Diversity of Endonuclease V: From DNA Repair to RNA Editing

Isao Kuraoka, Isao Kuraoka

Abstract

Deamination of adenine occurs in DNA, RNA, and their precursors via a hydrolytic reaction and a nitrosative reaction. The generated deaminated products are potentially mutagenic because of their structural similarity to natural bases, which in turn leads to erroneous nucleotide pairing and subsequent disruption of cellular metabolism. Incorporation of deaminated precursors into the nucleic acid strand occurs during nucleotide synthesis by DNA and RNA polymerases or base modification by DNA- and/or RNA-editing enzymes during cellular functions. In such cases, removal of deaminated products from DNA and RNA by a nuclease might be required depending on the cellular function. One such enzyme, endonuclease V, recognizes deoxyinosine and cleaves 3' end of the damaged base in double-stranded DNA through an alternative excision repair mechanism in Escherichia coli, whereas in Homo sapiens, it recognizes and cleaves inosine in single-stranded RNA. However, to explore the role of endonuclease V in vivo, a detailed analysis of cell biology is required. Based on recent reports and developments on endonuclease V, we discuss the potential functions of endonuclease V in DNA repair and RNA metabolism.

Keywords: DNA repair; RNA editing; deamination; endonuclease V.

Figures

Figure 1
Figure 1
Formation of deoxyinosine and inosine. Deamination of adenine to hypoxanthine results in the formation of deoxyinosine in DNA and inosine in RNA. Hypoxanthine, which is recognized as guanine, pairs with cytosine. Deoxyinosine and inosine are nucleosides that form when hypoxanthine is attached to a deoxyribose ring or ribose ring, respectively.
Figure 2
Figure 2
Deoxyinosine in DNA. (A) Deoxyinosine is produced by deamination of adenine in DNA. In this case, it results in a mismatched I:T pair that requires repair; (B) Deamination of dATP to dITP leads to its incorporation into DNA by DNA polymerase during replication. When deoxyinosine is recognized as guanine, it pairs with cytosine, resulting in a non-mismatch I:C pair.
Figure 3
Figure 3
Endonuclease V in DNA repair. Deoxyinosine in DNA is repaired by alkyl-adenine DNA glycosylase (AAG) in the base excision repair (BER) pathway and by endonuclease V (EndoV) in the alternative excision repair (AER) pathway. EndoV hydrolyses the second phosphodiester bond located 3' to deoxyinosine in the DNA strand.
Figure 4
Figure 4
Inosine in RNA. (A) Inosine is produced by deamination in RNA. As inosine is recognized as guanine during translation, this deamination leads to miscoding of transcription or interference of RNA metabolism; (B) Deamination of ATP produces ITP, which accumulates in the nucleotide pool and is inserted into the transcript by RNA polymerase during transcription elongation. Transcriptional mutagenesis results in miscoding of proteins or interference of RNA metabolism; (C) Conversion of adenosine (A) residues to inosine (I) within dsRNA is catalyzed by adenosine deaminases acting on RNA (ADARs). They catalyze RNA editing at specific sites in the dsRNA structure, suggesting that their proper functioning may be crucial to RNA metabolism.
Figure 5
Figure 5
E. coli endonuclease V (eEndoV) and human endonuclease V (hEndoV) display opposing preferences in cleaving RNA and DNA. (A) 32P-labelled 30-mer ssDNA containing deoxyinosine and 21-mer ssRNA containing inosine (dI and I, respectively) were used as substrates. The positions of cleavage are indicated by arrows; (B) Activity of eEndoV (lanes 1–6) or hEndoV (lanes 7–12) when incubated with 32P-labelled DNA substrate (30-mer dI-DNA) containing deoxyinosine (lanes 1–2 and lanes 7–8) or 32P-labelled RNA substrate (21-mer I-RNA) containing inosine (lanes 3–4 and lanes 9–10) or both DNA and RNA substrates (lanes 5–6 and lanes 11–12) at 37 °C for 30 min. The cleavage products (15-mer dI-DNA and 12-mer I-RNA) are indicated by denaturing polyacrylamide gel analysis.
Figure 6
Figure 6
Human endonuclease V in RNA editing. Inosine in RNA is produced by ADARs or inosine monophosphate (IMP). Human endonuclease V can cleave the second phosphodiester bond located at 3' end of inosine in the RNA strand. Endo- or exo ribonuclease will further digest the cleaved RNA.

