responses in the toxicological literature. Regul Toxical Pharmacol. 2011;61(1):73–81.
    1. Calabrese EJ, Blain RB. The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicol Appl Pharmacol. 2005;202(3):289–301.
    1. Calabrese EJ, Blain RB. Hormesis and plant biology. Environ Pollut. 2009;157(1):42–48.
    1. Calabrese E, Baldwin LA. The frequency of U-shaped dose responses in the toxicological literature. Toxicol Sci. 2001;62(2):330–338.
    1. Calabrese EJ, Baldwin LA. The hormetic dose response model is more common than the threshold model in toxicology. Toxicol Sci. 2003;71(2):246–250.
    1. Calabrese EJ, Hoffmann GR, Stanek EJ III, Nascarella MA. Hormesis in high-throughput screening of antibacterial compounds in E. coli . Hum Exp Toxicol. 2010;29(8):667–677.
    1. Calabrese EJ, Stanek EJ III, Nascarella MA, Hoffmann GR. Hormesis predicts low responses better than threshold models. Int J Toxicol. 2008;27(5):369–378.
    1. Calabrese EJ, Staudenmayer JW, Stanek EJ III, Hoffmann GR. Hormesis outperforms threshold model in National Cancer Institute antitumor drug screening database. Toxicol Sci. 2006;94(2):368–378.
    1. Hayes L, Krugar J, eds. Hayes’ Principles and Methods of Toxicology. 6th ed Boca Raton, FL: CRC Press; 2014.
    1. Calabrese EJ. Preconditioning is hormesis (part I): documentation, dose response features and mechanistic foundations. Pharmacol Res. 2016;110:242–264. doi:10.1016/j.phrs.2015.12.021.
    1. Calabrese EJ. Preconditioning is hormesis (part II): how the conditioning dose mediates protection: dose optimization within temporal and mechanistic frameworks. Pharmacol Res. 2016;110:265–275. doi:10.1016/j.phrs.2015.12.020.
    1. Calabrese EJ, Baldwin LA. Radiation hormesis: its historical foundations as a biological hypothesis. Hum Exper Toxicol. 2000;19(1):41–75.
    1. Huang Y-Y, Sharma SK, Carroll M, Hamblin MR. Biphasic dose response in low level light therapy—an update. Dose Response. 2011;9(4):602–618. doi:10.2203/dose-response.11-009.Hamblin.
    1. Chen AC-H, Arany PR, Huang YY, et al. Low-level therapy activates NF-Kb via generation of reactive oxygen species in mouse embryonic fibroblasts. PLos One. 2011;6(7):e22453.
    1. Sannino A, Sarti M, Reddy SB, et al. Induction of adaptive response in human blood lymphocytes exposed to radiofrequency radiation. Radiat Res. 2009;171(6):735–742.
    1. Jiang B, Nie J, Zhou Z, Zhang J, Tong J, Cao Y. Adaptive response in mice exposed to 900 MHz radiofrequency fields: primary DNA damage. PLoS One. 2012;7(2):e32040.
    1. Pilla A, Fitzsimmons R, Muehsam D, Wu J, Rohde C, Casper D. Electromagnetic fields as first messengers in biological signaling: application to calmodulin-dependent signaling in tissue. Biochim Biophys Acta. 2011;1810(12):1236–1245.
    1. Nelson JT, McKinley RA, Golob EJ, Warm JS, Parasuraman R. Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). Neuroimage. 2014;15(85):909–917.
    1. Rohan JG, Carhuatanta KA, McInturf SM, Miklasevich MK, Jankord R. Modulating hippocampal plasticity with in vivo brain stimulation. J Neurosci. 2015;35(37):12824–12832.
    1. Cohen-Kadosh R, Soskic S, Iucuiano T, Kanai R, Walsh V. Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Curr Biol. 2010;20(22):2016–2020.
    1. Zhu FF, Young AY, Poolton JM, et al. Cathodal transcranial direct current stimulation over left dorsolateral prefrontal cortex area promotes implicit motor learning in a golf-putting task. Brain Stimul. 2015;8(4):784–786.
    1. Snowball A, Tachtsidis I, Popescu T, et al. Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Curr Biol. 2013;23(11):987–992.
    1. McKinley RA, McIntire LK, Bridges N, Goodyear C, Bangera NB, Weisend MP. Acceleration of image analysts training with transcranial direct current stimulation. Behav Neurosci. 2013;127(6):936–946.
    1. Andrews SC, Hoy KE, Enticott PG, Daskalakis ZJ, Fitzgerald PB. Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimul. 2011;4(2):84–89. doi:1016/j.brs.2010.06.004.
    1. Mungee A, Kazzer P, Feeser M, Nitsche MA, Schiller D, Bajbouj M. Transcranial direct current stimulation of the prefrontal cortex: a means to modulate fear memories. Neuroreport. 2014;25(7):480–484. doi:10.1097/WNR.0000000000000119.
    1. Zaehle T, Sandmann P, Thorne JD, Jäncke L, Herrmann CS. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioral and electrophysiological evidence. BMC Neurosci. 2011;12:2 doi:10.1186/1471-2202-12-2.
    1. Kalu UG, Sexton CE, Loo CK, Ebmeier KP. Transcranial direct current stimulation in the treatment of major depression: a meta-analysis. Psychol Med. 2012;42(9):1791–1800. doi: 1017/S0033291711003059.