References

    1. Lindahl T., Wood R.D. Quality control by DNA repair. Science. 1999;286:1897–1905. doi: 10.1126/science.286.5446.1897.
    1. Hoeijmakers J.H.J. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–374. doi: 10.1038/35077232.
    1. Duncan B.K., Miller J.H. Mutagenic deamination of cytosine residues in DNA. Nature. 1980;287:560–561. doi: 10.1038/287560a0.
    1. Hill-Perkins M., Jones M.D., Karran P. Site-specific mutagenesis in vivo by single methylated or deaminated purine bases. Mutat. Res. 1986;162:153–163. doi: 10.1016/0027-5107(86)90081-3.
    1. Wallace S.S. Base excision repair: A critical player in many games. DNA Repair. 2014;19:14–26. doi: 10.1016/j.dnarep.2014.03.030.
    1. Krokan H.E., Bjørås M. Base excision repair. Cold Spring Harb. Perspect. Biol. 2013 doi: 10.1101/cshperspect.a012583.
    1. Moe A., Ringvoll J., Nordstrand L.M., Eide L., Bjørås M., Seeberg E., Rognes T., Klungland A. Incision at hypoxanthine residues in DNA by a mammalian homologue of the Escherichia coli antimutator enzyme endonuclease V. Nucleic Acids Res. 2003;31:3893–3900. doi: 10.1093/nar/gkg472.
    1. Dalhus B., Arvai A.S., Rosnes I., Olsen Ø.E., Backe P.H., Alseth I., Gao H., Cao W., Tainer J.A., Bjørås M. Structures of endonuclease V with DNA reveal initiation of deaminated adenine repair. Nat. Struct. Mol. Biol. 2009;16:138–143. doi: 10.1038/nsmb.1538.
    1. Cao W. Endonuclease V: An unusual enzyme for repair of DNA deamination. Cell. Mol. Life Sci. 2013;70:3145–3156. doi: 10.1007/s00018-012-1222-z.
    1. Lee C.-C., Yang Y.-C., Goodman S.D., Yu Y.-H., Lin S.-B., Kao J.-T., Tsai K.-S., Fang W.-H. Endonuclease V-mediated deoxyinosine excision repair in vitro. DNA Repair. 2010;9:1073–1079. doi: 10.1016/j.dnarep.2010.07.007.
    1. Alseth I., Dalhus B., Bjørås M. Inosine in DNA and RNA. Curr. Opin. Genet. Dev. 2014;26:116–123. doi: 10.1016/j.gde.2014.07.008.
    1. Vik E.S., Nawaz M.S., Andersen P.S., Fladeby C., Bjørås M., Dalhus B., Alseth I. Endonuclease V cleaves at inosines in RNA. Nat. Commun. 2013 doi: 10.1038/ncomms3271.
    1. Morita Y., Shibutani T., Nakanishi N., Nishikura K., Iwai S., Kuraoka I. Human endonuclease V is a ribonuclease specific for inosine-containing RNA. Nat. Commun. 2013 doi: 10.1038/ncomms3273.
    1. Mi R., Alford-Zappala M., Kow Y.W., Cunningham R.P., Cao W. Human endonuclease V as a repair enzyme for DNA deamination. Mutat. Res. 2012;735:12–18. doi: 10.1016/j.mrfmmm.2012.05.003.
    1. Lindahl T. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair. Prog. Nucleic Acid Res. Mol. Biol. 1979;22:135–192.
    1. Schuster H. The reaction of nitrous acid with deoxyribonucleic acid. Biochem. Biophys. Res. Commun. 1960;2:320–323. doi: 10.1016/0006-291X(60)90025-5.
    1. Taghizadeh K., McFaline J.L., Pang B., Sullivan M., Dong M., Plummer E., Dedon P.C. Quantification of DNA damage products resulting from deamination, oxidation and reaction with products of lipid peroxidation by liquid chromatography isotope dilution tandem mass spectrometry. Nat. Protoc. 2008;3:1287–1298.
    1. Pang B., McFaline J.L., Burgis N.E., Dong M., Taghizadeh K., Sullivan M.R., Elmquist C.E., Cunningham R.P., Dedon P.C. Defects in purine nucleotide metabolism lead to substantial incorporation of xanthine and hypoxanthine into DNA and RNA. Proc. Natl. Acad. Sci. USA. 2012;109:2319–2324. doi: 10.1073/pnas.1118455109.
    1. Schouten K.A., Weiss B. Endonuclease V protects Escherichia coli against specific mutations caused by nitrous acid. Mutat. Res. 1999;435:245–254. doi: 10.1016/S0921-8777(99)00049-X.
    1. Weiss B. Endonuclease V of Escherichia coli prevents mutations from nitrosative deamination during nitrate/nitrite respiration. Mutat. Res. 2001;461:301–309. doi: 10.1016/S0921-8777(00)00062-8.
    1. Behmanesh M., Sakumi K., Abolhassani N., Toyokuni S., Oka S., Ohnishi Y.N., Tsuchimoto D., Nakabeppu Y. ITPase-deficient mice show growth retardation and die before weaning. Cell Death Differ. 2009;16:1315–1322. doi: 10.1038/cdd.2009.53.
    1. Budke B., Kuzminov A. Hypoxanthine incorporation is nonmutagenic in Escherichia coli. J. Bacteriol. 2006;188:6553–6560. doi: 10.1128/JB.00447-06.
    1. Saparbaev M., Laval J. Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc. Natl. Acad. Sci. USA. 1994;91:5873–5877. doi: 10.1073/pnas.91.13.5873.
    1. Lee C.-Y.I., Delaney J.C., Kartalou M., Lingaraju G.M., Maor-Shoshani A., Essigmann J.M., Samson L.D. Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG) Biochemistry. 2009;48:1850–1861. doi: 10.1021/bi8018898.
    1. Gates F.T., Linn S. Endonuclease from Escherichia coli that acts specifically upon duplex DNA damaged by ultraviolet light, osmium tetroxide, acid, or X-rays. J. Biol. Chem. 1977;252:2802–2807.
    1. Gates F.T., Linn S. Endonuclease V of Escherichia coli. J. Biol. Chem. 1977;252:1647–1653.
    1. Demple B., Linn S. On the recognition and cleavage mechanism of Escherichia coli endodeoxyribonuclease V, a possible DNA repair enzyme. J. Biol. Chem. 1982;257:2848–2855.
    1. Yao M., Hatahet Z., Melamede R.J., Kow Y.W. Purification and characterization of a novel deoxyinosine-specific enzyme, deoxyinosine 3' endonuclease, from Escherichia coli. J. Biol. Chem. 1994;269:16260–16268.
    1. Yao M., Kow Y.W. Strand-specific cleavage of mismatch-containing DNA by deoxyinosine 3'-endonuclease from Escherichia coli. J. Biol. Chem. 1994;269:31390–31396.
    1. Yao M., Kow Y.W. Cleavage of insertion/deletion mismatches, flap and pseudo-Y DNA structures by deoxyinosine 3'-endonuclease from Escherichia coli. J. Biol. Chem. 1996;271:30672–30676. doi: 10.1074/jbc.271.48.30672.
    1. Yasuda S., Sekiguchi M. T4 endonuclease involved in repair of DNA. Proc. Natl. Acad. Sci. USA. 1970;67:1839–1845. doi: 10.1073/pnas.67.4.1839.
    1. Nakabeppu Y., Sekiguchi M. Physical association of pyrimidine dimer DNA glycosylase and apurinic/apyrimidinic DNA endonuclease essential for repair of ultraviolet-damaged DNA. Proc. Natl. Acad. Sci. USA. 1981;78:2742–2746. doi: 10.1073/pnas.78.5.2742.
    1. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–715. doi: 10.1038/362709a0.
    1. Sakurai M., Yano T., Kawabata H., Ueda H., Suzuki T. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nat. Chem. Biol. 2010;6:733–740. doi: 10.1038/nchembio.434.
    1. Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 2010;79:321–349. doi: 10.1146/annurev-biochem-060208-105251.
    1. Grice L.F., Degnan B.M. The origin of the ADAR gene family and animal RNA editing. BMC Evol. Biol. 2015 doi: 10.1186/s12862-015-0279-3.
    1. Melcher T., Maas S., Herb A., Sprengel R., Seeburg P.H., Higuchi M. A mammalian RNA editing enzyme. Nature. 1996;379:460–464. doi: 10.1038/379460a0.
    1. Desterro J.M.P., Keegan L.P., Lafarga M., Berciano M.T., O’Connell M., Carmo-Fonseca M. Dynamic association of RNA-editing enzymes with the nucleolus. J. Cell Sci. 2003;116:1805–1818. doi: 10.1242/jcs.00371.
    1. Sansam C.L., Wells K.S., Emeson R.B. Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proc. Natl. Acad. Sci. USA. 2003;100:14018–14023. doi: 10.1073/pnas.2336131100.
    1. Lai F., Chen C.X., Carter K.C., Nishikura K. Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases. Mol. Cell. Biol. 1997;17:2413–2424.
    1. Yang W., Wang Q., Howell K.L., Lee J.T., Cho D.-S.C., Murray J.M., Nishikura K. ADAR1 RNA deaminase limits short interfering RNA efficacy in mammalian cells. J. Biol. Chem. 2005;280:3946–3953. doi: 10.1074/jbc.M407876200.
    1. Rubio M.A.T., Pastar I., Gaston K.W., Ragone F.L., Janzen C.J., Cross G.A.M., Papavasiliou F.N., Alfonzo J.D. An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proc. Natl. Acad. Sci. USA. 2007;104:7821–7826. doi: 10.1073/pnas.0702394104.
    1. Kawahara Y., Zinshteyn B., Sethupathy P., Iizasa H., Hatzigeorgiou A.G., Nishikura K. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science. 2007;315:1137–1140. doi: 10.1126/science.1138050.
    1. Farajollahi S., Maas S. Molecular diversity through RNA editing: A balancing act. Trends Genet. 2010;26:221–230. doi: 10.1016/j.tig.2010.02.001.
    1. Maas S., Patt S., Schrey M., Rich A. Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc. Natl. Acad. Sci. USA. 2001;98:14687–14692. doi: 10.1073/pnas.251531398.
    1. Paul M.S., Bass B.L. Inosine exists in mRNA at tissue-specific levels and is most abundant in brain mRNA. EMBO J. 1998;17:1120–1127. doi: 10.1093/emboj/17.4.1120.
    1. Kiyonari S., Egashira Y., Ishino S., Ishino Y. Biochemical characterization of endonuclease V from the hyperthermophilic archaeon, Pyrococcus furiosus. J. Biochem. 2014;155:325–333. doi: 10.1093/jb/mvu010.

Source: PubMed

3
Tilaa