    1. Loo CK, Sachdev P, Martin D, et al. A double-blind, sham-controlled trial of transcranial direct current stimulation for the treatment of depression. Int J Neuropsychopharmcol. 2010;13(1):61–69. doi:10.1017/S1461145709990411.
    1. Fregni F, Boggio PS, Lima MC, et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain. 2006;122(1-2):197–209. doi:10.1016/j.pain.2006.02.023.
    1. Leaucheur JP, Antal A, Ahdab R, et al. The use of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) to relieve pain. Brain Stimul. 2008;1(4):337–344. doi:10.1016/j.brs.2008.07.003.
    1. McIntire LK, McKinley RA, Goodyear C, Nelson J. A comparison of the effects of transcranial direct current stimulation and caffeine on vigilance and cognitive performance during extended wakefulness. Brain Stimul. 2014;7(4):449–507. doi:10.1016/j.brs.2014.04.008.
    1. Baker JM, Rorden C, Fridriksson J. Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke. 2010;41(6):1229–1236. doi:10.1161/STROKEHA.109.576785.
    1. Chrysikou EG, Hamilton RH. Non-invasive brain stimulation in the treatment of aphasia: exploring interhemispheric relationships and their implications for neurorehabilitation. Restor Neurol Neurosci. 2011;29(6):375–394. doi:10.3233/RNN-2011-0610.
    1. Mulligan RC, Knopik VS, Sweet LH, Fischer M, Seidenberg M, Rao SM. Neural correlates of inhibitory control in adult attention deficit/hyperactivity disorder: evidence from the Milwaukee longitudinal sample. Psychiatry Res. 2011;194(2):119–129. doi:10.1016/j.pscychresns.2011.02.003.
    1. Kuo MF, Paulus W, Nitsche MA. Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. Neuroimage. 2014;85(pt 3):948–960.
    1. Brunoni AR, Nitsche MA, Bolognini N, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012;5(3):175–195.
    1. Bikson M, Inoue M, Akiyama H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004;557(pt 1):175–190.
    1. Purpura DP, McMurtry JG. Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol. 1965;28:166–185. PubMed PMID: 14244793.
    1. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, Lu B. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204. doi:10.1016/j.neuron.2010.03.035.
    1. Nitsche MA, Fricke K, Henschke U, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003;553(pt 1):293–301. doi:10.1113/jphysiol.2003.049916.
    1. Polanía R, Paulus W, Antal A, Nitsche MA. Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study. Neuroimage. 2011;54(3):2287–2296. doi:10.1016/j.neuroimage.2010.09.085.
    1. Polanía R, Nitsche MA, Paulus W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp. 2011;32(8):1236–1249. doi:10.1002/hbm.21104.
    1. Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591(7):1987–2000. doi:10.1113/jphysiol.2012.249730. PubMed PMID: 23339180; PubMedCentral PMCID: PMC3624864.
    1. Gill J, Shah-Basak PP, Hamilton R. It’s the thought that counts: examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimul. 2015;8(2):253–259. doi:10.1016/j.brs.2014.10.018. PubMed PMID: 25465291.
    1. Sarkar A, Dowker A, Cohen Kadosh R. Cognitive enhancement or cognitive cost: trait-specific outcomes of brain stimulation in the case of mathematics anxiety. J Neurosci. 2014;34(50):16605–16610. doi:10.1523/JNEUROSCI.3129-14.2014. PubMed PMID: 25505313; PubMed Central PMCID: PMC4261089.
    1. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2(4):201–207, 207.e1. PubMed PMID: 20648973; PubMed Central PMCID: PMC2790295.
    1. Ranieri F, Podda MV, Riccardi E, et al. Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. J Neurophysiol. 2012;107(7):1868–1880. doi:10.1152/jn.00319.2011.
    1. Reato D, Bikson M, Parra LC. Lasting modulation of in vitro oscillatory activity with weak direct current stimulation. J Neurophysiol. 2015;113(5):1334–1341. doi:10.1152/jn.00208.2014.
    1. Kuo HI, Bikson M, Datta A, et al. Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study. Brain Stimul. 2013;6(4):644–648. doi:10.1016/j.brs.2012.09.010.
    1. Furuya S, Klaus M, Nitsche MA, Paulus W, Altenmüller E. Ceiling effects prevent further improvement of transcranial stimulation in skilled musicians. J Neurosci. 2014;34(41):13834–13839. doi:10.1523/JNEUROSCI.1170-14.2014.
    1. Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci. 2015;9:181 doi:10.3389/fncel.2015.00181.
    1. Datta A, Truong D, Minhas P, Parra LC, Bikson M. Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Front Psychiatry. 2012;3:91 doi:10.3389/fpsyt.2012.00091.
    1. Antal A, Keeser D, Priori A, Padberg F, Nitsche MA. Conceptual and procedural shortcomings of the systematic review “evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review” by Horvath and co-workers. Brain Stimul. 2015;8(4):846–849. doi:10.1016/j.brs.2015.05.010.
    1. Price AR, Hamilton RH. A re-evaluation of the cognitive effects from single-session transcranial direct current stimulation. Brain Stimul. 2015;8(3):663–665. doi:10.1016/j.brs.2015.03.007.
    1. Neuling T, Ruhnau P, Fuscà M, Demarchi G, Herrmann CS, Weisz N. Friends, not foes: magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation. Neuroimage. 2015;118:406–413. doi:10.1016/j.neuroimage.2015.06.026.
    1. Datta A, Jacob A, Chowdhury SR, Das A, Nitsche MA. EEG-NIRS based assessment of neurovascular coupling during anodal transcranial direct current stimulation—a stroke case series. J Med Syst. 2015;39(4):205 doi:10.1007/s10916-015-0205-7.
    1. Woods AJ, Bryant V, Sacchetti D, Gervits F, Hamilton R. Effects of electrode drift in transcranial direct current stimulation. Brain Stimul. 2015;8(3):515–519. doi:10.1016/j.brs.2014.12.007.
    1. Palm U, Reisinger E, Keeser D, et al. Evaluation of sham transcranial direct current stimulation for randomized, placebo-controlled clinical trials. Brain Stimul. 2013;6(4):690–695. doi:0.1016/j.brs.2013.01.005.
    1. DaSilva AF, Volz MS, Bikson M, Fregni F. Electrode positioning and montage in transcranial direct current stimulation. J Vis Exp. 2011;23(51):pii: 2744 doi:10.3791/2744. PubMed PMID: 21654618; PubMed Central PMCID:PMC3339846.
    1. Datta A, Dmochowski JP, Guleyupoglu B, Bikson M, Fregni F. Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study. Neuroimage. 2013;65:280–287. doi:10.1016/j.neuroimage.2012.09.062.
    1. Bai S, Loo C, Dokos S. A computational model of direct brain stimulation by electroconvulsive therapy. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2069–2072. doi:10.1109/IEMBS.2010.5626333.
    1. Deng ZD, Lisanby SH, Peterchev AV. Effect of anatomical variability on neural stimulation strength and focality in electroconvulsive therapy (ECT) and magnetic seizure therapy (MST). Conf Proc IEEE Eng Med Biol Soc. 2009:682–688. doi:10.1109/IEMBS.2009.5334091.
    1. Opitz A, Legon W, Rowlands A, Bickel WK, Paulus W, Tyler WJ. Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. Neuroimage. 2013;81:253–264. doi:10.1016/j.neuroimage.2013.04.067.
    1. Salvador R, Silva S, Basser PJ, Miranda PC. Determining which mechanisms lead to activation in the motor cortex: a modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry. Clin Neurophysiol. 2011;122(4):748–758. doi: 0.1016/j.clinph.2010.09.022.
    1. Radman T, Ramos RL, Brumberg JC, Bikson M. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2009;2(4):215–228, 228. e1–3. doi:10.1016/j.brs.2009.03.007.
    1. Lefaucheur JP, Drouot X, Von Raison F, Ménard-Lefaucheur I, Cesaro P, Nguyen JP. Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson’s disease. Clin Neurophysiol. 2004;115(11):2530–2541.
    1. Brunoni AR, Teng CT, Correa C, et al. Neuromodulation approaches for the treatment of major depression: challenges and recommendations from a working group meeting. Arq Neuropsiquiatr. 2010;68(3):433–451.
    1. Reato D, Rahman A, Bikson M, Parra LC. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci. 2010;30(45):15067–15079. doi:10.1523/JNEUROSCI.2059-10.2010.
    1. Guleyupoglu B, Schestatsky P, Edwards D, Fregni F, Bikson M. Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J Neurosci Methods. 2013;219(2):297–311. doi:10.1016/j.jneumeth.2013.07.016.
    1. Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285(5762):227.
    1. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1(8437):1106–1107.
    1. Rossini PM, Burke D, Chen R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071–1107. doi:10.1016/j.clinph.2015.02.001.
    1. Paulus W, Classen J, Cohen LG, et al. State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul. 2008;1(3):151–163. doi:10.1016/j.brs.2008.06.002.
    1. Ziemann U, Paulus W, Nitsche MA, et al. Consensus: motor cortex plasticity protocols. Brain Stimul. 2008;1(3):164–182.
    1. Nitsche MA, Cohen LG, Wassermann EM, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–223. doi:10.1016/j.brs.2008.06.004.
    1. Ruffini G, Fox MD, Ripolles O, Miranda PC, Pascual-Leone A. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. Neuroimage. 2014;89:216–225. doi:10.1016/j.neuroimage.2013.12.002.
    1. Moliadze V, Atalay D, Antal A, Paulus W. Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul. 2012;5(4):505–511. doi:10.1016/j.brs.2011.11.004.
    1. Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci. 2013;7:317 doi:10.3389/fnhum.2013.00317.
    1. Naeser MA, Hamblin MR. Potential for transcranial laser or LED therapy to treat stroke, traumatic brain injury, and neurodegenerative disease. Photomed Laser Surg. 2011;29(7):443–446.
    1. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516–533.
    1. Hamblin MR, Demidova TN. Mechanisms of low level light therapy—an introduction In: Hamblin MR, Anders JJ, Waynant RW, eds. Mechanisms for Low-Light Therapy I. Proc SPIE 6140. Bellingham, WA: The International Society for Optical Engineering; 2006.
    1. Passarella S, Karu T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol B. 2014;140:344–358.
    1. Lane N. Cell biology: power games. Nature. 2006;443(7114):901–903.
    1. Poyton RO, Ball KA. Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov Med. 2011;11(57):154–159.
    1. Alexandratou E, Yova D, Handris P, Kletsas D, Loukas S. Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy. Photochem Photobiol Sci. 2002;1(8):547–552.
    1. Kim HP. Lightening up light therapy: activation of retrograde signaling pathway by photobiomodulation. Biomol Ther (Seoul). 2014;22(6):491–496.
    1. Wang L, Zhang D, Schwarz W. TRPV channels in mast cells as a target for low-level-laser therapy. Cells. 2014;3(3):662–673.
    1. Lapchak PA. Taking a light approach to treating acute ischemic stroke patients: transcranial near-infrared laser therapy translational science. Ann Med. 2010;42(8):576–586.
    1. Yip S, Zivin J. Laser therapy in acute stroke treatment. Int J Stroke. 2008;3(2):88–91.
    1. Lampl Y, Zivin JA, Fisher M, et al. Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke. 2007;38(6):1843–1849.
    1. Huisa BN, Stemer AB, Walker MG, Rapp K, Meyer BC, Zivin JA; NEST-1 and -2 investigators. Transcranial laser therapy for acute ischemic stroke: a pooled analysis of NEST-1 and NEST-2. Int J Stroke. 2013;8(5):315–320.
    1. Hacke W, Schellinger PD, Albers GW, et al. Transcranial laser therapy in acute stroke treatment: results of neurothera effectiveness and safety trial 3, a phase III clinical end point device trial. Stroke. 2014;45(11):3187–3193.
    1. Huang YY, Gupta A, Vecchio D, et al. Transcranial low level laser (light) therapy for traumatic brain injury. J Biophotonics. 2012;5(11-12): SI827–S1837. doi:10.1002/jbio.201200077.
    1. Xuan W, Agrawal T, Huang L, Gupta GK, Hamblin MR. Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J Biophotonics. 2015;8(6):502–522. doi:10.1002/jbio.201400069.
    1. Xuan W, Vatansever F, Huang L, Hamblin MR. Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice. J Biomed Opt. 2014;19(10):108003.
    1. De Taboada L, Yu J, El-Amouri S, et al. Transcranial laser therapy attenuates amyloid-β peptide neuropathology in amyloid-β protein precursor transgenic mice. J Alzheimers Dis. 2011;23(3):521–535.
    1. Reinhart F, Massri NE, Darlot F, et al. 810 nm near-infrared light offers neuroprotection and improves locomotor activity in MPTP-treated mice. Neurosci Res. 2015;92:86–90.
    1. Schiffer F, Johnston AL, Ravichandran C, et al. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav Brain Funct. 2009;5:46.
    1. Naeser MA, Zafonte R, Krengel MH, et al. Significant improvements on cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild TBI: open-protocol study. J Neurotrauma. 2014;31(11):1008–1017.
    1. Michalikova S, Ennaceur A, van Rensburg R, Chazot PL. Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: effects of low infrared light. Neurobiol Learn Mem. 2008; 89(4):480–488.
    1. Blanco NJ, Maddox WT, Gonzalez-Lima F. Improving executive function using transcranial infrared laser stimulation. [published online May 28, 2015].
    1. Barrett DW, Gonzalez-Lima F. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience. 2013;230:13–23.
    1. Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009;7(4):358–383.
    1. Fresnoza S, Paulus W, Nitsche MA, Kuo MF. Nonlinear dose-dependent impact of D1 receptor activation on motor cortex plasticity in humans. J Neurosci. 2014;34(7):2744–2753.
    1. Calabrese EJ. Hormesis: from mainstream to therapy. J Cell Commun Signal. 2014;8(4):289–291.
    1. Xuan W, Vatansever F, Huang L, et al. Transcranial low-level laser therapy improves neurological performance in traumatic brain injury in mice: effect of treatment repetition regimen. PLoS One. 2013;8(1):e53454.
    1. Terzuolo CA, Bullock TH. Measurement of imposed voltage gradient adequate to modulate neuronal firing. Proc Natl Acad Sci U S A. 1956;42(9):687–694.
    1. Jefferys JG. Influence of electric fields on the excitability of granule cells in guinea-pig hippocampal slices. J Physiol. 1981;319:143–152. PMID:732090.
    1. Chan CY, Nicholson C. Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. J Physiol. 1986;371:89–114. PMID: 3701658.
    1. Bindman LJ, Lippold OCJ, Redfearn JWT. Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature. 1962;196:584–585.
    1. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(pt 3):633–639. PubMed PMID: 10990547; PubMed Central PMCID: PMC2270099.
    1. Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232(2):331–356.
    1. Marquez-Ruiz J, Leal-Campanario R, Sanchez-Campusano R, et al. Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proc Natl Acad Sci U S A. 2012;109(17):6710–6715.
    1. Dockery CA, Liebetanz D, Birbaumer N, Malinowska M, Wesierska MJ. Cumulative benefits of frontal transcranial direct current stimulation on visuospatial working memory training and skill learning in rats. Neurobiol Learn Mem. 2011;96(3):452–460.
    1. Jiang T, Xu RX, Zhang AW, et al. Effects of transcranial direct current stimulation on hemichannel pannexin-1 and neural plasticity in rat model of cerebral infarction. Neurosci. 2012;226:421–426.
    1. Yu SHY, Park SD, Sim KC. The effect of tDCS on cognition and neurologic recovery of rats with Alzheimer’s disease. J Phys Ther Sci. 2014;26(2):247–249.
    1. Coffman BA, Trumbo MC, Clark VP. Enhancement of object detection with transcranial direct current stimulation is associated with increased attention. BMC Neurosci. 2012;13:108.
    1. Coffman BA, Clark VP, Parasuraman R. Battery-powered thought: enhancement of attention, learning and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 2014;85(3):895–908.
    1. Chrysikou EG, Hamilton RH, Coslett HB, Datta A, Bikson M, Thompson-Schill SL. Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cogn Neurosci. 2013;4(2):81–89.
    1. McKinley RA, Bridges N, Walters CM, Nelson J. Modulating the brain at work using noninvasive transcranial stimulation. Neuroimage. 2012;59(1):129–137.
    1. Helton W, Russell P. Working memory load and the vigilance decrement. Exp Brain Res. 2011;212(3):429–437.
    1. Mackworth JF. Performance decrement in vigilance, threshold, and high-speed perceptual motor tasks. Can J Psychol. 1964;18:209–223.
    1. Hitchcock EM, Warm JS, Matthews G, et al. Automation cueing modulates cerebral blood flow and vigilance in a simulated air traffic control task. Theor Issues Ergon Sci. 2003;4(1-2):89–112.
    1. Nelson J, McKinley RA, Golob EJ, Warm JS, Parasuraman R. Modulating the prefrontal cortex during sustained attention with transcranial direct current stimulation. Neuroimage. 2014;85(10):909–917.
    1. Nelson J, McKinley RA, McIntire LK, et al. Augmenting visual search performance with transcranial direct current stimulation (tDCS). Mil Psychol. 2015;27(6):335–347. doi: 10.1037/mil0000085.
    1. Nelson JM, McKinley RA, Phillips C, et al. The effects of transcranial direct current stimulation (tDCS) on multitasking throughput capacity. Front Hum Neurosci. 2016;10:589 doi:10.3389/fnhum.2016.00589.
    1. McIntire L, McKinley RA, Nelson J, et al. Transcranial direct current stimulation (tDCS) versus caffeine to sustain wakefulness at night when dosing at start-of-shift In: Hale KS, Stanney KM, eds. Advances in Neuroergonomics and Cognitive Engineering. New York, NY: Springer; 2017.
    1. Clark VP, Coffman BA, Mayer AR, et al. TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage. 2012;59(1):S117–S128.
    1. Falcone B, Coffman BA, Clark VP, Parasuraman R. Transcranial direct current stimulation augments perceptual sensitivity and 24-hour retention in a complex threat detection task. PLoS One. 2012;7(4):e34993.
    1. McGaugh JL. Consolidating memories. Annu Rev Psychol. 2015;66:1–24.
    1. Sakaki M, Fryer K, Mather M. Emotion strengthens high priority memory traces but weakens low priority memory traces. Psychol Sci. 2014;25(2):387–395.
    1. McKinley RA, McIntire L, Nelson J, Nelson J, Goodyear C. The effects of transcranial direct current stimulation (tDCS) on training during a complex procedural task In: Hale KS, Stanney KM, eds. Advances in Neuroergonomics and Cognitive Engineering. New York, NY: Springer; 2017.
    1. Poldrack RA, Packard MG. Competition among memory systems: converging evidence from animal and human brain studies. Neuropsychologia. 2003;41(3):245–251.
    1. Krupa A. The competitive nature of declarative and non-declarative memory systems: converging evidence from animal and human brain studies. UCLA Undergrad Sci J. 2009;22:39–46.
    1. Shook J, Giordano J, Galvagni L. Cognitive enhancement kept within contexts: neuroethics and informed public policy. Front Syst Neurosci. 2014;8:228.
    1. Shook J, Giordano J. Neuroethics beyond normal. Camb Q Healthc Ethics. 2016;25(1):121–140.
    1. Krause B, Cohen Kadosh R. Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Front Syst Neurosci. 2014;8:25 doi:10.3389/fnsys.2014.00025.
    1. Krause B, Marquez-Ruiz J, Cohen Kadosh R. The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Front Hum Neurosci. 2013;7:602 doi:10.3389/fnhum.2013.00602.
    1. Clark VP, Coffman BA, Trumbo MC, Gasparovic C. Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a 1H magnetic resonance spectroscopy study. Neurosci Lett. 2011;500(1):67–71. doi:10.1016/j.neulet.2011.05.244.
    1. Hunter MA, Coffman BA, Gasparovic C, Calhoun VD, Trumbo MC, Clark VP. Baseline effects of transcranial direct current stimulation on glutamatergic neurotransmission and large-scale network connectivity. Brain Res. 2015;1594:92–107.
    1. Mather M, Clewett D, Sakaki M, Harley CW. Norepinephrine ignites local hot spots of neuronal excitation: how arousal amplified selectivity in perception and memory [published online July 1, 2015.]. Behav Brain Sci. 2015.
    1. Van der Merwe AJ, Bullard LM, Paulson KM, et al. Transcranial direct current stimulation increases fractional anisotropy in white matter tracts in the brain. Paper presented at: The Society for Neuroscience Conference; November 12-16, 2011; Washington, DC.
    1. Meron D, Hedger N, Garner M, Baldwin DS. Transcranial direct current stimulation (tDCS) in the treatment of depression: systematic review and meta-analysis of efficacy and tolerability. Neurosci Biobehav Rev. 2015;57:46–62.
    1. Mehta S, McIntyre A, Guy S, Teasell RW, Loh E. Effectiveness of transcranial direct current stimulation for the management of neuropathic pain after spinal cord injury: a meta-analysis. Spinal Cord. 2015;53(11):780–785.
    1. Hsu WY, Ku Y, Zanto TP, Gazzaley A. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: a systematic review and meta-analysis. Neurobiol Aging. 2015;36(8):2348–2359.
    1. Elsner B, Kugler J, Pohl M, et al. Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke. Cochrane Database Syst Rev. 2013;15(11):CD009645.
    1. Tedesco Triccas L, Burridge JH, Hughes AM, et al. Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: a review and meta-analysis. Clin Neurophysiol. 2016;127(1):946–955.
    1. de Aguiar V, Paolazzi CL, Miceli G. tDCS in post-stroke aphasia: the role of stimulation parameters, behavioral treatment and patient characteristics. Cortex. 2015;63:296–316.
    1. Jacobson L, Koslowsky M, Lavidor M. tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res. 2012;216(1):1–10.
    1. Fitz NS, Reiner PB. The challenge of crafting policy for do-it-yourself brain stimulation. J Med Ethics. 2015;41(5):410–412. doi:10.1136/medethics-2013-101458.
    1. Ohn SH, Park CI, Yoo WK, et al. Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. Neuroreport. 2008;19(1):43–47.
    1. Ardolino G, Bossi B, Barbieri S, Priori A. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J Physiol. 2005;568(pt 2):653–663.
    1. Lang N, Siebner HR, Ward NS, et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci. 2005;22(2):495–504.
    1. Fröhlich F, McCormick DA. Endogenous electric fields may guide neocortical network activity. Neuron. 2010;67(1):129–143.
    1. Siebner HR, Lang N, Rizzo V, et al. Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci. 2004;24(13):3379–3385.
    1. Alonzo A, Brassil J, Taylor JL, Martin D, Loo CK. Daily transcranial direct current stimulation (tDCS) leads to greater increases in cortical excitability than second daily transcranial direct current stimulation. Brain Stimul. 2012;5(3):208–213.
    1. Hochmair-Desoyer IJ, Hochmair ES, Motz H, Rattay F. A model for the electrostimulation of the nervus acusticus. Neuroscience. 1984;13(2):553–562. PubMed PMID: 6549052.
    1. Rubinstein JT. Analytical theory for extracellular electrical stimulation of nerve with focal electrodes. II. Passive myelinated axon. Biophys J. 1991;60(3):538–555. PubMed PMID: 1932546; PubMed Central PMCID: PMC1260098.
    1. Rattay F. Ways to approximate current-distance relations for electrically stimulated fibers. J Theor Biol. 125(3):339–349. Erratum in: J Theor Biol. 1987;128(4):527. PubMed PMID: 3657215.
    1. Tranchina D, Nicholson C. A model for the polarization of neurons by extrinsically applied electric fields. Biophys J. 1986;50(6):1139–1156. PubMed PMID: 3801574; PubMed Central PMCID: PMC1329788.
    1. Nilsson J, Panizza M, Roth BJ, et al. Determining the site of stimulation during magnetic stimulation of a peripheral nerve. Electroencephalogr Clin Neurophysiol. 1992;85(4):253–264. PubMed PMID: 1380913.
    1. Reilly JP. Applied Bioelectricity: From Electrical Stimulation to Electropathology. New York, NY: Springer; 2012.
    1. Datta A, Baker JM, Bikson M, Fridriksson J. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimul. 2011;4(3):169–174. doi:10.1016/j.brs.2010.11.001. PubMed PMID: 21777878; PubMed Central PMCID: PMC3142347.
    1. Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol. 2006;117(7):1623–1629. PubMed PMID: 16762592.
    1. Truong DQ, Hüber M, Xie X, et al. Clinician accessible tools for GUI computational models of transcranial electrical stimulation: BONSAI and SPHERES. Brain Stimul. 2014;7(4):521–524. doi:10.1016/j.brs.2014.03.009. PubMed PMID: 24776786; PubMed Central PMCID: PMC4108562.
    1. Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A. Transcranial direct current stimulation: a computer-based human model study. Neuroimage. 2007;35(3):1113–1124. PubMed PMID: 17337213.
    1. Datta A, Zhou X, Su Y, Parra LC, Bikson M. Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose. J Neural Eng. 2013;10(3):036018 doi:10.1088/1741-2560/10/3/036018. PubMed PMID: 23649036.
    1. Antal A, Bikson M, Datta A, et al. Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain. Neuroimage. 2014;85(pt 3):1040–1047. doi:10.1016/j.neuroimage.2012.10.026.
    1. Halko MA, Datta A, Plow EB, Scaturro J, Bikson M, Merabet LB. Neuroplastic changes following rehabilitative training correlate with regional electrical field induced with tDCS. Neuroimage. 2011;57(3):885–891. doi:10.1016/j.neuroimage.2011.05.026. PubMed PMID: 21620985; PubMedCentral PMCID: PMC3167218.
    1. Edwards D, Cortes M, Datta A, et al. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. Neuroimage. 2013. 74 266–275; doi: 10.1016/j.neuroimage.2013.01.042; PubMed PMID: 23370061; PubMed Central PMCID: PMC4359173.
    1. Rush S, Driscoll DA. Current distribution in the brain from surface electrodes. Anesth Analg. 1968;47(6):717–723. PubMed PMID: 4972743.
    1. Hayes KJ. The current path in electric convulsion shock. Arch Neurol Psychiatry. 1950;63(1):102–109.
    1. Reilly JP, Diamant A. Electrostimulation, Theory, Applications, and Computational Model. Boston, MA: Artech House; 2011.
    1. Bai S, Dokos S, Ho KA, Loo C. A computational modelling study of transcranial direct current stimulation montages used in depression. Neuroimage. 2014;87:332–344. doi:10.1016/j.neuroimage.2013.11.015. PubMed PMID: 24246487.
    1. Bikson M, Datta A, Rahman A, et al. Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode’s position and size. Clin Neurophysiol. 2010;121(12):1976–1978. doi:10.1016/j.clinph.2010.05.020. PubMed PMID: 21035740; PubMedCentral PMCID: PMC2983105.
    1. Reato D, Gasca F, Datta A, Bikson M, Marshall L, Parra LC. Transcranial electrical stimulation accelerates human sleep homeostasis. PLoS Comput Biol. 2013;9(2):e1002898 doi:10.1371/journal.pcbi.1002898. PubMed PMID: 23459152; PubMed Central PMCID: PMC3573006.
    1. Mendonca ME, Santana MB, Baptista AF, et al. Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models. J Pain. 2011;12(5):610–617. doi:10.1016/j.jpain.2010.12.015. PubMed PMID: 21497140.
    1. Miranda PC, Faria P, Hallett M. What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS? Clin Neurophysiol. 2009;120(6):1183–1187. doi:10.1016/j.clinph.2009.03.023. PubMed PMID: 19423386; PubMed Central PMCID: PMC2758822.
    1. Ranck JB. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98(3):417–440. PubMed PMID: 1102064.
    1. Rahman A, Reato D, Arlotti M, et al. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol. 2013;591(10):2563–2578. doi:10.113/jphysiol.2012.247171. PubMed PMID: 23478132; PubMed Central PMCID: PMC3678043.
    1. Chan CY, Hounsgaard J, Nicholson C. Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. J Physiol. 1988;402:751–771. PubMed PMID: 3236254; PubMed Central PMCID: PMC1191919.
    1. Kabakov AY, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A. Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J Neurophysiol. 2012;107(7):1881–1889. doi:10.1152/jn.00715.2011. PubMed PMID: 22219028; PubMed Central PMCID: PMC3331663.
    1. Lopez L, Chan CY, Okada YC, Nicholson C. Multimodal characterization of population responses evoked by applied electric field in vitro: extracellular potential, magnetic evoked field, transmembrane potential, and current-source density analysis. J Neurosci. 1991;11(7):1998–2010.
    1. Darvas F, Pantazis D, Kucukaltun-Yildirim E, Leahy RM. Mapping human brain function with MEG and EEG: methods and validation. Neuroimage. 2004;23(suppl 1):S289–S299.
    1. Woods AJ, Antal A, Bikson M, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127(2):1031–1048.
    1. Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol. 2003;114(11):2220–2222.
    1. Reinhart RM, Woodman GF. Causal control of medial-frontal cortex governs electrophysiological and behavioral indices of performance monitoring and learning. J Neurosci. 2014;34(12):4214–4227.
    1. Marshall L, Mölle M, Hallschmid M, Born J. Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci. 2014;24(44):9985–9992.
    1. De Ridder D, Vanneste S. EEG driven tDCS versus bifrontal tDCS for tinnitus. Front Psychiatry. 2012;3:84.
    1. Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One. 2010;5(11):e13766.
    1. Sugawara K, Onishi H, Yamashiro K, et al. The effect of anodal transcranial direct current stimulation over the primary motor or somatosensory cortices on somatosensory evoked magnetic fields. Clin Neurophysiol. 2015;126(1):60–67. doi:10.1016/j.clinph.2014.04.014. PubMed PMID: 24856461.
    1. Venkatakrishnan A, Contreras-Vidal JL, Sandrini M, Cohen LG. Independent component analysis of resting brain activity reveals transient modulation of local cortical processing by transcranial direct current stimulation. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:8102–8105. doi:10.1109/IEMBS.2011.6091998.
    1. Suntrup S, Teismann I, Wollbrink A, et al. Magnetoencephalographic evidence for the modulation of cortical swallowing processing by transcranial direct current stimulation. Neuroimage. 2013;83:346–354.
    1. Huettel SA, Song AW. Functional Magnetic Resonance Imaging. 3rd ed Sunderland, MA: Sinauer Associates; 2014.
    1. Bailey DL, Townsend DW, Valk PE, et al. Positron Emission Tomography: Basic Sciences. New York, NY: Springer; 2003.
    1. Datta A, Elwassif M, Battaglia F, Bikson M. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. J Neural Eng. 2008;5(2):163–174.
    1. Laakso I, Tanaka S, Koyama S, De Santis V, Hirata A. Inter-subject variability in electric fields of motor cortical tDCS. Brain Stimul. 2015;8(5):906–913.
    1. Zheng X, Schlaug G. Structural white matter changes in descending motor tracts correlate with improvements in motor impairment after undergoing a treatment course of tDCS and physical therapy. Front Hum Neurosci. 2015;9:229.
    1. Brunelin J, Mondino M, Gassab L, et al. Examining transcranial direct-current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. Am J Psychiatry. 2012;169(7):719–724.
    1. Mondino M, Brunelin J, Palm U, et al. Transcranial direct current stimulation for the treatment of refractory symptoms of schizophrenia. Current evidence and future directions. Curr Pharm Des. 2015;21(23):3373–3383. PubMed PMID: 26088110.
    1. Wang Y, Hao Y, Zhou J, et al. Direct current stimulation over the human sensorimotor cortex modulates the brain’s hemodynamic response to tactile stimulation. Eur J Neurosci. 2015;42(3):1933–1940.
    1. Matsushita R, Andoh J, Zatorre RJ. Polarity-specific transcranial direct current stimulation disrupts auditory pitch learning. Front Neurosci. 2015;18(9):174.
    1. Coffman BA, Trumbo MC, Flores RA, et al. Impact of tDCS on performance and learning of target detection: interaction with stimulus characteristics and experimental design. Neuropsychologia. 2012;50(7):1594–1602.
    1. Zheng X, Alsop DC, Schlaug G. Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. Neuroimage. 2011;58(1):26–33.
    1. Stagg C J, Lin R L, Mezue M, et al. Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. J Neurosci. 2013;33(28):11425–11431.
    1. Weber MJ, Messing SB, Rao H, Detre JA, Thompson-Schill SL. Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: a tDCS-fMRI study. Hum Brain Mapp. 2014;35(8):3673–3686.
    1. Kwon YH, Ko MH, Ahn SH, et al. Primary motor cortex activation by transcranial direct current stimulation in the human brain. Neurosci Lett. 2008;11;435(1):56–59. doi:10.1016/j.neulet.2008.02.012. PubMed PMID: 18325666.
    1. Rango M, Cogiamanian F, Marceglia S, et al. Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: a 1H-MRS study. Magn Reson Med. 2008;60(4):782–789.
    1. Stagg CJ, O’Shea J, Kincses ZT, Woolrich M, Matthews PM, Johansen-Berg H. Modulation of movement-associated cortical activation by transcranial direct current stimulation. Eur J Neurosci. 2009;30(7):1412–1423. doi:10.1111/j.1460-9568.2009.06937.x. PubMed PMID: 19788568.
    1. Paquette C, Sidel M, Radinska BA, Soucy JP, Thiel A. Bilateral transcranial direct current stimulation modulates activation-induced regional blood flow changes during voluntary movement. J Cereb Blood Flow Metab. 2011;31(10):2086–2095.
    1. DosSantos MF, Love TM, Martikainen IK, et al. Immediate effects of tDCS on the μ-opioid system of a chronic pain patient. Front Psychiatry. 2012;3:93.
    1. Yoon EJ, Kim YK, Kim HR, Kim SE, Lee Y, Shin HI. Transcranial direct current stimulation to lessen neuropathic pain after spinal cord injury: a mechanistic PET study. Neurorehabil Neural Repair. 2014;28(3):250–259.
    1. Giordano J. The human prospect(s) of neuroscience and neurotechnology: domains of influence and the necessity—and questions—of neuroethics. Hum Prospect. 2014;4(1):1–18.
    1. Giordano J. A preparatory neuroethical approach to assessing developments in neurotechnology. AMA J Ethics. 2015;17(1):56–61.
    1. Maslen H, Douglas T, Cohen Kadosh R, Levy N, Savulescu J. The regulation of cognitive enhancement devices: extending the medical model. J Law Biosci. 2014;1(1):68–93.
    1. Maslen H, Earp BD, Cohen Kadosh R, Savulescu J. Brain stimulation for treatment and enhancement in children: an ethical analysis. Front Hum Neurosci. 2014;8:953.
    1. Maslen H, Savulescu J, Douglas T, Levy N, Cohen Kadosh R. Regulation of devices for cognitive enhancement. Lancet. 2013;382(9896):938–939.
    1. Bikson M, Paneri B, Giordano J. The off-label use, utility and potential value of tDCS in the clinical care of particular neuropsychiatric conditions. J Law Biosci. 2016;12(3):1–5.
    1. Giordano J. Neurotechnology as demiurgical force: Avoiding Icarus’ folly In: Giordano J, ed. Neurotechnology: Premises, Potential, and Problems. Boca Raton, FL: CRC Press; 2012:1–14.
    1. DiEuliis D, Giordano J. Neurotechnological convergence and “big data”: A force-multiplier toward advancing neuroscience In: Collman J, Matei SA, eds. Ethical Reasoning in Big Data: An Exploratory Analysis. New York, NY; Springer; 2016.
    1. Treene L, Wexler A, Giordano J. Toward an integrative database of/for transcranial electrical stimulation: defining need, and positing approaches, benefits and caveats. Paper presented at: The annual meeting of the International Neuroethics Society; October 16, 2015, Chicago, IL: USA.

Source: PubMed

3
Tilaa